CN111133127A - 为了较佳生物传感器性能的用于原生氧化物移除和介电氧化物再生长的方法、材料和工艺 - Google Patents

为了较佳生物传感器性能的用于原生氧化物移除和介电氧化物再生长的方法、材料和工艺 Download PDF

Info

Publication number
CN111133127A
CN111133127A CN201880062108.XA CN201880062108A CN111133127A CN 111133127 A CN111133127 A CN 111133127A CN 201880062108 A CN201880062108 A CN 201880062108A CN 111133127 A CN111133127 A CN 111133127A
Authority
CN
China
Prior art keywords
substrate
precursor
native oxide
processing chamber
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880062108.XA
Other languages
English (en)
Inventor
兰加·拉奥·阿内帕利
科林·科斯塔诺·内科克
尤里·梅尔尼克
苏雷什·钱德·赛斯
普拉文·K·纳万克尔
苏克蒂·查特吉
兰斯·A·斯卡德尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN111133127A publication Critical patent/CN111133127A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00841Cleaning during or after manufacture
    • B81C1/00849Cleaning during or after manufacture during manufacture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0236Pretreatment of the material to be coated by cleaning or etching by etching with a reactive gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0214Biosensors; Chemical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/607Detection means characterised by use of a special device being a sensor, e.g. electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Abstract

公开了在用于生物学应用的MEMS器件上移除原生氧化物层和沉积具有受控数量的活性位点的介电层的方法。在一个方面中,一种方法包括通过以下步骤从基板的表面移除原生氧化物层:将基板暴露于呈气相的一种或多种配体以使原生氧化物层具有挥发性,及随后热解吸或以其他方式蚀刻具有挥发性的原生氧化物层。在另一方面中,一种方法包括在基板的表面上沉积介电层,所述介电层被选择为提供受控数量的活性位点。在又一方面中,一种方法包括从基板的表面移除原生氧化物层和在基板的表面上沉积介电层两者,其中通过将基板暴露于一种或多种配体来移除原生氧化物层,所述介电层被选择为提供受控数量的活性位点。

Description

为了较佳生物传感器性能的用于原生氧化物移除和介电氧化 物再生长的方法、材料和工艺
技术领域
本文公开的方面涉及形成用于生物学或其他生命科学应用的改良的基板的方法。
背景技术
氧化钛(TiOx)是用于各种物理和化学功能的有用材料的示例,包括用作为气体、离子或生物物种传感材料。因此,TiOx正用于各种生物统计传感应用,诸如用在用于DNA测序的磷酸盐传感器中。常规性地,通过阳极氧化法在基板上形成多孔TiOx膜,诸如在含有氢氟(HF)酸的水溶液中对钛(Ti)片进行阳极氧化。多孔TiOx膜可包括多个微机电系统(micro-electro-mechanical system;MEMS)器件,所述器件对温度、pH和光敏感。
当前MEMS器件通常包括具有钛表面的传感器堆叠,活性介电传感材料沉积在此钛表面上。介电层充当栅极氧化物,由于引发介电层表面上的表面羟基(-OH)基团与分析材料以酸性或碱性方式反应并产生相应表面电荷电势的现象,此栅极氧化物响应pH水平的变化。检测pH水平变化的能力允许MEMS器件用于各种传感应用,包括在DNA测序中使用,在一个示例中,DNA测序通过检测离散的核苷酸掺入事件来记录DNA序列。然而,pH信号固有的较差信噪比限制了传感基板的处理量,并对基板性能产生负面影响。
在沉积介电层之前移除形成于MEMS器件的钛表面的表面上的薄原生氧化物层通常改良传感基板的信噪比。已使用各种移除原生氧化物的方法,诸如使用湿法蚀刻化学品和基于自由基的等离子体清洁。然而,这些方法通常会损坏基板的其他层,从而产生不一致和杂质,这也会对基板性能产生负面影响。
另外,pH信号的背景噪声是由关于pH敏感度的活性位点过多引起的。然而,当前使用氧化钛(TiO)制造pH传感器的方法排除了有效控制活性层中活性位点数量的能力。
因此,需要用于基板的用于移除原生氧化物层及沉积具有受控数量的活性位点的介电材料的方法。
发明内容
公开了在用于生物学应用的MEMS器件上移除原生氧化物层及沉积具有受控数量的活性位点的介电层的方法。在一个方面中,一种方法包括通过以下步骤从基板的表面移除原生氧化物层:将基板暴露于呈气相的一种或多种配体以使原生氧化物层具有挥发性(volatize the native oxide layer),及随后热解吸或以其他方式蚀刻具有挥发性的原生氧化物层。在另一方面中,一种方法包括在基板的表面上沉积介电层,所述介电层被选择为提供受控数量的活性位点。在又一方面中,一种方法包括从基板的表面移除原生氧化物层和在基板的表面上沉积介电层两者,其中通过将基板暴露于一种或多种配体来移除原生氧化物层,所述介电层被选择为提供受控数量的活性位点。
在一个方面中,公开一种用于减少原生氧化物的方法。所述方法包括:将其上形成有金属结构阵列的基板放置在处理腔室中,所述金属结构上形成有原生氧化物层;将原生氧化物层暴露于一种或多种配体;和移除原生氧化物层。
在另一方面中,公开一种用于沉积介电层的方法。所述方法包括:将其上形成有金属结构阵列的基板放置在处理腔室中;将第一前驱物引入到处理腔室中;将第二前驱物引入到处理腔室中;在处理腔室中执行水脉冲;和在金属结构阵列之上形成介电层。
在又一方面中,公开一种形成用于生物传感的基板的方法。所述方法包括:将其上形成有金属结构阵列的基板放置在处理腔室中,所述金属结构上形成有原生氧化物层;将原生氧化物层暴露于一种或多种配体;移除原生氧化物层;将第一前驱物引入到处理腔室中;将第二前驱物引入到处理腔室中;在处理腔室中执行水脉冲;和在金属结构阵列之上形成介电层。
附图说明
为了可以详细地理解本公开内容的上述特征,可通过参考一些方面获得上文简要概述的本公开内容的更特定描述,一些方面在附图中示出。然而,应注意,附图仅示出示例性方面,且因此不应被认为是对其范围的限制,并且可允许其他等效方面。
图1是其上形成有钛结构阵列的基板的一部分的透视侧视图。
图2是图1的钛结构阵列的俯视图。
图3是用于从基板上的结构移除原生氧化物层的工艺流程。
图4是用于在基板之上沉积介电层的工艺流程。
图5A至图5C描绘根据本文公开的工艺流程形成的钛结构的截面视图。
图6A是示出关于沉积2nm介电材料的在介电层的各种组成下介电层的接触角的图表。
图6B是示出关于沉积4nm介电材料的在介电层的各种组成下介电层的接触角的图表。
图6C是示出关于沉积6nm介电材料的在介电层的各种组成下介电层的接触角的图表。
为了便于理解,已尽可能使用相同的附图标记来表示诸图中共有的相同元件。应设想到,一个方面的元件和特征可有益地并入其他方面,而无需赘述。
具体实施方式
公开了在用于生物学应用的MEMS器件上移除原生氧化物层和沉积具有受控数量的活性位点的介电层的方法。在一个方面中,一种方法包括通过以下步骤从基板的表面移除原生氧化物层:将基板暴露于呈气相的一种或多种配体以使原生氧化物层具有挥发性,及随后热解吸或以其他方式蚀刻具有挥发性的原生氧化物层。在另一方面中,一种方法包括在基板的表面上沉积介电层,所述介电层被选择为提供受控数量的活性位点。在又一方面中,一种方法包括从基板的表面移除原生氧化物层和在基板的表面上沉积介电层两者,其中通过将基板暴露于一种或多种配体来移除原生氧化物层,所述介电层被选择为提供受控数量的活性位点。
作为示例,本文描述的方法将涉及MEMS器件上TiOx原生氧化物层的移除和/或介电层的沉积。然而,还应设想到,所描述的方法可用于在任何结构上移除原生氧化物和沉积介电层,诸如其他金属结构或碳结构。
图1是其上形成有钛结构104的阵列的基板100的一部分的透视侧视图。图2是图1的钛结构104的阵列的俯视图。如图1所示,在基板100之上设置钛层102。在钛层102上形成钛结构104的阵列。钛层102提供钛结构104的底表面。
基板100通常是其上具有钛或其他金属层的任何基板。多孔层通常是其中具有自然孔隙的任何层。在一个方面中,基板100上具有多孔钛层。对气体和生物物种传感有用的多孔钛的一些示例包括均匀的孔隙结构(诸如纳米管和微井(microwell))、双峰孔隙结构、梯度孔隙结构、蜂窝结构和闭孔结构。如图1所示,钛结构104是微井。
在一个方面中,每个钛结构104包括MEMS器件,所述MEMS器件用于在核苷酸顺序地流过基板100时进行DNA测序。在操作中,MEMS器件表面的质子化提供表面电荷的变化,此变化被检测为变化和电压,而电压变化可与pH值相关联以用于DNA测序目的。
图3是用于从基板上的结构(诸如钛层或多孔钛层)移除原生氧化物层的工艺流程300。图4是用于在基板的钛层之上沉积介电层的工艺流程400。图5A至图5C描绘根据本文公开的工艺流程(诸如在工艺流程300和工艺流程400的各种操作处)形成的钛结构104的截面视图。工艺流程300有用于从形成于基板100上的钛结构104移除氧化钛(TiOx)层。工艺流程400有用于在形成于基板100上的钛结构104之上沉积介电层。
在工艺流程300和工艺流程400之前,通常通过任何适宜方法来形成基板100,所述基板上形成有钛结构104的阵列。在一个方面中,通过在基板100之上沉积钛层(诸如钛薄膜)并在氢氟(HF)酸溶液中阳极化钛层以形成钛结构104来形成钛结构104的阵列。如图5A所示,所形成的钛结构104是微井,此微井在其表面上包括原生氧化物层550。在一些方面中,所形成的钛结构104还包括各种附加层,包括但不限于其中具有生物统计传感器554的互补金属氧化物半导体(complementary metal-oxide semiconductor;CMOS)堆叠552、氮化钛(TiN)层556和钛(Ti)层558。如上文所论述,原生氧化物层550对器件均匀性和性能产生负面影响。
为了促进理解,工艺流程300的描述参考图1和图5A至图5B。工艺流程300在操作310处通过将其上形成有钛结构104的阵列的基板100放置在处理腔室中开始。处理腔室通常是任何适宜的沉积腔室。处理腔室的示例包括原子层沉积(atomic layer deposition;ALD)腔室或化学气相沉积(chemical vapor deposition;CVD)腔室,诸如可购自加利福尼亚州圣克拉拉的应用材料公司的处理腔室。然而,应设想到,可利用其他处理腔室。
在操作320处,将基板100暴露于一种或多种配体。不受理论的束缚,配体与原生氧化物(例如,TiOx或TaOx)表面结合,并产生挥发性络合物,此导致原生氧化物(诸如TiOx或TaOx)的流失或移除。在图5A至图5B的方面中,所述一种或多种配体通常处于气相且与原生氧化物层550反应以使原生氧化物层550具有挥发性。在操作330处,在原生氧化物层550具有挥发性之后,接着通常从基板100移除原生氧化物层550。例如,可从表面蚀刻或通过加热之后的解吸移除具有挥发性的原生氧化物层550。在一个方面中,工艺期间的基板温度在约150摄氏度(℃)与约350℃之间变化。处理压力随着一种或多种配体的输送而在约200毫托与约50托之间变化,例如在约200毫托与约20托之间,或在约100毫托与约10托之间,或在约50毫托与约5托之间,或在约25毫托与约3托之间。
通常,一次(例如,每个循环)移除亚单层至单层的具有挥发性的原生氧化物层550。因此,将基板100暴露于一种或多种配体通常是连续的或循环重复完全移除原生氧化物层550所需的任何适宜次数,如图5B所示。
一种或多种配体通常包括任何伯胺、仲胺或叔胺。适宜的配体的示例包括但不限于:TEMPO(2,2,6,6-四甲基哌啶-1-基)氧烷基、过氧苯甲酸叔丁酯、羟胺(在水中50%)、氧杂环戊烷(THF)中的氨(0.5M)、甲胺(在THF中2M)、2-氟苯胺、2-氟-6-(三氟甲基)苯胺、2-氟-3-(三氟甲基)苯胺、三甲基(三氟甲基)硅烷、甲胺溶液(在水中40%)、乙胺溶液、二乙胺、乙醇胺、N-乙基甲基胺、乙二胺、2-二甲基氨基乙醇、丙胺、二丙胺、二甲胺溶液(40%)及上述的混合物。可将基板循环或顺序地暴露于一种或多种配体。
在一个方面中,在暴露于一种或多种配体期间,处理腔室中的温度在约150℃与约300℃之间,诸如在约200℃与约300℃之间。一种或多种配体进入处理腔室的流速在约5标准立方厘米每分钟(standard cubic centimeters per minute;sccm)与约500sccm之间,或约5sccm至200sccm,或约5sccm至100sccm,或约5sccm至50sccm,或约5sccm至25sccm。处理腔室内的压力在约200毫托与约50托之间,例如在约200毫托与约20托之间,或在约100毫托与约10托之间,或在约50毫托与约5托之间,或在约25毫托与约3托之间。
如上文所论述,原生氧化物层550是TiOx层。然而,所描述的使用具有配体化学品的原子层蚀刻工艺的原位气相清洁工艺对移除其他原生金属氧化物层,诸如氧化钽(TaOx),也是有用的。
本公开内容还设想到用于减少或移除原生氧化物层550的替代操作,诸如通过等离子体处理和氢暴露。例如,可将基板100暴露于等离子体处理工艺以弱化原生氧化物层550中的键,诸如TiOx层中的钛-氧(Ti-O)键,以形成等离子体处理的氧化物层。在一个方面中,弱化键包括物理上损坏原生氧化物层550,使得在后续暴露于氢自由基期间需要较低能量(例如,1-3电子伏特(eV))来随后使键断裂。等离子体处理在物理上损坏或以其他方式弱化原生氧化物层550的Ti-O键,使得制备等离子体处理的氧化物层以用于后续减少和移除。
随后可将基板100暴露于氢自由基或用氢自由基轰击基板100以移除等离子体处理的氧化物层。由于等离子体处理的氧化物层已经被等离子体处理以弱化该层的Ti-O键,因此可使用低能氢暴露以通过使氢自由基与弱键合的Ti-O分子反应而移除等离子体处理的氧化物层。更特定来说,氢自由基与等离子体处理的氧化物层中的氧化物反应,并引发氧化物减少和形成诸如水(H2O)和氢化钛的产物。使用低能氢选择性移除等离子体处理的氧化物层,并且因此减小对基板100上的其他层造成损坏的可能性。等离子体处理和暴露于氢自由基可重复任何次数,直至减少或移除原生氧化物层550。
在一个方面中,等离子体处理基板100包括在13.56兆赫(MHz)的等离子体功率下的低能等离子体处理。等离子体前驱物通常是不起反应的气体,包括但不限于惰性气体,诸如氩(Ar)和/或氦(He)。等离子体前驱物的流率在约10标准立方厘米每分钟(sccm)与约50sccm之间。射频(radio frequency;RF)功率在约200瓦(W)与约700W之间。处理腔室压力在约5毫托(mTorr)与约60毫托之间。基板100通常处于低温,例如,约室温(例如,在约20摄氏度(℃)与约25℃之间)。
在一个方面中,将基板100暴露于氢自由基以移除等离子体处理的氧化物层包括热丝化学气相沉积(hot wire chemical vapor deposition;HWCVD)工艺。HWCVD工艺通常包括:以任何适宜流率将氢(H2)气提供至诸如HWCVD腔室的处理腔室中;将设置在处理腔室中的一个或多个细丝加热至一温度,此温度足以解离H2气并提供能量的至少一部分以用于促进随后移除等离子体处理的氧化物层的至少一部分;及将基板100暴露于解离的H2气以移除等离子体处理的氧化物层的至少一些。通常将一个或多个细丝加热至约1,200℃与约1,700℃之间的温度。基板加热器的温度通常较低,例如在约200℃与约400℃之间。H2气的流率通常在约100sccm与约500sccm之间,例如约400sccm。处理腔室压力通常在约0.1托(T)与约1.0T之间,例如约0.5T。HWCVD工艺的持续时间通常在约50秒与约4小时之间,例如在约100秒与约200秒之间,诸如约120秒。在另一方面中,将基板100暴露于氢自由基以移除等离子体处理的氧化物层包括将氢自由基从远程微波或射频(RF)等离子体源(radiofrequencyplasma source;RPS)引入到处理腔室。
在减少或移除原生氧化物层之后,可沉积初始保护层以防止形成非所欲的低品质原生氧化物。在一个方面中,初始保护层是高品质电介质,诸如ALD TiO2或TiN。
图4是用于在基板之上沉积介电层的工艺流程400。通常,工艺流程400提供一种方法,所述方法用于在基板100之上(诸如在钛层558上)原子层沉积具有受控数量的活性位点(诸如羟基(-OH)基团)的介电层560,如图5C所示。工艺流程400可单独执行,或可与工艺流程300结合执行,例如在操作330之后执行。
为了促进理解,工艺流程300的描述参考图1和图5C。工艺流程400在操作410处通过将其上形成有结构阵列的基板放置在处理腔室中开始。在一个方面中,将基板(诸如其上具有钛结构104的基板100)放置或保持在与工艺流程300所用的处理腔室相同的处理腔室中。在另一方面中,将基板(诸如其上具有钛结构104的基板100)放置在第二处理腔室中。工艺流程400的处理腔室通常是ALD腔室,诸如可购自加利福尼亚州圣克拉拉的应用材料公司的处理腔室。然而,应设想到,可利用其他处理腔室。
在操作420处,将第一前驱物引入到处理腔室中。在操作430处,将第二前驱物引入到处理腔室中。在操作440处,在处理腔室中执行水脉冲以在钛层558之上形成介电层560,如图5C所示。在操作420与操作430之间,以及在操作430与操作440之间,有选择地用惰性气体净化处理腔室,惰性气体诸如氦(He)、氩(Ar)、氖(Ne)、氪(Kr)、氙(Xe)和/或氡(Rn)或类似者。操作420、操作430和操作440通常在每个循环沉积亚单层至单层的介电层560,例如在约0.3埃与约0.6埃之间。因此,操作420、操作430和操作440通常重复任何适宜次数,直至已将介电层560沉积至所需厚度,例如在约2纳米(nm)与约10nm之间。所需厚度可为例如2nm、4nm或6nm。
在一个方面中,由于可例如通过上文描述的工艺流程300而已事先移除了原生氧化物,因此在第一前驱物接触基板之前,例如经由暴露于水而在基板上提供多个活性位点,以便促进第一前驱物的粘附。
在一个方面中,在操作420处,通常将第一前驱物脉冲进入处理腔室,并随后在操作430处,通常将第二前驱物脉冲进入处理腔室。处理温度通常在150℃与约250℃之间变化。脉冲时间通常在约50毫秒与约0.25秒之间变化。处理压力通常是用于处理腔室的任何适宜压力。在一个方面中,压力在约30毫托与约100毫托之间。在另一方面中,压力在约40毫托与约200毫托之间。
在另一方面中,在第一操作中,将第一前驱物脉冲进入处理腔室,随后为水脉冲。在第二操作中,引入第一前驱物的一个脉冲,之后或同时引入第二前驱物的脉冲。在第二操作之后,执行氮气N2净化,并随后执行水脉冲。因此,在此方面中,沉积了TiSiOx或HfSiOx或HfZrSiOx膜的介电层,而不是如常规方法中的情况那样使表面端接对于TiSiOx的SiOx或TiOx、或HfOx或SiOx(对于HfSiOx)、ZrOx或SiOx(对于ZrSiOx)。
选择第一前驱物和第二前驱物以形成充当活性层的介电层560,此介电层具有约50毫伏(mV)dec-1与约70mV dec-1之间的表面电势,该电势从常规沉积的介电层的25mVdec-1至55mV dec-1的表面电势增大,并因此为基板提供增加的传感能力。介电层560通常是任何适宜的介电材料,包括高浓度介电材料、低浓度介电材料或上述的混合物。适宜的介电层的示例包括但不限于Ta2O5、HfSiOx、TiSiOx和/或ZrSiOx
通常选择第一前驱物的浓度和第二前驱物的浓度以改良用于各种工艺的基板性能。
在其上形成有钛结构104的基板100的示例中,钛层558通常在其表面上包括多个羟基基团。不受理论的束缚,通常通过将高度亲水的钛层558暴露于水或O2分子而形成羟基基团。返回参考图4,在操作420期间,第一前驱物与钛层558上的羟基基团的第一部分反应,以及在操作430期间,第二前驱物与羟基基团的第二部分反应。应设想到,增加第一前驱物或第二前驱物的暴露时间或处理腔室内的压力会影响第一前驱物和第二前驱物在沉积的介电层中的生长速率和相对比例。在一个方面中,调整暴露时间或压力以占据预定数量的活性位点。因此,第一前驱物和第二前驱物对控制充当活性位点的羟基基团的数量是有用的,并增加或减少介电层的疏水性以改良基板的功能。
第一前驱物通常是任何含硅、含钛、含钽或其他含金属的前驱物。适宜的钛前驱物的示例包括但不限于四(二甲基氨基)钛、异丙氧基钛(IV)、丁氧基钛(IV)和乙醇钛(IV)。适宜的硅前驱物的示例包括但不限于原硅酸四乙酯(TEOS)硅烷醇(tetraethylorthosilicatef(TEOS)silanol)。适宜的钽前驱物的示例包括但不限于乙醇钽(V)、四(二甲基氨基)钽(V)(Ta(NMe2)5、三(二乙基氨基)(乙基亚氨基)钽(V)(Ta(NEt)(NEt2)3、TaCl5、Tal5和TaF5
第二前驱物通常是任何适宜的含铪前驱物。适宜的铪前驱物的示例包括但不限于四(二甲基氨基)铪、四(乙基甲基氨基)铪、氯化铪和碘化铪。
取决于本文公开的方法中使用的第一前驱物和第二前驱物,充当传感层的介电层通常包括但不限于TiSiOx或HfSiOx或HfZrSiOx中的一个或多个。
尽管前述方面考虑到使用热ALD来沉积介电层,但本公开内容还考虑到使用等离子体增强ALD(plasma enhanced ALD;PEALD)来沉积介电层560。PEALD提供高品质膜的沉积,并且还提供降低的基板温度或其他工艺温度。在一个方面中,介电材料的PEALD沉积利用氧等离子体。在另一方面中,介电材料的PEALD沉积利用氧与氮等离子体的混合物。在另一方面中,介电材料的PEALD沉积利用氧与氩等离子体的混合物。
本文公开的方法通常提供不具有原生氧化物且其上沉积有改良的介电层的金属结构。通过从金属结构的表面移除原生氧化物层,诸如从钛结构移除TiOx,降低了基板的信噪比。通过引入经选择以增加或减少金属或硅层的疏水性的第一前驱物和第二前驱物,根据将由基板执行的后续功能的需求来控制其表面上的活性位点的数量。例如,根据本文公开的方法形成的MEMS器件针对诸如DNA测序的生物传感应用展示出较好的传感能力,因为已降低信噪比且控制了介电层的活性位点的数量,以用于通过检测pH信号进行最佳DNA测序。
另外,所公开的方法提供跨基板100的基本上均匀的沉积厚度,而与前驱物组成无关,如表1所示。此外,还可跨基板的表面实现介电层组成中的均匀一致性,如表2所示。
表1
Figure BDA0002424151160000101
表2
Figure BDA0002424151160000102
图6A至图6C描绘分别示出关于沉积2nm介电材料、4nm介电材料和6nm介电材料的在介电层的各种组成下介电层的接触角的图表。接触角指示固体表面被液体润湿的能力。控制表面的润湿性提供对基板性能的较好控制。例如,控制生物传感器基板的表面的润湿性改良了表面与周围介质之间的生物相互作用。如图6A至图6C所示,介电层的疏水性通常随着介电层中铪的比例或浓度增加而增加。
本文公开的方面可进一步包括附加工艺,诸如自由基处理和/或高温退火,例如在约300℃与约500℃之间的温度下,并且达约30分钟与约4小时之间的持续时间,以进一步减少缺陷和改良结晶度。
尽管前述内容针对本公开内容的方面,但可在不脱离本公开内容的基本范围的情况下设计本公开内容的其他和进一步方面,并且本公开内容的范围由所附权利要求书确定。

Claims (15)

1.一种用于减少原生氧化物的方法,包含:
将其上形成有金属结构阵列的基板放置在处理腔室中,所述金属结构阵列上形成有原生氧化物层;
将所述原生氧化物层暴露于一种或多种配体;和
移除所述原生氧化物层。
2.如权利要求1所述的方法,其中所述金属结构阵列包含钛结构。
3.如权利要求2所述的方法,其中所述一种或多种配体选自由伯胺、仲胺和叔胺组成的群组。
4.如权利要求3所述的方法,其中所述一种或多种配体中的每一种配体选自由二乙胺、丙胺和二丙胺组成的群组。
5.如权利要求3所述的方法,其中所述处理腔室的温度在约150摄氏度与约300摄氏度之间。
6.一种用于沉积介电材料的方法,包含:
将其上形成有金属结构阵列的基板放置在处理腔室中;
将第一前驱物引入到所述处理腔室中;
将第二前驱物引入到所述处理腔室中;
在所述处理腔室中执行水脉冲;和
在所述金属结构阵列之上形成介电层。
7.如权利要求6所述的方法,其中所述第一前驱物是含钛、含钽或含硅前驱物,且其中所述第二前驱物是含铪前驱物。
8.如权利要求6所述的方法,进一步包含:在引入所述第二前驱物之前用惰性气体净化所述处理腔室,其中所述惰性气体选自由氦、氩、氖、氪、氙和/或氡组成的群组。
9.如权利要求6所述的方法,进一步包含:在所述处理腔室中执行所述水脉冲之前用惰性气体净化所述处理腔室。
10.如权利要求6所述的方法,其中所述介电层具有约50mV dec-1与约70mV dec-1之间的表面电势。
11.如权利要求10所述的方法,其中所述介电层具有约2纳米与约10纳米之间的厚度。
12.一种形成用于生物传感的基板的方法,包含:
将其上形成有金属结构阵列的基板放置在处理腔室中,所述金属结构阵列上形成有原生氧化物层;
将所述原生氧化物层暴露于一种或多种配体;
移除所述原生氧化物层;
将第一前驱物引入到所述处理腔室中;
将第二前驱物引入到所述处理腔室中;
在所述处理腔室中执行水脉冲;和
在所述金属结构阵列之上形成介电层。
13.如权利要求12所述的方法,其中在所述金属结构阵列之上形成所述介电层的步骤包含执行等离子体增强的原子层沉积。
14.如权利要求13所述的方法,其中所述第一前驱物或所述第二前驱物选自由氧、氧和氮的混合物以及氧和氩的混合物组成的群组。
15.如权利要求12所述的方法,进一步包含:
在所述介电层之上沉积保护层;和
使所述基板在约300摄氏度与约500摄氏度之间的温度下退火达约30分钟与约4之间的持续时间。
CN201880062108.XA 2017-09-26 2018-09-21 为了较佳生物传感器性能的用于原生氧化物移除和介电氧化物再生长的方法、材料和工艺 Pending CN111133127A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN201741034078 2017-09-26
IN201741034078 2017-09-26
PCT/US2018/052127 WO2019067315A1 (en) 2017-09-26 2018-09-21 METHOD, MATERIALS AND PROCESSES FOR REMOVING NATIVE OXIDE AND REFORMING DIELECTRIC OXIDES, ENABLING BETTER BIOSPER PERFORMANCE

Publications (1)

Publication Number Publication Date
CN111133127A true CN111133127A (zh) 2020-05-08

Family

ID=65902048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880062108.XA Pending CN111133127A (zh) 2017-09-26 2018-09-21 为了较佳生物传感器性能的用于原生氧化物移除和介电氧化物再生长的方法、材料和工艺

Country Status (7)

Country Link
US (1) US11598000B2 (zh)
EP (1) EP3688205A4 (zh)
JP (1) JP6959440B2 (zh)
KR (1) KR102385386B1 (zh)
CN (1) CN111133127A (zh)
SG (1) SG11202001472QA (zh)
WO (1) WO2019067315A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190093214A1 (en) * 2017-09-22 2019-03-28 Applied Materials, Inc. Native or uncontrolled oxide reduction by a cyclic process of plasma treatment and h* radicals

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523390A (ja) * 1994-12-22 2001-11-20 ベネディクト・ジー・ペース 反転型のチップが接合された高い実装効率を有するモジュール
US20070037346A1 (en) * 2005-02-22 2007-02-15 Grant Robert W Rapid thermal annealing of targeted thin film layers
JP2009536267A (ja) * 2006-05-05 2009-10-08 アプライド マテリアルズ インコーポレイテッド 誘電膜の原子層堆積のための化学物質の光励起のための方法および装置
CN102144281A (zh) * 2008-09-08 2011-08-03 应用材料股份有限公司 原位腔室处理与沉积工艺
US20120138897A1 (en) * 2010-12-03 2012-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain stressor having enhanced carrier mobility and method for manufacturing same
US20140166617A1 (en) * 2012-12-18 2014-06-19 Applied Materials, Inc. Non-local plasma oxide etch
US20140248772A1 (en) * 2008-09-08 2014-09-04 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083373A (ja) * 1983-10-14 1985-05-11 Nec Corp 薄膜トランジスタアレイとその製造方法
JPH07102973B2 (ja) 1987-09-16 1995-11-08 住友大阪セメント株式会社 超微粒子酸化チタン粉末およびこれを配合してなる化粧料
US5563762A (en) * 1994-11-28 1996-10-08 Northern Telecom Limited Capacitor for an integrated circuit and method of formation thereof, and a method of adding on-chip capacitors to an integrated circuit
US5888906A (en) * 1996-09-16 1999-03-30 Micron Technology, Inc. Plasmaless dry contact cleaning method using interhalogen compounds
AU2003287560A1 (en) * 2002-11-06 2004-06-03 Carnegie Mellon University Mems membrane based sensor
US20040168627A1 (en) * 2003-02-27 2004-09-02 Sharp Laboratories Of America, Inc. Atomic layer deposition of oxide film
US20040198069A1 (en) * 2003-04-04 2004-10-07 Applied Materials, Inc. Method for hafnium nitride deposition
US20050003396A1 (en) * 2003-04-11 2005-01-06 Mihrimah Ozkan Biosensors having single reactant components immobilized over single electrodes and methods of making and using thereof
US7161516B2 (en) * 2003-07-22 2007-01-09 Maxim Integrated Products, Inc. Layout of dummy and active cells forming capacitor array in integrated circuit
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US20060286774A1 (en) 2005-06-21 2006-12-21 Applied Materials. Inc. Method for forming silicon-containing materials during a photoexcitation deposition process
US20070099806A1 (en) * 2005-10-28 2007-05-03 Stewart Michael P Composition and method for selectively removing native oxide from silicon-containing surfaces
US8786033B2 (en) * 2006-09-01 2014-07-22 IVI Holdings, Ltd. Biometric sensor and sensor panel, method for detecting biometric pattern using the same, and method for manufacturing the same
WO2008086228A2 (en) * 2007-01-04 2008-07-17 University Of Washington Arrays and methods for guided cell patterning
US8507389B2 (en) 2009-07-17 2013-08-13 Applied Materials, Inc. Methods for forming dielectric layers
JP5247619B2 (ja) * 2009-07-28 2013-07-24 キヤノンアネルバ株式会社 誘電体膜、誘電体膜を用いた半導体装置の製造方法及び半導体製造装置
TWI416661B (zh) * 2009-12-29 2013-11-21 Ind Tech Res Inst 空隙製造方法、電阻式記憶元件及其製造方法
WO2014070383A1 (en) * 2012-10-30 2014-05-08 Edwards Lifesciences Corporation Analyte sensor and fabrication methods
US9281213B2 (en) * 2013-12-30 2016-03-08 Texas Instruments Incorporated High precision capacitor dielectric
US9773683B2 (en) * 2014-06-09 2017-09-26 American Air Liquide, Inc. Atomic layer or cyclic plasma etching chemistries and processes
US9478626B2 (en) 2014-12-19 2016-10-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with an interconnect structure and method for forming the same
GB201515622D0 (en) * 2015-09-03 2015-10-21 Oxford Instr Nanotechnology Tools Ltd Cyclical plasma etching
CN110024146B (zh) * 2016-09-14 2023-11-03 谷歌有限责任公司 使用局部真空腔减少量子装置中的耗散和频率噪声
US11081337B2 (en) * 2017-03-15 2021-08-03 Versum Materials U.S., LLC Formulation for deposition of silicon doped hafnium oxide as ferroelectric materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523390A (ja) * 1994-12-22 2001-11-20 ベネディクト・ジー・ペース 反転型のチップが接合された高い実装効率を有するモジュール
US20070037346A1 (en) * 2005-02-22 2007-02-15 Grant Robert W Rapid thermal annealing of targeted thin film layers
JP2009536267A (ja) * 2006-05-05 2009-10-08 アプライド マテリアルズ インコーポレイテッド 誘電膜の原子層堆積のための化学物質の光励起のための方法および装置
CN102144281A (zh) * 2008-09-08 2011-08-03 应用材料股份有限公司 原位腔室处理与沉积工艺
US20140248772A1 (en) * 2008-09-08 2014-09-04 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US20120138897A1 (en) * 2010-12-03 2012-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain stressor having enhanced carrier mobility and method for manufacturing same
US20140166617A1 (en) * 2012-12-18 2014-06-19 Applied Materials, Inc. Non-local plasma oxide etch

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
任国荃等: "《磁共振成像设备应用质量检测技术与评审》", 30 November 2005 *
孙存普等,: "《自由基生物学导论》", 30 April 1999 *
栾桂东等: "《传感器及其应用》", 30 September 2012 *

Also Published As

Publication number Publication date
EP3688205A1 (en) 2020-08-05
WO2019067315A1 (en) 2019-04-04
US11598000B2 (en) 2023-03-07
KR20200046122A (ko) 2020-05-06
US20190119810A1 (en) 2019-04-25
JP2021503544A (ja) 2021-02-12
JP6959440B2 (ja) 2021-11-02
KR102385386B1 (ko) 2022-04-11
SG11202001472QA (en) 2020-04-29
EP3688205A4 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
TWI842531B (zh) 氧化矽之拓撲選擇性膜形成之方法
US11174550B2 (en) Selective deposition on metal or metallic surfaces relative to dielectric surfaces
KR102434954B1 (ko) 금속 표면들 상에 블로킹 층들을 증착시키기 위한 방법들
TWI426547B (zh) 用於批次原子層沈積反應器之處理製程
JP5739574B2 (ja) 誘電体膜をパッシベーションする方法
KR101461310B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 컴퓨터 판독가능한 기록 매체
US20150162185A1 (en) Atomic layer deposition of silicon carbon nitride based materials
KR20150041755A (ko) TDMAT 또는 TDEAT 를 사용하여 PEALD 에 의해 Ti 함유 막을 형성하는 방법
JP2009544849A (ja) 膜形成装置のクリーニング方法および膜形成装置
US20180301347A1 (en) Method of processing target object
US20190326125A1 (en) Method of processing target object
KR102385386B1 (ko) 더 양호한 바이오센서 성능을 위한 자연 산화물 제거 및 유전체 산화물들의 재성장을 위한 방법, 물질들 및 프로세스
TWI727660B (zh) 氮化矽之選擇性沉積
KR102710534B1 (ko) 트렌치의 측벽 또는 평탄면 상에 실리콘 질화물막을 선택적으로 형성하기 위한 방법
KR20220062103A (ko) Peald 나이트라이드 막들
TWI380406B (en) Apparatus for atomic layer deposition
KR100511914B1 (ko) 피이사이클 시브이디법을 이용한 반도체소자의 제조방법
KR102318516B1 (ko) 물질막 및 타겟 패턴의 선택적 제조 방법
US20190093214A1 (en) Native or uncontrolled oxide reduction by a cyclic process of plasma treatment and h* radicals
US20240332014A1 (en) Doping by molecular layer deposition
TW202132600A (zh) 蝕刻或沉積之方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination