CN111095241A - 加速数学引擎 - Google Patents
加速数学引擎 Download PDFInfo
- Publication number
- CN111095241A CN111095241A CN201880058445.1A CN201880058445A CN111095241A CN 111095241 A CN111095241 A CN 111095241A CN 201880058445 A CN201880058445 A CN 201880058445A CN 111095241 A CN111095241 A CN 111095241A
- Authority
- CN
- China
- Prior art keywords
- operands
- matrix
- data
- input
- matrix processor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 claims abstract description 154
- 238000012545 processing Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 15
- 239000013598 vector Substances 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000013527 convolutional neural network Methods 0.000 claims description 5
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 238000011176 pooling Methods 0.000 claims description 3
- 238000012886 linear function Methods 0.000 claims description 2
- 238000010606 normalization Methods 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000012805 post-processing Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/57—Arithmetic logic units [ALU], i.e. arrangements or devices for performing two or more of the operations covered by groups G06F7/483 – G06F7/556 or for performing logical operations
- G06F7/575—Basic arithmetic logic units, i.e. devices selectable to perform either addition, subtraction or one of several logical operations, using, at least partially, the same circuitry
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored program computers
- G06F15/80—Architectures of general purpose stored program computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/50—Adding; Subtracting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/5443—Sum of products
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/20—Processor architectures; Processor configuration, e.g. pipelining
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computer Hardware Design (AREA)
- Algebra (AREA)
- Neurology (AREA)
- Databases & Information Systems (AREA)
- Image Processing (AREA)
- Complex Calculations (AREA)
- Image Analysis (AREA)
Abstract
本公开的各种实施例涉及一种加速数学引擎。在某些实施例中,加速数学引擎被应用于图像处理,使得图像的卷积通过使用包括子电路的二维矩阵处理器而被加速,子电路包括ALU、输出寄存器和影子寄存器。该架构支持时钟二维架构,其中图像数据和权重以同步方式相乘,以允许大量数学运算被并行执行。
Description
相关申请的交叉引用
本申请要求于2017年7月24日提交的标题为“Accelerated MathematicalEngine”、并且列出Peter Joseph Bannon、Kevin Altair Hurd和Emil Talpes作为发明人的美国临时专利申请第62/536,399号(20150-2154P(P0822-1PUS))的优先权权益。前述专利文件通过引用全部并入本文。
本申请还要求于2017年9月20日提交的标题为“Accelerated MathematicalEngine”、并且列出Peter Joseph Bannon、Kevin Altair Hurd和Emil Talpes作为发明人的共同拥有的美国专利申请第15/710,433号(20150-2154(N0822-1NUS))的优先权权益。前述专利文件中的每一个通过引用全部并入本文。
背景技术
A.技术领域
本公开涉及一种用于对大量数据进行操作的加速数学引擎,更具体地涉及一种用于基于矩阵乘法操作来执行复杂卷积操作的加速数学引擎。
B.相关领域描述
本领域技术人员将认识到对用于实施对时间敏感且复杂的数学操作的通用处理器和系统的速度和性能的不断增长的需求。由于这些通用系统用于处理大量数据并且执行复杂的数学操作,因此计算资源和计算速率受到执行这些计算的现有通用硬件设计能力的限制。例如,在某些情况下,执行矩阵操作的通用计算设备和处理器可能无法及时执行这些运算。执行数字信号处理操作的许多传统乘法器依赖于一系列软件和硬件矩阵操作操纵步骤(地址生成、换位、逐位加法和移位等),并且可能表示对时间敏感的系统内的瓶颈。通常,由于增加了从各个位置存储和获取中间结果以完成操作的步骤,这些操纵步骤需要使用处理器的算术函数来生成中间结果,但是却浪费了计算时间。
图1示出了传统乘法器系统的示例。乘法器系统100是包括计算单元102、寄存器104、高速缓存106和存储器108的标量机。在操作中,计算单元102使用寄存器104和高速缓存106来检索存储在存储器108中的数据。通常,计算单元102是微处理器,诸如能够执行各种计算进程(包括对输入矩阵进行矩阵乘法以获得结果矩阵)的CPU或GPU例如,通过将乘法转换为加法并且将结果输出到某个内部寄存器中。
例如,表示图像的输出像素的点积通常通过对来自两个矩阵的各个矩阵元素进行点乘以获得部分结果、然后将部分结果相加以获得最终点积而生成。通常,通过将点乘分解成一系列的单个子操作,来对单个数据元素执行单个矩阵元素的乘法,即,标量乘法。因此,部分积必须被存储,并且从寄存器104、高速缓存106和存储器108中的一个或多个被获取,以完成单个算术运算。
对计算有要求的应用(诸如卷积)通常需要被嵌入到计算单元102中并且用于将卷积操作转换为交替的矩阵乘法操作的软件功能。这通过将数据重新排列并重新格式化为随后能够进行原始矩阵相乘的两个矩阵而完成。然而,在标量机100中不存在高效地共享或重用数据的机制,使得执行每个标量操作所需的数据必须被多次重新存储并从寄存器中多次重新获取。随着要进行卷积操作的图像数据量的增加,这些操作的复杂性和管理开销将变得明显更大。
不能重用标量机100中的许多数据以及所增加且效率低下的从寄存器104、高速缓存106和存储器108存储和获取中间结果以完成算术运算的步骤只是现有系统(诸如乘法器系统100)的一些缺点。
因此,需要可以快速且高效地执行矩阵数学操作的高计算吞吐量系统和方法。
附图说明
将参照本发明的实施例,本发明的实施例的示例可以在附图中图示。这些附图旨在是说明性的,而非限制性的。尽管通常在这些实施例的上下文中描述了本发明,但是应该理解,并不旨在将本发明的范围限制为这些特定实施例。附图中的项目可能未按比例绘制。
图(“FIG.”)1示出了传统乘法器系统的示例。
图2图示了根据本公开的各种实施例的用于执行算术运算的示例性矩阵处理器架构。
图3图示了图2所示的矩阵处理器架构的示例性配置的细节。
图4图示了图3所示的逻辑电路的示例性乘加电路的实施方式。
图5图示了根据本公开的各种实施例的示例性卷积操作。
图6至图8图示了根据本公开的各种实施例的示例性卷积操作的细节。
图9图示了根据本公开的各种实施例的示例性去卷积操作。
图10图示了根据本公开的各种实施例的用于执行算术运算以使卷积神经网络更快的过程。
具体实施方式
在以下描述中,出于解释的目的,陈述了特定细节以便提供对本发明的理解。然而,对于本领域技术人员显而易见的是,可以在没有这些细节的情况下实践本发明。此外,本领域技术人员将认识到,下面描述的本发明的实施例可以以多种方式来实施,诸如,过程、装置、系统、设备者或有形计算机可读介质上的方法。
图中所示的组件或模块是本发明的示例性实施例的说明,并且意在避免使本发明晦涩难懂。还应该理解,在整个讨论中,组件可以被描述为单独的功能单元,其可以包括子单元,但是本领域技术人员将认识到,各种组件或其一部分可以被划分为单独的组件或者可以集成在一起,包括集成在单个系统或单个组件内。应该注意的是,本文讨论的功能或操作可以被实施为组件。组件可以以软件、硬件或其组合来实施。许多组件是通过将许多子组件互连而形成的。可以选择在操作中与本文所示的逻辑上不同的子组件,其中这些逻辑上不同的子组件可以与其他子组件组合在一起,该其他子组件在聚合组件级别上提供与本文描述的功能性类似或相同的功能性(例如,有源高信号可以是有源低的,AND门被替换为具有反向输入的NOR门等)。
此外,附图内的组件或系统之间的连接不旨在限于直接连接。相反,中间组件可以被修改,重新格式化或者以其他方式改变这些组件之间的数据。而且,可以使用附加或更少的连接。还应该注意的是,术语“耦合”、“连接”或“通信耦合”应该理解为包括直接连接、通过一个或多个中间设备的间接连接、以及无线连接。
在说明书中对“一个实施例(one embodiment)”、“优选实施例”、“一个实施例(anembodiment)”或“实施例”的引用是指结合该实施例描述的特定特征、结构、特性或功能被包括在本发明的至少一个实施例中,并且可以在一个以上的实施例中。而且,说明书中的各个地方的上述短语的出现不一定全部指代相同的一个或多个实施例。
在说明书中的各个地方使用某些术语是为了说明的目的,而不应解释为进行限制。服务、功能或资源不限于单个服务、功能或资源;这些术语的使用可能是指相关服务、功能或资源的分组,它们可以进行分布或聚合。
术语“包括(include)”、“包括(including)”、“包括(comprise)”和“包括(comprising)”应被理解为开放式术语,并且随附的任何列表都是示例,并不意味着限于所列出的项目,并且可以包括项目的子集合或超集合以及附加项目。本文使用的任何标题仅用于组织目的,并且不应该用于限制说明书或任何权利要求的范围。该专利文件中提到的每个文件均通过引用全部并入本文。
此外,本领域技术人员应该认识到:(1)可能可选地执行某些步骤;(2)步骤可能不限于本文列出的特定顺序;(3)某些步骤可能以不同的顺序执行;以及(4)某些步骤可能同时进行。
尽管本文的实施例主要是在卷积的上下文中讨论的,但是本领域技术人员将了解,去卷积和其他矩阵操作也可以被构造为矩阵-矩阵类型的乘法操作,因此,本发明的原理同样适用于去卷积。此外,根据本公开的各种实施例,可以实施其他类型的数学操作。
图2图示了根据本公开的各种实施例的用于执行算术运算的示例性矩阵处理器架构。系统200包括逻辑电路232 234、高速缓存/缓冲器224、数据格式器210、权重格式器212、数据输入矩阵206、权重输入矩阵208、矩阵处理器240、输出阵列226、后处理单元228以及控制逻辑250。矩阵处理器240包括多个子电路242,其包含算术逻辑单元(ALU)、寄存器以及在一些实施例中的编码器(诸如,booth编码器)。逻辑电路232可以是表示N个输入操作符和数据寄存器的电路。逻辑电路234可以是将M个权重操作数输入到矩阵处理器240中的电路系统。逻辑电路232可以是将图像数据操作数输入到矩阵处理器240中的电路系统。权重输入矩阵208和数据输入矩阵206可以被存储在包括SRAM设备的各种类型的存储器中。本领域技术人员将认识到,可以将各种类型的操作数输入到矩阵处理器240中。
在根据某些实施例的操作中,系统200通过减少系统内的冗余操作并实施特定于硬件的逻辑以跨大量数据和权重执行某些数学操作来加速卷积操作。该加速是方法(和对应的硬件组件)的直接结果,该方法检索图像数据和权重并将其输入到矩阵处理器240,以及大规模地对矩阵处理器240内的数学操作进行定时。
在实施例中,格式器210 212在图2的示例中被实施为行内格式器。在某些实施例中,格式器210 212是离散的组件,而在其他实施例中,格式器210 212被集成在一起和/或与一个或多个其他组件集成在一起。每个格式器都以硬件实施,并将矩阵转换为要在矩阵处理器240内进行操作的操作数上的向量。在其他实施例中,格式器210 212以软件实施,尽管这通常会产生速度损失。数据格式器210将包括数据输入矩阵206的二维或三维(例如,3x3x3立方体)数据转换成可以由行或列表示的单个向量或字符串,从而线性化或向量化数据输入矩阵206。具体而言,格式器210接收数据输入矩阵206并准备要由矩阵处理器240处理的输入数据。在实施例中,这是通过根据矩阵处理器240的硬件要求将数据输入矩阵206的参数映射为合适的格式来完成,使得矩阵处理器240可以在生成输出像素时高效地执行矩阵乘法,作为卷积计算的一部分。
作为示例,假设矩阵处理器240包括96行和96列,则映射为96x96格式的数据将使矩阵处理器240发挥其全部计算能力,从而提供优选的效率。在这种情况下,格式器210应该产生96列宽的输出。同样地,格式器212应该基于权重输入矩阵208来产生96行宽的输出。
在实施例中,格式器210使用多个复用器或开关来获取数据输入矩阵206中的一些或全部,并从中选择不同的元素,以便产生随后根据矩阵处理器240的列进行排列的数据。在实施例中,该选择确保来自数据输入矩阵206的适当数据被传递到在所定义的时钟周期内的每个列。在实施例中,如果权重是静态的,则它们可以被离线预先格式化、存储在存储器中、仅被获取一次、并且以修改的向量化格式直接馈送到矩阵处理器240中而无需使用格式器212。在其他实施例中,权重可以根据各种格式化和获取操作而被动态地调整并且被馈送到矩阵处理器240中。在实施例中,矩阵处理器240允许变化大小的列和行输入。即,矩阵处理器240被设计为计算任意大小的N×M计算。
在其他实施例中,如果矩阵处理器240的列数受到限制(例如,限制为N列),使得数据输入矩阵206中的列数(例如,X)大于矩阵处理器240的列数(即,X>N),那么控制逻辑250可以将数据输入矩阵206分为多个子矩阵,其中每个子矩阵由矩阵处理器240计算。在这种情况下,每个矩阵处理器240可以在不同的线程中运行。例如,如果数据输入矩阵206由192x96个数据点组成,并且矩阵处理器具有96列和96行(即,可以在一个时钟周期中进行96x96次计算),则控制逻辑250可以将数据输入矩阵206分为两个子矩阵(诸如,数据输入矩阵206的左半部分和数据输入矩阵206的右半部分)。每个子矩阵将由96x96个数据点组成。每个单独线程的矩阵处理器240可以计算用于发送给它的子矩阵的输出通道,其中结果被放入最终输出阵列260中,该最终输出阵列260必须足够大以容纳来自所有通道的值(即,192个值)。更一般地,数据输入矩阵206可以被分成任何数目的子矩阵,并且被发送到不同的矩阵处理器240,每个矩阵处理器在单独的线程中运行。与输出阵列226一样,数据输入矩阵206、数据格式器210、高速缓存/缓冲器224、逻辑电路232和后处理单元228必须类似地能够容纳更大的数据。
在替代实施例中,可以通过使控制逻辑250沿着内积对计算进行划分来在多个矩阵处理器240之间计算CNN。分别在不同的矩阵处理器240中计算内积的片段,然后将输入的积相加在一起以计算输出向量,然后将输出向量存储在输出阵列260中。
与由CPU或GPU执行以通过将数据重新布置为适合于快速矩阵乘法的替代格式来将卷积操作转换为矩阵乘法的格式化功能的通用软件实施方式不同,本发明的各种硬件实施方式动态地重新格式化数据并使之可用于执行,例如,实际上每个周期96个数据,从而允许并行处理大量矩阵元素,因此高效地将数据映射到矩阵操作。在实施例中,针对2N个获取的输入数据,可以在单个时钟周期中获得2N2个计算数据。通过有效减少典型处理器架构中使用的读取或获取操作的数目以及在跨多个数据输入执行大量数学操作时提供并行、高效且同步的过程,该架构显着提高了处理速度。
在实施例中,为了增加可以具有任意数目的列和行的矩阵处理器240的效率,格式器212 214可以将不同形状的输入矩阵数据重新格式化为适合于矩阵处理器240的列和行。在实施例中,动态地执行格式化以适应具有不同输入大小的矩阵的处理。在实施例中,将包括输入通道的重新格式化的矩阵馈送到高速缓存/缓冲器224中。
高速缓存/缓冲器224可以仅从数据输入矩阵206获取数据1/k次,因为可以重用各种数据,其中k是卷积内核宽度。例如,针对任何给定的周期,一旦获取一行,某些列将有权访问该行中的所有数据。在实施例中,高速缓存/缓冲器224可以是本地缓冲器,其存储可以由卷积重用的数据的本地副本,而不必重新访问数据并从SRAM读取数据。
一旦矩阵处理器240完成了计算,就可以将结果集合从例如矩阵处理器240的底行中的累加器移位到例如输出触发器(未示出),该输出触发器有效地形成接收点积的移位寄存器。在实施例中,可以通过状态机(未示出)来将结果从对应于输出通道的行中拉出或移位到输出阵列226中,例如,每个时钟周期一个输出阵列。状态机可以在输出通道上执行附加操作,例如,在将数据发送给SRAM和/或后处理单元228之前。将在下面更详细地描述矩阵处理器240的内部操作。
在实施例中,矩阵处理器240包括影子电阻器,该影子电阻器通过存储通过矩阵处理器240传递到输出阵列226的结果的副本来实现并行处理。在实施例中,将操作结果从输出寄存器移动到影子寄存器涉及将下一组值加载到ALU中。
一旦累加完成,在将先前卷积的所有数据输出到输出阵列226之前,可以开始卷积并且可以重新开始累加。因此,在每个时钟周期中,矩阵处理器240中的数据可以向下移动一行,使得针对每个周期,最后一行可以输出到输出阵列226。实际上,这种操作模式确保了可以在每个连续周期中进行新的计算而不会产生任何中断,并且独立于附加的处理操作,诸如,将数据存储在SRAM中等。
后处理单元228可以包括多个设备(未示出)或与多个设备(未示出)交互,诸如硬件加速的池化单元、DRAM等,该DRAM可以是从存储器中检索数据并且将数据(例如,权重和结果)存储在SRAM中的直接存储器访问(“DMA”)的一部分。设备可以由控制逻辑250部分或全部控制,该控制逻辑250也可以管理格式器210212和系统200内的其他组件。
在图2中未示出的是执行管理功能的辅助设备,诸如定序器,该定序器生成用于读取数据的地址、写入结果并追踪系统200在卷积中的位置,以便计算从何处获得数据以及如何执行将在卷积的后续步骤中使用的数据。
在某些实施例中,权重输入矩阵208被物理地划分并且从矩阵处理器240的两个不同侧驱动权重,使得二维阵列被分为两个区域(例如,左手侧和右手侧),每个区域接收权重输入矩阵208中的数据的一部分。这种实施方式通过利用权重已知的事实来减少数据延迟。在实施例中,为了减少峰值功率消耗,可以选择操作的定时,使得权重和数据的乘法分布在一定数目的周期内。操作的这种有效定时导致能量消耗步骤的减少,包括减少由矩阵处理器执行的读取操作的数目,并提高矩阵内(例如,子电路之间)的数据移动的效率。
在实施例中,可以采用被配置为标识冗余数据的状态机(未示出)。标识出的冗余数据可以跨列重用,使得无需重新获取数据。状态机可以被配置为例如基于与图像大小、滤波器大小、步幅、通道数和类似参数相关的输入来确定如何以及在何处移位将要执行的数据。
在实施例中,在矩阵处理器240的乘法架构中的多个元件之间共享booth编码器。booth编码器可以是本领域中已知的任何booth编码器,并且可以用于将两个数字相乘并对两个数字中的一个数字编码,例如,从8位值到12位或者使乘法操作在乘法器逻辑上更容易并因此更快的任何其他值。在实施例中,可以在整个行上并行应用booth编码器,以便在所有列上共享相同的编码的替代权重值。通过跨所有列加载操作数,可以跨整个行在单个时钟周期中执行乘法。因此,针对N个计算元素,利用重新编码以共享相同数据(例如,权重)的成本对于每一列(或行)仅支付一次。相比之下,在现有的计算架构中,每个单个标量对于每个单个乘法操作都将需要booth编码器。
图3图示了图2所示的矩阵处理器架构的示例性配置的细节。在实施例中,矩阵处理器300可以在每个轴线上容纳预定的向量长度。如图3所描绘的,矩阵处理器300可以包括以矩阵格式布置的6x 6图块302的阵列。每个图块302可以包括矩阵320,该矩阵320又包括子电路电路350。如下面参照图4详细讨论的,每个子电路电路350可以是能够执行算术运算的单元。在实施例中,子电路电路350同时执行乘法、累加和移位操作。
在实施例中,通过利用矩阵处理器300的多个行和列来并行化算术运算以生成NxN个图块输出。例如,给定的行大小为96和对应的列大小为96有助于2*9216次数学计算的输出。在其他实施例中,行和列的数目可以不同。即,可以存在N行和M列,并且可以生成N×M个图块输出。例如,针对96的行大小和192的对应列大小,在单个时钟周期中生成2*18,432次计算的输出。
图4图示了图3所示的子电路的示例性乘加(multiply-and-add)电路实施方式。如图4所描绘的,乘加电路400包括乘法器430、加法器432、逻辑434 436 438、累加器424、影子寄存器428和输出寄存器440。在实施例中,累加器424可以被实施为累加寄存器。
在实施例中,累加器424可以包括由寄存器组成的一组ALU,以及可以被配置为接收ALU的输出的影子寄存器428。
在操作中,乘法器430接收权重402和数据404并将其相乘以从中生成乘积。可以将每个乘积提供给加法器432,加法器432响应于从乘法器430接收到乘积而将该乘积与累加器424的当前值相加。
在实施例中,累加器424生成例如存储在输出寄存器440中的累加值。该累加值是卷积的结果,并且如参照图2所提及的,可以对应于两个格式化矩阵的点积。
在实施例中,可以将输出寄存器440中的结果的副本提供给影子寄存器428,其可以输出结果450,使得可以再次访问累加器424以开始新的计算。在实施例中,图4中的乘加电路400可以同时(即,在单个周期内)执行乘法、加法操作和移位操作,从而使每个周期发生的操作总数加倍。
在实施例中,例如,当乘法器430执行乘法操作时,ClearAcc信号408清除累加器424的内容,使得累加操作可以重新开始。在实施例中,响应于确定数据404有效而激活ResultEnable信号412。要理解的是,累加器424可以累加和保存数据,累加和清除数据,或仅清除数据。
在实施例中,结果在单个时钟周期中从输出寄存器440移动到影子寄存器428,即,无需中间执行和保存操作。
图5图示了根据本公开的各种实施例的示例性卷积操作。卷积500包括输入图像502的输入通道IC、权重532、点积514、输出通道OC和累加器540。
在实施例中,卷积操作500将单独的滤波器(即,权重)532应用于输入图像502,例如,以检测输入图像502内的小特征。通过以不同顺序分析不同特征的序列,然后可以在输入图像502中标识宏特征。在其他实施例中,输入502是非图像数据。例如,输入502可以是非图像传感器数据,诸如,超声、雷达、LIDAR或其他传感器数据。输入502也可以是通用数学计算或本领域技术人员已知的任何其他类型的数据。
卷积500可以为每个输入通道IC使用不同的权重集合532,因为每个输入通道IC可以包含不同的信息集合,并且每个权重矩阵532可以被设计为帮助标识不同的特征。在实施例中,卷积500将矩形输入矩阵504与矩形权重矩阵532相乘以获得部分点积。然后可以通过加法器546对部分点积求和,以生成表示输出图像中的输出像素514的累积点积514(即,整数)。
在实施例中,输出通道OC中的每个像素是由乘法器542和加法器544生成的。在实施例中,部分点积的值对应于权重矩阵532整体上对输入图像502的区域504的应用。换言之,乘法器542将每个权重532与区域504进行点乘以产生部分点积,然后部分点积在累加器540中累积以生成表示卷积的累积输出。
可以使用一个或多个输入通道IC,例如,每种颜色(例如,RGB)一个输入通道。例如,每个卷积可以使用表示三种不同矩阵的权重532,每种颜色一种权重。可以使用表示输入数据502中的不同特征的不同的滤波器或权重532来生成每个输出通道OC 512。输出通道的数目可以取决于特征的数目。卷积数等于输出通道OC的数目乘以输入通道IC的数目,并且针对每个输入通道IC,每个卷积可以具有N个卷积。本领域技术人员将认识到,输入通道的数目和类型可以变化,并且可以包括颜色和/或透明输入。
如图5所描绘的,输入矩阵504是Kx x Ky(即,3x3)矩阵,其可以与跨3个输入通道(即,3x3x IC)的3x3权重矩阵532组合,使得深度匹配并产生输出平面中的单个元素,即点积514。输出通道512中的每个点积514是点乘的结果。
图6至图8图示了根据本公开的各种实施例的示例性卷积操作的细节。卷积600包括输入数据矩阵602、权重数据矩阵604、阵列606以及点积630。在实施例中,阵列606是如图2和图3所示的矩阵处理器架构。
图6中的输入数据矩阵602包括列610,在实施例中,列610可以通过线性化输入矩阵(诸如,图5所示的矩形输入矩阵504)而获得,以获得输入矩阵的向量化形式。同样地,权重数据矩阵604包括行620,其可以是权重矩阵(诸如,图5中的矩形权重矩阵532)的向量化形式。作为示例,可以将3x3输入矩阵和3个输入通道重新格式化为包括3x3x3=27个元素的向量,可以从该向量中产生27个元素的列610以用于输入数据矩阵602。相反,用于相同的3个输入通道的3x3权重矩阵可以用于生成27个元素的行620以用于权重数据矩阵604。本领域技术人员将认识到,输入矩阵的大小和输入通道的数目可能会因不同的应用而异。
在实施例中,例如,通过参照图2讨论的格式器来将在图5中绘制为矩形的输入通道和输入权重重新格式化为向量格式(例如,具有96个元素的向量),该向量格式被提供给矩阵乘法器/处理器(表示为图2的元素240),使得可以并行执行96x96个元素的点积操作。详细地,针对每个输入通道在图5中示出为矩形的输入数据504和输入权重532被重新格式化为向量格式。
在实施例中,在图6中被图示为输入数据602和输入权重604(例如,每个具有96个元素)的所得向量格式被提供给并行执行96x96个元素点积操作的矩阵处理器或矩阵乘法器240。在实施例中,在输出通道的计算中,使用相同的输入数据集合但是使用不同的权重集合(即,滤波器)来产生相同的输出像素,使得通过一次读取输入数据,可以一次生成许多输出通道。如上所述,要理解的是,输入和输出通道的数目可以任意选择。
要进一步理解的是,输入数据矩阵602、权重数据矩阵604和阵列606可以具有与图6所描绘的列和行不同的数目。具体地,输入数据矩阵602和权重数据矩阵604的形状可以被格式化,诸如以适应阵列606的任何任意配置的列和行。另外,在已知权重数据矩阵604的情况下,则可以在不使用格式器的情况下以向量化格式生成并存储行620。
在实施例中,图6中的点积630是通过将对应于列610的向量与对应于行620的向量进行点乘来生成的。在实施例中,如图7所示,可以通过将对应于列612的向量与对应于行620的向量进行点乘来获得下一点积632。如本领域技术人员将认识到的,一旦阵列606的第一行中的所有点积都被填充,阵列606的第二行的点积可以通过将输入数据矩阵602的第一列610中的元素与权重数据矩阵604的第二行进行点乘等来计算。
重要的是要注意,图6至图8仅用于说明性目的,并且可以同时执行上述点乘以生成单次矩阵-矩阵乘法操作。
图9图示了根据本公开的各种实施例的示例性去卷积操作。去卷积系统900包括输入图像902的输入通道IC、权重922、点积904906和输出通道OC。本领域技术人员将认识到,去卷积操作900实际上是卷积操作(例如,图5所示的卷积)的数学换位(近似求逆)。本领域技术人员将进一步认识到,可以通过应用与普通卷积神经网络类似的进程来使用神经网络学习去卷积操作900。为了简洁起见,此处不再重复与图5类似的组件的描述或功能。
在实施例中,图9中的去卷积操作900通过使用权重922解构点积904 906来重新组装矩阵912。与卷积操作一样,去卷积900可以为每个输入通道IC使用不同的权重集合922。在实施例中,去卷积900可以有利地应用于图像以执行图像去卷积,例如以提高针对伪像的鲁棒性。其他应用可以包括图像数据的分析和恢复等。
图10图示了根据本公开的各种实施例的用于执行算术运算以加速卷积神经网络的过程。
当从第一逻辑电路接收到可以表示数据矩阵中的行的第一操作数集合时,用于执行算术运算的过程1000从步骤1002开始。可以对第一操作数集合进行向量化,使得这些操作数与矩阵处理器中的输入对齐。在某些实施例中,向量化的操作数的大小直接与沿轴线到矩阵处理器的输入数目相关。
在步骤1004,从第二逻辑电路接收可以表示权重矩阵中的列的第二操作数集合。可以对该第二操作数集合进行向量化,使得这些操作数在矩阵处理器中的对应输入内对齐。在某些实施例中,向量化的操作数的大小直接与沿不同轴线到矩阵处理器的输入数目相关。
在步骤1006,将第一操作数集合与第二操作数集合进行点乘以获得一个或多个点积。在某些实施例中,跨操作数集合的该集合操作在单个时钟周期中执行。
在步骤1008,点积可以用于利用滤波器对图像进行卷积,以产生卷积结果。
在步骤1010,进一步处理卷积结果以增强图像输出。可以使用非线性函数、归一化操作或池化操作来进行该进一步处理。
本领域技术人员将认识到,任何计算系统或编程语言对于实践本发明来说都不重要。本领域技术人员还将认识到,上述许多元件可以在物理和/或功能上分离为子模块或组合在一起。
应该注意的是,以下权利要求的元素可以被不同地布置,包括具有多个相关性、配置和组合。例如,在实施例中,各种权利要求的主题可以与其他权利要求组合。
本领域技术人员将了解,前述示例和实施例是示例性的,并且不限制本发明的范围。其意图是,对本领域技术人员而言,在阅读说明书和研究附图之后显而易见的所有排列、增强、等效物、组合和改进都包括在本发明的真正精神和范围内。
Claims (21)
1.一种用于加速神经网络中的卷积的矩阵处理器,所述矩阵处理器包括:
第一输入电路,以二维阵列的第一维度被布置,所述第一输入电路被耦合以从第一逻辑电路接收N个操作数,所述N个操作数根据与所述第一维度相关的第一宽度而被格式化;
第二输入电路,以所述二维阵列的第二维度被布置,所述第二输入电路被耦合以从第二逻辑电路接收M个操作数,所述M个操作数根据与所述第二维度相关的第二宽度而被格式化;以及
多个子电路,被耦合以接收所述N个操作数和所述M个操作数,所述多个子电路的至少子集合包括算术逻辑单元、累加器和影子寄存器,所述子电路被耦合在所述二维阵列内,以对所述N个操作数和所述M个操作数执行算术运算。
2.根据权利要求1所述的矩阵处理器,其中所述算术运算是与卷积操作相关联的点积计算。
3.根据权利要求2所述的矩阵处理器,其中所述算术逻辑单元包括用以生成所述点积的乘加电路。
4.根据权利要求1所述的矩阵处理器,其中所述N个操作数表示图像数据,并且所述M个操作数表示权重值。
5.根据权利要求1所述的矩阵处理器,其中所述子电路中的至少一些子电路包括编码元件,所述编码元件被配置为对表示所述M个操作数中的一个或多个操作数的值进行编码。
6.根据权利要求5所述的矩阵处理器,其中所述编码元件是booth编码器。
7.根据权利要求1所述的矩阵处理器,其中所述N个操作数从数据输入矩阵被格式化。
8.根据权利要求1所述的矩阵处理器,进一步包括状态机,所述状态机使用滤波器大小和步幅中的至少一项来确定所述N个操作数或所述M个操作数内的可重用操作数。
9.根据权利要求1所述的矩阵处理器,其中加速的处理速度通过减少来自高速缓存的读取操作、并且经由所述多个子电路的加速的数据吞吐量而被实现。
10.一种用于加速神经网络中的卷积的系统,所述系统包括:
第一逻辑电路,生成N个操作数;
第一输入电路,以二维阵列的第一维度被布置,所述第一输入电路被耦合以从所述第一逻辑电路接收所述N个操作数;
第二逻辑电路,生成M个操作数;
第二输入电路,以所述二维阵列的第二维度被布置,所述第二输入电路被耦合以从所述第二逻辑电路接收M个操作数;
矩阵处理器,包括多个子电路,所述多个子电路被配置为执行所述N个操作数和所述M个操作数的点乘以生成点积;以及
输出阵列,被耦合至所述二维阵列,所述二维阵列被配置为使用所述点积以生成结果。
11.根据权利要求10所述的系统,其中所述N个操作数从数据输入矩阵被格式化为第一向量,并且所述M个操作数从权重输入矩阵被格式化为第二向量。
12.根据权利要求11所述的系统,其中所述第一逻辑电路包括存储所述N个操作数的多个数据寄存器,所述多个数据寄存器具有与所述二维阵列的所述第一维度相对应的第一宽度,并且所述第二逻辑电路包括存储所述M个权重操作数的多个权重寄存器,所述多个权重寄存器具有与所述二维阵列的所述第二维度相对应的第二宽度。
13.根据权利要求12所述的系统,其中所述第一宽度与生成所述结果的多个周期相对应。
14.根据权利要求12所述的系统,其中所述数据寄存器和所述权重寄存器仅被访问一次,以分别获取第一数目的元素和第二数目的元素。
15.根据权利要求10所述的系统,其中所述子电路包括影子寄存器,所述影子寄存器被配置为在一个或多个时钟周期中将数据移动到移位寄存器。
16.根据权利要求10所述的系统,进一步包括缓冲器,所述缓冲器被耦合至所述数据输入矩阵和所述权重输入矩阵中的至少一个矩阵,所述缓冲器存储最近使用的数据的副本,以使得能够重用而无需在后续周期中重新获取。
17.根据权利要求10所述的系统,其中所述结果是与滤波器到图像的区域的应用相对应的输出矩阵。
18.根据权利要求10所述的系统,进一步包括状态机,所述状态机使用滤波器大小和步幅中的至少一项来标识可重用数据。
19.一种用于使用矩阵乘法电路来使卷积神经网络更快的方法,所述方法包括:
从第一逻辑电路接收表示数据矩阵中的行的第一操作数集合;
从第二逻辑电路接收表示权重矩阵中的列的第二操作数集合;
将所述第一操作数集合与所述第二操作数集合进行点乘以获得一个或多个点积;以及
使用所述点积来利用滤波器对图像进行卷积,以产生卷积结果。
20.根据权利要求19所述的方法,其中对所述图像进行卷积包括:通过卷积层处理所述一个或多个点积以生成层输出。
21.根据权利要求20所述的方法,其中生成所述层输出包括:将非线性函数、归一化和池化中的一项应用于所述卷积结果。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311150134.7A CN117171480A (zh) | 2017-07-24 | 2018-07-19 | 加速数学引擎 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762536399P | 2017-07-24 | 2017-07-24 | |
US62/536,399 | 2017-07-24 | ||
US15/710,433 | 2017-09-20 | ||
US15/710,433 US10671349B2 (en) | 2017-07-24 | 2017-09-20 | Accelerated mathematical engine |
PCT/US2018/042959 WO2019023046A1 (en) | 2017-07-24 | 2018-07-19 | ACCELERATED MATHEMATICAL MOTOR |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311150134.7A Division CN117171480A (zh) | 2017-07-24 | 2018-07-19 | 加速数学引擎 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111095241A true CN111095241A (zh) | 2020-05-01 |
CN111095241B CN111095241B (zh) | 2023-09-12 |
Family
ID=65018989
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880058445.1A Active CN111095241B (zh) | 2017-07-24 | 2018-07-19 | 加速数学引擎 |
CN202311150134.7A Pending CN117171480A (zh) | 2017-07-24 | 2018-07-19 | 加速数学引擎 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311150134.7A Pending CN117171480A (zh) | 2017-07-24 | 2018-07-19 | 加速数学引擎 |
Country Status (8)
Country | Link |
---|---|
US (4) | US10671349B2 (zh) |
EP (2) | EP4258182A3 (zh) |
JP (3) | JP7009609B2 (zh) |
KR (4) | KR102452757B1 (zh) |
CN (2) | CN111095241B (zh) |
CA (1) | CA3070972C (zh) |
MX (2) | MX2020000952A (zh) |
WO (1) | WO2019023046A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112966729A (zh) * | 2021-02-26 | 2021-06-15 | 成都商汤科技有限公司 | 一种数据处理方法、装置、计算机设备及存储介质 |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180012439A (ko) * | 2016-07-27 | 2018-02-06 | 삼성전자주식회사 | 회선 신경망에서 가속기 및 이의 동작 방법 |
US10795836B2 (en) * | 2017-04-17 | 2020-10-06 | Microsoft Technology Licensing, Llc | Data processing performance enhancement for neural networks using a virtualized data iterator |
US11113603B1 (en) | 2017-05-01 | 2021-09-07 | Perceive Corporation | Training network with discrete weight values |
JP6907700B2 (ja) * | 2017-05-23 | 2021-07-21 | 富士通株式会社 | 情報処理装置、マルチスレッド行列演算方法、およびマルチスレッド行列演算プログラム |
US10671349B2 (en) | 2017-07-24 | 2020-06-02 | Tesla, Inc. | Accelerated mathematical engine |
US11157287B2 (en) | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system with variable latency memory access |
US11409692B2 (en) | 2017-07-24 | 2022-08-09 | Tesla, Inc. | Vector computational unit |
US11157441B2 (en) | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system using non-consecutive data formatting |
US11893393B2 (en) | 2017-07-24 | 2024-02-06 | Tesla, Inc. | Computational array microprocessor system with hardware arbiter managing memory requests |
GB2568086B (en) * | 2017-11-03 | 2020-05-27 | Imagination Tech Ltd | Hardware implementation of convolution layer of deep neutral network |
KR20190051697A (ko) | 2017-11-07 | 2019-05-15 | 삼성전자주식회사 | 뉴럴 네트워크의 디컨벌루션 연산을 수행하는 장치 및 방법 |
US10747844B2 (en) * | 2017-12-12 | 2020-08-18 | Tesla, Inc. | Systems and methods for converting a matrix input to a vectorized input for a matrix processor |
US11561791B2 (en) | 2018-02-01 | 2023-01-24 | Tesla, Inc. | Vector computational unit receiving data elements in parallel from a last row of a computational array |
US11875245B1 (en) * | 2018-02-22 | 2024-01-16 | United States Of America As Represented By The Secretary Of The Air Force | System, apparatus and method for spiking neural network |
US11586910B1 (en) | 2018-04-20 | 2023-02-21 | Perceive Corporation | Write cache for neural network inference circuit |
US11210586B1 (en) | 2018-04-20 | 2021-12-28 | Perceive Corporation | Weight value decoder of neural network inference circuit |
US11468145B1 (en) | 2018-04-20 | 2022-10-11 | Perceive Corporation | Storage of input values within core of neural network inference circuit |
US11568227B1 (en) | 2018-04-20 | 2023-01-31 | Perceive Corporation | Neural network inference circuit read controller with multiple operational modes |
US11501138B1 (en) | 2018-04-20 | 2022-11-15 | Perceive Corporation | Control circuits for neural network inference circuit |
US11222257B1 (en) | 2018-04-20 | 2022-01-11 | Perceive Corporation | Non-dot product computations on neural network inference circuit |
US10977338B1 (en) | 2018-04-20 | 2021-04-13 | Perceive Corporation | Reduced-area circuit for dot product computation |
US12093696B1 (en) | 2018-04-20 | 2024-09-17 | Perceive Corporation | Bus for transporting output values of a neural network layer to cores specified by configuration data |
US11783167B1 (en) | 2018-04-20 | 2023-10-10 | Perceive Corporation | Data transfer for non-dot product computations on neural network inference circuit |
JP7038608B2 (ja) * | 2018-06-15 | 2022-03-18 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US11995533B1 (en) | 2018-12-05 | 2024-05-28 | Perceive Corporation | Executing replicated neural network layers on inference circuit |
US11321819B2 (en) * | 2019-01-07 | 2022-05-03 | Hcl Technologies Limited | System and method for performing a convolution operation |
US11347297B1 (en) | 2019-01-23 | 2022-05-31 | Perceive Corporation | Neural network inference circuit employing dynamic memory sleep |
CN109933371A (zh) * | 2019-02-01 | 2019-06-25 | 京微齐力(北京)科技有限公司 | 其单元可访问本地存储器的人工智能模块和系统芯片 |
US20200364552A1 (en) * | 2019-05-13 | 2020-11-19 | Baidu Usa Llc | Quantization method of improving the model inference accuracy |
US11941533B1 (en) | 2019-05-21 | 2024-03-26 | Perceive Corporation | Compiler for performing zero-channel removal |
US20210011732A1 (en) * | 2019-07-09 | 2021-01-14 | MemryX Inc. | Matrix Data Reuse Techniques in Processing Systems |
US11222092B2 (en) | 2019-07-16 | 2022-01-11 | Facebook Technologies, Llc | Optimization for deconvolution |
US11688032B2 (en) * | 2019-08-16 | 2023-06-27 | Meta Platforms, Inc. | Three-dimensional convolution pipeline with memory organizer unit |
KR102670905B1 (ko) * | 2019-08-22 | 2024-05-31 | 구글 엘엘씨 | 전파 지연 감소 |
JP7230744B2 (ja) * | 2019-08-28 | 2023-03-01 | 株式会社デンソー | 畳込み演算方法及び演算処理装置 |
CN110717588B (zh) * | 2019-10-15 | 2022-05-03 | 阿波罗智能技术(北京)有限公司 | 用于卷积运算的装置和方法 |
US11409838B2 (en) * | 2019-10-29 | 2022-08-09 | Meta Platforms, Inc. | High throughput matrix processor with support for concurrently processing multiple matrices |
US11520853B2 (en) | 2020-02-28 | 2022-12-06 | Meta Platforms, Inc. | Mapping convolution to a partition channel convolution engine |
US11687764B2 (en) | 2020-04-17 | 2023-06-27 | Samsung Electronics Co., Ltd. | System and method for increasing utilization of dot-product based neural network accelerator |
US11507817B2 (en) | 2020-04-17 | 2022-11-22 | Samsung Electronics Co., Ltd. | System and method for performing computations for deep neural networks |
CN111626412B (zh) * | 2020-05-12 | 2023-10-31 | 浙江大学 | 复数神经网络的一维卷积加速装置及方法 |
US11309028B2 (en) * | 2020-09-03 | 2022-04-19 | Macronix International Co., Ltd. | Inference operation method and controlling circuit of 3D NAND artificial intelligence accelerator |
US11535271B2 (en) * | 2021-01-08 | 2022-12-27 | Argo AI, LLC | Methods and systems for monitoring vehicle motion with driver safety alerts |
US20220334634A1 (en) * | 2021-04-16 | 2022-10-20 | Maxim Integrated Products, Inc. | Systems and methods for reducing power consumption in embedded machine learning accelerators |
CN113032723B (zh) * | 2021-05-25 | 2021-08-10 | 广东省新一代通信与网络创新研究院 | 一种矩阵乘法器的实现方法及矩阵乘法器装置 |
US20220405571A1 (en) * | 2021-06-16 | 2022-12-22 | Microsoft Technology Licensing, Llc | Sparsifying narrow data formats for neural networks |
US20240069971A1 (en) * | 2022-08-31 | 2024-02-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Artificial intelligence accelerator device |
US12045309B1 (en) * | 2023-11-29 | 2024-07-23 | Recogni Inc. | Systems and methods for performing matrix multiplication with a plurality of processing elements |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5014235A (en) * | 1987-12-15 | 1991-05-07 | Steven G. Morton | Convolution memory |
EP0586025A2 (en) * | 1992-07-06 | 1994-03-09 | Robinson, Mark R. | Reliable noninvasive measurement of blood gases |
WO1994010638A1 (en) * | 1992-11-05 | 1994-05-11 | The Commonwealth Of Australia | Scalable dimensionless array |
US5717947A (en) * | 1993-03-31 | 1998-02-10 | Motorola, Inc. | Data processing system and method thereof |
US5918062A (en) * | 1997-10-23 | 1999-06-29 | Advanced Micro Devices, Inc. | Microprocessor including an efficient implemention of an accumulate instruction |
US6061521A (en) * | 1996-12-02 | 2000-05-09 | Compaq Computer Corp. | Computer having multimedia operations executable as two distinct sets of operations within a single instruction cycle |
US20040091135A1 (en) * | 2002-11-07 | 2004-05-13 | Bourg Wilfred M. | Method for on-line machine vision measurement, monitoring and control of product features during on-line manufacturing processes |
US20110239032A1 (en) * | 2008-12-04 | 2011-09-29 | Canon Kabushiki Kaisha | Convolution operation circuit and object recognition apparatus |
US20120017066A1 (en) * | 2003-07-24 | 2012-01-19 | Martin Vorbach | Low latency massive parallel data processing device |
CA2769788A1 (en) * | 2011-03-23 | 2012-09-23 | Trusted Positioning Inc. | Methods of attitude and misalignment estimation for constraint free portable navigation |
CN102771176A (zh) * | 2010-02-23 | 2012-11-07 | 捷讯研究有限公司 | 使用运动信息在无线通信网络中进行机会通信调度的方法和装置 |
US20160342891A1 (en) * | 2015-05-21 | 2016-11-24 | Google Inc. | Neural Network Processor |
US20160351195A1 (en) * | 2015-05-27 | 2016-12-01 | Intel Corporation | Gaussian mixture model accelerator with direct memory access engines corresponding to individual data streams |
US20170060811A1 (en) * | 2015-04-28 | 2017-03-02 | Intel Corporation | Matrix operands for linear algebra operations |
Family Cites Families (918)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5239636A (en) | 1988-09-09 | 1993-08-24 | Advanced Micro Devices, Inc. | Buffer memory subsystem for peripheral controllers |
US5267185A (en) | 1989-04-14 | 1993-11-30 | Sharp Kabushiki Kaisha | Apparatus for calculating matrices |
EP0421639B1 (en) | 1989-09-20 | 1998-04-22 | Fujitsu Limited | Parallel data processing system |
US5138695A (en) | 1989-10-10 | 1992-08-11 | Hnc, Inc. | Systolic array image processing system |
CA2045756C (en) | 1990-06-29 | 1996-08-20 | Gregg Bouchard | Combined queue for invalidates and return data in multiprocessor system |
JPH04295953A (ja) | 1991-03-25 | 1992-10-20 | Nippon Telegr & Teleph Corp <Ntt> | 要素プロセッサの2次元アレイを内蔵する並列データ処理装置および要素プロセッサのサブアレイユニット |
JP2578262Y2 (ja) | 1991-07-31 | 1998-08-06 | エルナー株式会社 | 座付き偏平形電解コンデンサ及びこれに用いる座板材 |
US5311459A (en) | 1992-09-17 | 1994-05-10 | Eastman Kodak Company | Selectively configurable integrated circuit device for performing multiple digital signal processing functions |
US6002880A (en) | 1992-12-29 | 1999-12-14 | Philips Electronics North America Corporation | VLIW processor with less instruction issue slots than functional units |
US5519864A (en) | 1993-12-27 | 1996-05-21 | Intel Corporation | Method and apparatus for scheduling the dispatch of instructions from a reservation station |
JP3547482B2 (ja) | 1994-04-15 | 2004-07-28 | 株式会社日立製作所 | 情報処理装置 |
US5887183A (en) | 1995-01-04 | 1999-03-23 | International Business Machines Corporation | Method and system in a data processing system for loading and storing vectors in a plurality of modes |
US5850530A (en) | 1995-12-18 | 1998-12-15 | International Business Machines Corporation | Method and apparatus for improving bus efficiency by enabling arbitration based upon availability of completion data |
US5909572A (en) * | 1996-12-02 | 1999-06-01 | Compaq Computer Corp. | System and method for conditionally moving an operand from a source register to a destination register |
US6587573B1 (en) | 2000-03-20 | 2003-07-01 | Gentex Corporation | System for controlling exterior vehicle lights |
US6289138B1 (en) * | 1997-04-30 | 2001-09-11 | Canon Kabushiki Kaisha | General image processor |
US6349379B2 (en) * | 1997-04-30 | 2002-02-19 | Canon Kabushiki Kaisha | System for executing instructions having flag for indicating direct or indirect specification of a length of operand data |
US6446190B1 (en) | 1998-03-12 | 2002-09-03 | Bops, Inc. | Register file indexing methods and apparatus for providing indirect control of register addressing in a VLIW processor |
JP3941252B2 (ja) | 1998-08-07 | 2007-07-04 | マツダ株式会社 | 車両の位置検出装置 |
KR100326702B1 (ko) | 1999-03-16 | 2002-03-12 | 이계안 | 차선이탈 경보장치의 실 도로폭 산출방법 |
US6425090B1 (en) | 1999-06-25 | 2002-07-23 | International Business Machines Corporation | Method for just-in-time delivery of load data utilizing alternating time intervals |
US6847365B1 (en) | 2000-01-03 | 2005-01-25 | Genesis Microchip Inc. | Systems and methods for efficient processing of multimedia data |
US6654507B2 (en) | 2000-12-14 | 2003-11-25 | Eastman Kodak Company | Automatically producing an image of a portion of a photographic image |
GB2370438A (en) | 2000-12-22 | 2002-06-26 | Hewlett Packard Co | Automated image cropping using selected compositional rules. |
JP2002333978A (ja) | 2001-05-08 | 2002-11-22 | Nec Corp | Vliw型プロセッサ |
KR100440953B1 (ko) | 2001-08-18 | 2004-07-21 | 삼성전자주식회사 | 영상 압축 비트 스트림의 트랜스코딩 방법 |
US6882755B2 (en) | 2001-10-19 | 2005-04-19 | Hewlett-Packard Development Company, L.P. | Image transmission for low bandwidth with region of interest |
JP3822515B2 (ja) | 2002-03-29 | 2006-09-20 | 株式会社東芝 | 障害物検知装置及びその方法 |
FI118654B (fi) * | 2002-11-06 | 2008-01-31 | Nokia Corp | Menetelmä ja järjestelmä laskuoperaatioiden suorittamiseksi ja laite |
US20040164228A1 (en) | 2003-02-21 | 2004-08-26 | Fogg Jeremy A. | Automatic vehicle exterior light control system assemblies |
SE526424C2 (sv) | 2003-06-02 | 2005-09-13 | Lear Corp | Aktivt mörkerseendesystem för ett inre passagerarutrymme hos ett fordon samt metod för att styra nämnda system |
WO2005015355A2 (en) | 2003-08-07 | 2005-02-17 | Matsushita Electric Industrial Co., Ltd. | Automatic image cropping system and method for use with portable devices equipped with digital cameras |
JP4300098B2 (ja) | 2003-11-13 | 2009-07-22 | 日本電信電話株式会社 | オブジェクト識別方法とその装置、プログラム及び記録媒体 |
US7219085B2 (en) | 2003-12-09 | 2007-05-15 | Microsoft Corporation | System and method for accelerating and optimizing the processing of machine learning techniques using a graphics processing unit |
GB2409062C (en) | 2003-12-09 | 2007-12-11 | Advanced Risc Mach Ltd | Aliasing data processing registers |
US20050162445A1 (en) | 2004-01-22 | 2005-07-28 | Lumapix | Method and system for interactive cropping of a graphical object within a containing region |
US20060072847A1 (en) | 2004-10-01 | 2006-04-06 | Microsoft Corporation | System for automatic image cropping based on image saliency |
JP4282583B2 (ja) | 2004-10-29 | 2009-06-24 | シャープ株式会社 | 動画編集装置及び方法 |
US8913830B2 (en) | 2005-01-18 | 2014-12-16 | Siemens Aktiengesellschaft | Multilevel image segmentation |
TW200630833A (en) | 2005-02-23 | 2006-09-01 | Northern Taiwan Inst Of Science And Technology | Method and device using intelligent theory to design heat dissipation opening of computer housing |
TW200630819A (en) | 2005-02-23 | 2006-09-01 | Northern Taiwan Inst Of Science And Technology | Method of using intelligent theory to design heat dissipation module and device thereof |
TW200630834A (en) | 2005-02-23 | 2006-09-01 | Northern Taiwan Inst Of Science And Technology | Method and device using intelligent theory to evaluate permeability of heat pipe |
US20060224533A1 (en) | 2005-03-14 | 2006-10-05 | Thaler Stephen L | Neural network development and data analysis tool |
US8106956B2 (en) | 2005-06-27 | 2012-01-31 | Nokia Corporation | Digital camera devices and methods for implementing digital zoom in digital camera devices and corresponding program products |
US7533071B2 (en) | 2005-06-28 | 2009-05-12 | Neurosciences Research Foundation, Inc. | Neural modeling and brain-based devices using special purpose processor |
US7747070B2 (en) | 2005-08-31 | 2010-06-29 | Microsoft Corporation | Training convolutional neural networks on graphics processing units |
US20070255903A1 (en) | 2006-05-01 | 2007-11-01 | Meir Tsadik | Device, system and method of accessing a memory |
JP4388939B2 (ja) | 2006-09-25 | 2009-12-24 | 富士フイルム株式会社 | 画像再生装置ならびにその制御方法およびその制御プログラム |
US11625761B2 (en) | 2007-09-06 | 2023-04-11 | Mohammad A. Mazed | System and method for machine learning and augmented reality based user application |
US20090016571A1 (en) | 2007-03-30 | 2009-01-15 | Louis Tijerina | Blur display for automotive night vision systems with enhanced form perception from low-resolution camera images |
US7904867B2 (en) | 2007-04-04 | 2011-03-08 | Synopsys, Inc. | Integrating a boolean SAT solver into a router |
US20090113182A1 (en) | 2007-10-24 | 2009-04-30 | Abernathy Christopher M | System and Method for Issuing Load-Dependent Instructions from an Issue Queue in a Processing Unit |
JP4513865B2 (ja) | 2008-01-25 | 2010-07-28 | セイコーエプソン株式会社 | 並列演算装置および並列演算方法 |
US8108328B2 (en) | 2008-07-17 | 2012-01-31 | Tokyo Electron Limited | Neural network based hermite interpolator for scatterometry parameter estimation |
US8165380B2 (en) | 2008-09-11 | 2012-04-24 | PACSPLUS Co., Ltd. | Method, apparatus and program for processing mammographic image |
JP2010079840A (ja) * | 2008-09-29 | 2010-04-08 | Nec Electronics Corp | デジタル演算回路 |
JP2010114731A (ja) | 2008-11-07 | 2010-05-20 | Toshiba Corp | カメラモジュールの製造方法 |
CN101742324A (zh) | 2008-11-14 | 2010-06-16 | 北京中星微电子有限公司 | 视频编解码方法、视频编解码系统及编解码器 |
KR100966288B1 (ko) | 2009-01-06 | 2010-06-28 | 주식회사 이미지넥스트 | 주변 영상 생성 방법 및 장치 |
KR101082878B1 (ko) | 2009-01-29 | 2011-11-11 | 연세대학교 산학협력단 | 홍채 영상 복원 방법 |
CN101477692B (zh) | 2009-02-13 | 2012-08-22 | 阿里巴巴集团控股有限公司 | 图像特征提取方法及装置 |
US8284997B2 (en) | 2009-03-11 | 2012-10-09 | Honeywell International Inc. | Vision-based vehicle navigation system and method |
US20120110491A1 (en) | 2009-04-27 | 2012-05-03 | Vincent Charles Cheung | Method, system and computer product for distribution of data objects |
US8406515B2 (en) | 2009-06-24 | 2013-03-26 | Hewlett-Packard Development Company, L.P. | Method for automatically cropping digital images |
US8442927B2 (en) | 2009-07-30 | 2013-05-14 | Nec Laboratories America, Inc. | Dynamically configurable, multi-ported co-processor for convolutional neural networks |
JP2013501993A (ja) | 2009-08-11 | 2013-01-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 表示用の画像を供給する方法及び装置 |
US8509526B2 (en) | 2010-04-13 | 2013-08-13 | International Business Machines Corporation | Detection of objects in digital images |
JP5503419B2 (ja) | 2010-06-03 | 2014-05-28 | 株式会社日立製作所 | 無人搬送車および走行制御方法 |
US10645344B2 (en) | 2010-09-10 | 2020-05-05 | Avigilion Analytics Corporation | Video system with intelligent visual display |
US8509982B2 (en) | 2010-10-05 | 2013-08-13 | Google Inc. | Zone driving |
JP5656563B2 (ja) | 2010-11-02 | 2015-01-21 | キヤノン株式会社 | 文書管理システム、文書管理システムの制御方法、プログラム |
JP5170226B2 (ja) | 2010-12-10 | 2013-03-27 | カシオ計算機株式会社 | 画像処理装置、画像処理方法、及びプログラム |
US8924455B1 (en) | 2011-02-25 | 2014-12-30 | Xilinx, Inc. | Multiplication of matrices using systolic arrays |
CN103609101A (zh) | 2011-06-16 | 2014-02-26 | 爱信精机株式会社 | 车辆周边监视装置 |
JP5911165B2 (ja) | 2011-08-05 | 2016-04-27 | 株式会社メガチップス | 画像認識装置 |
CN103890781B (zh) | 2011-08-25 | 2017-11-21 | 康奈尔大学 | 用于机器视觉的视网膜编码器 |
US8773498B2 (en) | 2011-09-30 | 2014-07-08 | Polycom, Inc. | Background compression and resolution enhancement technique for video telephony and video conferencing |
US8588470B2 (en) | 2011-11-18 | 2013-11-19 | Xerox Corporation | Methods and systems for improved license plate signature matching by similarity learning on synthetic images |
US8594217B2 (en) | 2011-12-06 | 2013-11-26 | The Mathworks, Inc. | Parallel implementation of maximum a posteriori probability decoder |
US20130159665A1 (en) | 2011-12-15 | 2013-06-20 | Verisilicon Holdings Co., Ltd. | Specialized vector instruction and datapath for matrix multiplication |
US10157060B2 (en) | 2011-12-29 | 2018-12-18 | Intel Corporation | Method, device and system for control signaling in a data path module of a data stream processing engine |
US9430391B2 (en) | 2012-03-29 | 2016-08-30 | Advanced Micro Devices, Inc. | Managing coherent memory between an accelerated processing device and a central processing unit |
US9586455B2 (en) | 2012-03-29 | 2017-03-07 | Toyota Jidosha Kabushiki Kaisha | Road surface condition estimating apparatus |
JP5863536B2 (ja) | 2012-03-29 | 2016-02-16 | 富士重工業株式会社 | 車外監視装置 |
US9738223B2 (en) | 2012-05-31 | 2017-08-22 | GM Global Technology Operations LLC | Dynamic guideline overlay with image cropping |
US9208432B2 (en) | 2012-06-01 | 2015-12-08 | Brain Corporation | Neural network learning and collaboration apparatus and methods |
US8976269B2 (en) | 2012-06-22 | 2015-03-10 | California Institute Of Technology | Compressive sensing based bio-inspired shape feature detection CMOS imager |
US9008422B2 (en) | 2012-06-28 | 2015-04-14 | Lexmark International, Inc. | Methods of content-driven image cropping |
JP6044134B2 (ja) | 2012-06-29 | 2016-12-14 | カシオ計算機株式会社 | 最適画像サイズによる画像領域分割装置、方法、およびプログラム |
CN102737236B (zh) | 2012-07-06 | 2015-06-24 | 北京大学 | 一种基于多模态传感器数据自动获取车辆训练样本方法 |
JP6011104B2 (ja) | 2012-07-24 | 2016-10-19 | 株式会社デンソー | 車両用視界支援装置 |
WO2014025772A2 (en) | 2012-08-06 | 2014-02-13 | University Of Miami | Systems and methods for responsive neurorehabilitation |
US9477925B2 (en) | 2012-11-20 | 2016-10-25 | Microsoft Technology Licensing, Llc | Deep neural networks training for speech and pattern recognition |
US9081385B1 (en) | 2012-12-21 | 2015-07-14 | Google Inc. | Lane boundary detection using images |
US9811775B2 (en) | 2012-12-24 | 2017-11-07 | Google Inc. | Parallelizing neural networks during training |
US9501276B2 (en) | 2012-12-31 | 2016-11-22 | Intel Corporation | Instructions and logic to vectorize conditional loops |
US9754154B2 (en) | 2013-02-15 | 2017-09-05 | Microsoft Technology Licensing, Llc | Identification using depth-based head-detection data |
US9177192B2 (en) | 2013-02-28 | 2015-11-03 | Progyny, Inc. | Apparatus, method, and system for image-based human embryo cell classification |
US9764468B2 (en) | 2013-03-15 | 2017-09-19 | Brain Corporation | Adaptive predictor apparatus and methods |
US9165203B2 (en) | 2013-03-15 | 2015-10-20 | Arris Technology, Inc. | Legibility enhancement for a logo, text or other region of interest in video |
CN103236037B (zh) | 2013-04-03 | 2016-05-11 | 北京航空航天大学 | 基于分层退化模型的无人机实时图像模拟方法 |
US9542643B2 (en) | 2013-05-21 | 2017-01-10 | Qualcomm Incorporated | Efficient hardware implementation of spiking networks |
JP2015004922A (ja) | 2013-06-24 | 2015-01-08 | 株式会社ニコン | 焦点調節装置及び撮像装置 |
CN103366339B (zh) | 2013-06-25 | 2017-11-28 | 厦门龙谛信息系统有限公司 | 车载多广角摄像头图像合成处理装置及方法 |
GB2518589B (en) | 2013-07-30 | 2019-12-11 | Holition Ltd | Image processing |
US9317775B2 (en) | 2013-08-14 | 2016-04-19 | Ricoh Co., Ltd. | Recognition procedure for identifying multiple items in images |
CN103500322B (zh) | 2013-09-10 | 2016-08-17 | 北京航空航天大学 | 基于低空航拍图像的车道线自动识别方法 |
JP5951570B2 (ja) * | 2013-09-13 | 2016-07-13 | 株式会社東芝 | 行列演算装置 |
US20150104102A1 (en) | 2013-10-11 | 2015-04-16 | Universidade De Coimbra | Semantic segmentation method with second-order pooling |
US9978014B2 (en) * | 2013-12-18 | 2018-05-22 | Intel Corporation | Reconfigurable processing unit |
US9448936B2 (en) | 2014-01-13 | 2016-09-20 | Apple Inc. | Concurrent store and load operations |
US10832057B2 (en) | 2014-02-28 | 2020-11-10 | Second Spectrum, Inc. | Methods, systems, and user interface navigation of video content based spatiotemporal pattern recognition |
US10769446B2 (en) | 2014-02-28 | 2020-09-08 | Second Spectrum, Inc. | Methods and systems of combining video content with one or more augmentations |
WO2015134996A1 (en) | 2014-03-07 | 2015-09-11 | Pelican Imaging Corporation | System and methods for depth regularization and semiautomatic interactive matting using rgb-d images |
US9275289B2 (en) | 2014-03-27 | 2016-03-01 | Xerox Corporation | Feature- and classifier-based vehicle headlight/shadow removal in video |
US9384402B1 (en) | 2014-04-10 | 2016-07-05 | Google Inc. | Image and video compression for remote vehicle assistance |
JP2015215837A (ja) | 2014-05-13 | 2015-12-03 | 株式会社デンソー | 演算処理装置 |
JP2016013793A (ja) | 2014-07-03 | 2016-01-28 | 株式会社デンソー | 画像表示装置、画像表示方法 |
US20150046332A1 (en) | 2014-08-08 | 2015-02-12 | Brighterion, Inc. | Behavior tracking smart agents for artificial intelligence fraud protection and management |
SG10201405182WA (en) | 2014-08-25 | 2016-03-30 | Univ Singapore Technology & Design | Method and system |
US10824952B2 (en) | 2014-09-22 | 2020-11-03 | International Business Machines Corporation | Reconfigurable array processor for pattern matching |
WO2016048108A1 (en) | 2014-09-26 | 2016-03-31 | Samsung Electronics Co., Ltd. | Image processing apparatus and image processing method |
US20160132786A1 (en) | 2014-11-12 | 2016-05-12 | Alexandru Balan | Partitioning data for training machine-learning classifiers |
EP3035249B1 (en) * | 2014-12-19 | 2019-11-27 | Intel Corporation | Method and apparatus for distributed and cooperative computation in artificial neural networks |
CN105809655B (zh) | 2014-12-30 | 2021-06-29 | 清华大学 | 车辆检查方法和系统 |
US9916540B2 (en) | 2015-01-22 | 2018-03-13 | Microsoft Technology Licensing, Llc | Scalable-effort classifiers for energy-efficient machine learning |
KR102534792B1 (ko) | 2015-02-10 | 2023-05-19 | 모빌아이 비젼 테크놀로지스 엘티디. | 자율 주행을 위한 약도 |
JP6525707B2 (ja) | 2015-04-23 | 2019-06-05 | キヤノン株式会社 | 画像処理装置、その制御方法及びプログラム、並びに撮像装置 |
CN104835114A (zh) | 2015-05-06 | 2015-08-12 | 山东大学 | 一种图像自适应显示方法 |
US9542751B2 (en) | 2015-05-08 | 2017-01-10 | Qualcomm Incorporated | Systems and methods for reducing a plurality of bounding regions |
GB201508074D0 (en) | 2015-05-12 | 2015-06-24 | Apical Ltd | People detection |
US10049322B2 (en) | 2015-05-21 | 2018-08-14 | Google Llc | Prefetching weights for use in a neural network processor |
US10438117B1 (en) | 2015-05-21 | 2019-10-08 | Google Llc | Computing convolutions using a neural network processor |
US9805303B2 (en) | 2015-05-21 | 2017-10-31 | Google Inc. | Rotating data for neural network computations |
US10192162B2 (en) | 2015-05-21 | 2019-01-29 | Google Llc | Vector computation unit in a neural network processor |
US10083395B2 (en) | 2015-05-21 | 2018-09-25 | Google Llc | Batch processing in a neural network processor |
WO2016207875A1 (en) | 2015-06-22 | 2016-12-29 | Photomyne Ltd. | System and method for detecting objects in an image |
US10062010B2 (en) | 2015-06-26 | 2018-08-28 | Intel Corporation | System for building a map and subsequent localization |
US20160379109A1 (en) * | 2015-06-29 | 2016-12-29 | Microsoft Technology Licensing, Llc | Convolutional neural networks on hardware accelerators |
US10410096B2 (en) | 2015-07-09 | 2019-09-10 | Qualcomm Incorporated | Context-based priors for object detection in images |
JP6616608B2 (ja) | 2015-07-16 | 2019-12-04 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
WO2017022908A1 (ko) | 2015-08-04 | 2017-02-09 | 재단법인 아산사회복지재단 | 심층신경망을 이용한 골 연령 산출방법 및 프로그램 |
WO2017031630A1 (zh) * | 2015-08-21 | 2017-03-02 | 中国科学院自动化研究所 | 基于参数量化的深度卷积神经网络的加速与压缩方法 |
US9767565B2 (en) | 2015-08-26 | 2017-09-19 | Digitalglobe, Inc. | Synthesizing training data for broad area geospatial object detection |
KR101738422B1 (ko) | 2015-09-14 | 2017-05-23 | 한국과학기술원 | 다종 센서 기반 시각 신경 회로 장치 및 이를 이용한 객체 탐색 시스템, 방법 |
US9442496B1 (en) | 2015-09-18 | 2016-09-13 | Amazon Technologies, Inc. | Active airborne noise abatement |
US10282623B1 (en) | 2015-09-25 | 2019-05-07 | Apple Inc. | Depth perception sensor data processing |
US9886377B2 (en) * | 2015-10-05 | 2018-02-06 | Intel Corporation | Pipelined convolutional operations for processing clusters |
US9704045B2 (en) | 2015-10-06 | 2017-07-11 | Yahoo! Inc. | User classification based upon images |
US10726328B2 (en) * | 2015-10-09 | 2020-07-28 | Altera Corporation | Method and apparatus for designing and implementing a convolution neural net accelerator |
US10614354B2 (en) * | 2015-10-07 | 2020-04-07 | Altera Corporation | Method and apparatus for implementing layers on a convolutional neural network accelerator |
US11074492B2 (en) * | 2015-10-07 | 2021-07-27 | Altera Corporation | Method and apparatus for performing different types of convolution operations with the same processing elements |
WO2017074966A1 (en) | 2015-10-26 | 2017-05-04 | Netradyne Inc. | Joint processing for embedded data inference |
CN105318888B (zh) | 2015-12-07 | 2018-08-14 | 北京航空航天大学 | 基于无人机感知的无人驾驶车辆路径规划方法 |
CN105550701B (zh) | 2015-12-09 | 2018-11-06 | 福州华鹰重工机械有限公司 | 实时图像提取识别方法及装置 |
US10318848B2 (en) | 2015-12-15 | 2019-06-11 | Qualcomm Incorporated | Methods for object localization and image classification |
CN108369746A (zh) | 2015-12-21 | 2018-08-03 | 罗伯特·博世有限公司 | 用于多相机交通工具系统的动态图像融合 |
US10909453B1 (en) | 2015-12-29 | 2021-02-02 | State Farm Mutual Automobile Insurance Company | Method of controlling for undesired factors in machine learning models |
US10482380B2 (en) | 2015-12-30 | 2019-11-19 | Amazon Technologies, Inc. | Conditional parallel processing in fully-connected neural networks |
US11170293B2 (en) | 2015-12-30 | 2021-11-09 | Microsoft Technology Licensing, Llc | Multi-model controller |
US10373019B2 (en) | 2016-01-13 | 2019-08-06 | Ford Global Technologies, Llc | Low- and high-fidelity classifiers applied to road-scene images |
US20170206434A1 (en) | 2016-01-14 | 2017-07-20 | Ford Global Technologies, Llc | Low- and high-fidelity classifiers applied to road-scene images |
CN109069072B (zh) | 2016-02-08 | 2021-11-30 | 纽洛斯公司 | 欺骗检测系统和方法 |
US10599701B2 (en) | 2016-02-11 | 2020-03-24 | Ebay Inc. | Semantic category classification |
GB2601067B (en) | 2016-03-02 | 2022-08-31 | Holition Ltd | Locating and augmenting object features in images |
WO2017158622A2 (en) | 2016-03-16 | 2017-09-21 | INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) | Method for managing image data at electronic device |
US10599428B2 (en) | 2016-03-23 | 2020-03-24 | Arm Limited | Relaxed execution of overlapping mixed-scalar-vector instructions |
EP3229172A1 (en) | 2016-04-04 | 2017-10-11 | Conti Temic microelectronic GmbH | Driver assistance system with variable image resolution |
US10789544B2 (en) | 2016-04-05 | 2020-09-29 | Google Llc | Batching inputs to a machine learning model |
US11112784B2 (en) | 2016-05-09 | 2021-09-07 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for communications in an industrial internet of things data collection environment with large data sets |
WO2019216975A1 (en) | 2018-05-07 | 2019-11-14 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for data collection, learning, and streaming of machine signals for analytics and maintenance using the industrial internet of things |
US10366290B2 (en) | 2016-05-11 | 2019-07-30 | Baidu Usa Llc | System and method for providing augmented virtual reality content in autonomous vehicles |
CN114584660A (zh) | 2016-06-13 | 2022-06-03 | 谷歌有限责任公司 | 向人类操作员的升级 |
US10019009B2 (en) | 2016-06-15 | 2018-07-10 | Allstate Insurance Company | Vehicle control systems |
US10489972B2 (en) | 2016-06-28 | 2019-11-26 | Cognata Ltd. | Realistic 3D virtual world creation and simulation for training automated driving systems |
US9858636B1 (en) | 2016-06-30 | 2018-01-02 | Apple Inc. | Configurable convolution engine |
US20180003511A1 (en) | 2016-07-01 | 2018-01-04 | Uber Technologies, Inc. | Autonomous vehicle localization using submaps |
US11298072B2 (en) | 2016-07-01 | 2022-04-12 | Bostel Technologies, Llc | Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio (sonification) outputs |
US20180012411A1 (en) | 2016-07-11 | 2018-01-11 | Gravity Jack, Inc. | Augmented Reality Methods and Devices |
WO2018017467A1 (en) | 2016-07-18 | 2018-01-25 | NantOmics, Inc. | Distributed machine learning systems, apparatus, and methods |
CN106295678B (zh) | 2016-07-27 | 2020-03-06 | 北京旷视科技有限公司 | 神经网络训练与构建方法和装置以及目标检测方法和装置 |
CN106156754B (zh) | 2016-07-29 | 2019-05-31 | 浙江工业大学 | 一种基于最大外切矩阵感兴趣区域提取和双边滤波的手指多模态预处理方法 |
US20180039853A1 (en) | 2016-08-02 | 2018-02-08 | Mitsubishi Electric Research Laboratories, Inc. | Object Detection System and Object Detection Method |
US10664750B2 (en) | 2016-08-10 | 2020-05-26 | Google Llc | Deep machine learning to predict and prevent adverse conditions at structural assets |
US10891538B2 (en) | 2016-08-11 | 2021-01-12 | Nvidia Corporation | Sparse convolutional neural network accelerator |
KR102462502B1 (ko) | 2016-08-16 | 2022-11-02 | 삼성전자주식회사 | 스테레오 카메라 기반의 자율 주행 방법 및 그 장치 |
EP3504661B1 (en) | 2016-08-24 | 2023-08-16 | Google LLC | Change detection based imagery acquisition tasking system |
US10019655B2 (en) | 2016-08-31 | 2018-07-10 | Adobe Systems Incorporated | Deep-learning network architecture for object detection |
US10394237B2 (en) | 2016-09-08 | 2019-08-27 | Ford Global Technologies, Llc | Perceiving roadway conditions from fused sensor data |
US10317901B2 (en) | 2016-09-08 | 2019-06-11 | Mentor Graphics Development (Deutschland) Gmbh | Low-level sensor fusion |
US20180068459A1 (en) | 2016-09-08 | 2018-03-08 | Ford Global Technologies, Llc | Object Distance Estimation Using Data From A Single Camera |
US10467459B2 (en) | 2016-09-09 | 2019-11-05 | Microsoft Technology Licensing, Llc | Object detection based on joint feature extraction |
CN106419893A (zh) | 2016-09-18 | 2017-02-22 | 广州视源电子科技股份有限公司 | 睡眠状态检测方法和装置 |
US10133273B2 (en) | 2016-09-20 | 2018-11-20 | 2236008 Ontario Inc. | Location specific assistance for autonomous vehicle control system |
GB201616097D0 (en) | 2016-09-21 | 2016-11-02 | Univ Oxford Innovation Ltd | Segmentation of path proposals |
WO2018057978A1 (en) | 2016-09-23 | 2018-03-29 | Apple Inc. | Decision making for autonomous vehicle motion control |
CN106650922B (zh) | 2016-09-29 | 2019-05-03 | 清华大学 | 硬件神经网络转换方法、计算装置、软硬件协作系统 |
WO2018058426A1 (zh) | 2016-09-29 | 2018-04-05 | 清华大学 | 硬件神经网络转换方法、计算装置、编译方法和神经网络软硬件协作系统 |
US10514711B2 (en) | 2016-10-09 | 2019-12-24 | Airspace Systems, Inc. | Flight control using computer vision |
KR101851155B1 (ko) | 2016-10-12 | 2018-06-04 | 현대자동차주식회사 | 자율 주행 제어 장치, 그를 가지는 차량 및 그 제어 방법 |
CN106504253A (zh) | 2016-10-14 | 2017-03-15 | 国政通科技股份有限公司 | 一种医疗影像照片的处理方法及系统 |
CN107031600A (zh) | 2016-10-19 | 2017-08-11 | 东风汽车公司 | 基于高速公路的自动驾驶系统 |
US10127043B2 (en) | 2016-10-19 | 2018-11-13 | Rex Computing, Inc. | Implementing conflict-free instructions for concurrent operation on a processor |
US10346723B2 (en) | 2016-11-01 | 2019-07-09 | Snap Inc. | Neural network for object detection in images |
KR102156597B1 (ko) | 2016-11-03 | 2020-09-16 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 광학 촬영 방법 및 장치 |
US10331974B2 (en) | 2016-11-08 | 2019-06-25 | Nec Corporation | Action recognition system with landmark localization on objects in images using convolutional neural networks |
US11622713B2 (en) | 2016-11-16 | 2023-04-11 | Navix International Limited | Estimators for ablation effectiveness |
CN106598226B (zh) | 2016-11-16 | 2019-05-21 | 天津大学 | 一种基于双目视觉和深度学习的无人机人机交互方法 |
US10650071B2 (en) | 2016-11-28 | 2020-05-12 | Google Llc | Search and retrieval of keyed data maintained using a keyed database |
CN108122234B (zh) | 2016-11-29 | 2021-05-04 | 北京市商汤科技开发有限公司 | 卷积神经网络训练及视频处理方法、装置和电子设备 |
CN106558058B (zh) | 2016-11-29 | 2020-10-09 | 北京图森未来科技有限公司 | 分割模型训练方法、道路分割方法、车辆控制方法及装置 |
US10417560B2 (en) * | 2016-12-01 | 2019-09-17 | Via Alliance Semiconductor Co., Ltd. | Neural network unit that performs efficient 3-dimensional convolutions |
US10395165B2 (en) * | 2016-12-01 | 2019-08-27 | Via Alliance Semiconductor Co., Ltd | Neural network unit with neural memory and array of neural processing units that collectively perform multi-word distance rotates of row of data received from neural memory |
US10438115B2 (en) * | 2016-12-01 | 2019-10-08 | Via Alliance Semiconductor Co., Ltd. | Neural network unit with memory layout to perform efficient 3-dimensional convolutions |
US10529088B2 (en) | 2016-12-02 | 2020-01-07 | Gabriel Fine | Automatically determining orientation and position of medically invasive devices via image processing |
US10699119B2 (en) | 2016-12-02 | 2020-06-30 | GEOSAT Aerospace & Technology | Methods and systems for automatic object detection from aerial imagery |
US10380741B2 (en) | 2016-12-07 | 2019-08-13 | Samsung Electronics Co., Ltd | System and method for a deep learning machine for object detection |
KR20180068511A (ko) | 2016-12-14 | 2018-06-22 | 삼성전자주식회사 | 영상에 포함된 도로와 관련된 정보를 결정하는 뉴럴 네트워크를 학습시키는 학습 데이터를 생성하는 장치 및 방법 |
US11593632B2 (en) | 2016-12-15 | 2023-02-28 | WaveOne Inc. | Deep learning based on image encoding and decoding |
CN110832417B (zh) | 2016-12-30 | 2023-06-09 | 辉达公司 | 使用高清地图为自主车辆生成路线 |
US11023807B2 (en) | 2016-12-30 | 2021-06-01 | Microsoft Technology Licensing, Llc | Neural network processor |
WO2018126215A1 (en) | 2016-12-30 | 2018-07-05 | DeepMap Inc. | High definition map updates |
US10140574B2 (en) * | 2016-12-31 | 2018-11-27 | Via Alliance Semiconductor Co., Ltd | Neural network unit with segmentable array width rotator and re-shapeable weight memory to match segment width to provide common weights to multiple rotator segments |
US10565492B2 (en) * | 2016-12-31 | 2020-02-18 | Via Alliance Semiconductor Co., Ltd. | Neural network unit with segmentable array width rotator |
US10565494B2 (en) * | 2016-12-31 | 2020-02-18 | Via Alliance Semiconductor Co., Ltd. | Neural network unit with segmentable array width rotator |
US10586148B2 (en) * | 2016-12-31 | 2020-03-10 | Via Alliance Semiconductor Co., Ltd. | Neural network unit with re-shapeable memory |
US10262218B2 (en) | 2017-01-03 | 2019-04-16 | Qualcomm Incorporated | Simultaneous object detection and rigid transform estimation using neural network |
US10824934B2 (en) * | 2017-01-12 | 2020-11-03 | Texas Instruments Incorporated | Methods and apparatus for matrix processing in a convolutional neural network |
US10228693B2 (en) | 2017-01-13 | 2019-03-12 | Ford Global Technologies, Llc | Generating simulated sensor data for training and validation of detection models |
US10192016B2 (en) | 2017-01-17 | 2019-01-29 | Xilinx, Inc. | Neural network based physical synthesis for circuit designs |
US20180211403A1 (en) | 2017-01-20 | 2018-07-26 | Ford Global Technologies, Llc | Recurrent Deep Convolutional Neural Network For Object Detection |
US11210584B2 (en) * | 2017-01-31 | 2021-12-28 | International Business Machines Corporation | Memory efficient convolution operations in deep learning neural networks |
US10740563B2 (en) | 2017-02-03 | 2020-08-11 | Benedict R. Dugan | System and methods for text classification |
CN106779060B (zh) | 2017-02-09 | 2019-03-08 | 武汉魅瞳科技有限公司 | 一种适于硬件设计实现的深度卷积神经网络的计算方法 |
JP2018136803A (ja) | 2017-02-23 | 2018-08-30 | 株式会社日立製作所 | 画像認識システム |
US10359783B2 (en) | 2017-02-28 | 2019-07-23 | Warfarer, Inc. | Transportation system |
US11132599B2 (en) | 2017-02-28 | 2021-09-28 | Microsoft Technology Licensing, Llc | Multi-function unit for programmable hardware nodes for neural network processing |
US10146225B2 (en) | 2017-03-02 | 2018-12-04 | GM Global Technology Operations LLC | Systems and methods for vehicle dimension prediction |
US10733482B1 (en) | 2017-03-08 | 2020-08-04 | Zoox, Inc. | Object height estimation from monocular images |
US10261786B2 (en) | 2017-03-09 | 2019-04-16 | Google Llc | Vector processing unit |
US10671873B2 (en) | 2017-03-10 | 2020-06-02 | Tusimple, Inc. | System and method for vehicle wheel detection |
US10311312B2 (en) | 2017-08-31 | 2019-06-04 | TuSimple | System and method for vehicle occlusion detection |
JP6665819B2 (ja) | 2017-03-17 | 2020-03-13 | トヨタ自動車株式会社 | 車載表示装置 |
US11360770B2 (en) * | 2017-03-20 | 2022-06-14 | Intel Corporation | Systems, methods, and apparatuses for zeroing a matrix |
US10692000B2 (en) | 2017-03-20 | 2020-06-23 | Sap Se | Training machine learning models |
WO2018175441A1 (en) | 2017-03-20 | 2018-09-27 | Mobileye Vision Technologies Ltd. | Navigation by augmented path prediction |
CN107103113B (zh) | 2017-03-23 | 2019-01-11 | 中国科学院计算技术研究所 | 面向神经网络处理器的自动化设计方法、装置及优化方法 |
WO2018176000A1 (en) | 2017-03-23 | 2018-09-27 | DeepScale, Inc. | Data synthesis for autonomous control systems |
JP6658643B2 (ja) | 2017-03-24 | 2020-03-04 | トヨタ自動車株式会社 | 車両用視認装置 |
US9965865B1 (en) | 2017-03-29 | 2018-05-08 | Amazon Technologies, Inc. | Image data segmentation using depth data |
US10248121B2 (en) | 2017-03-31 | 2019-04-02 | Uber Technologies, Inc. | Machine-learning based autonomous vehicle management system |
US10296828B2 (en) | 2017-04-05 | 2019-05-21 | Here Global B.V. | Learning a similarity measure for vision-based localization on a high definition (HD) map |
WO2018187632A1 (en) | 2017-04-05 | 2018-10-11 | Carnegie Mellon University | Deep learning methods for estimating density and/or flow of objects, and related methods and software |
DE202017102235U1 (de) | 2017-04-13 | 2017-05-12 | Robert Bosch Gmbh | Trainingssystem |
US10303961B1 (en) | 2017-04-13 | 2019-05-28 | Zoox, Inc. | Object detection and passenger notification |
DE202017102238U1 (de) | 2017-04-13 | 2017-05-12 | Robert Bosch Gmbh | Aktorsteuerungssystem |
US10614111B2 (en) | 2017-04-17 | 2020-04-07 | Mammoth Medical, Llc | System and method for machine-learning input-based data autogeneration |
EP3612984A4 (en) | 2017-04-18 | 2021-03-24 | D5A1 Llc | MULTI-LEVEL MACHINE LEARNING AND RECOGNITION |
CN107169560B (zh) | 2017-04-19 | 2020-10-16 | 清华大学 | 一种自适应可重构的深度卷积神经网络计算方法和装置 |
DE102018200724A1 (de) | 2017-04-19 | 2018-10-25 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Verbessern der Robustheit gegen "Adversarial Examples" |
CN107169421B (zh) | 2017-04-20 | 2020-04-28 | 华南理工大学 | 一种基于深度卷积神经网络的汽车驾驶场景目标检测方法 |
DE202017102381U1 (de) | 2017-04-21 | 2017-05-11 | Robert Bosch Gmbh | Vorrichtung zum Verbessern der Robustheit gegen "Adversarial Examples" |
US10585621B2 (en) | 2017-04-21 | 2020-03-10 | Intel Corporation | Statically-schedulable feed and drain structure for systolic array architecture |
US10860760B2 (en) * | 2017-04-21 | 2020-12-08 | Intel Corporation | Systems and methods for implementing learned parameter systems on a programmable integrated circuit |
EP3616387A1 (en) | 2017-04-24 | 2020-03-04 | Carnegie Mellon University | Virtual sensor system |
US10460053B2 (en) | 2017-04-24 | 2019-10-29 | Toyota Research Institute, Inc. | Systems and methods for surface property identification using waveform classification |
US10108867B1 (en) | 2017-04-25 | 2018-10-23 | Uber Technologies, Inc. | Image-based pedestrian detection |
CN107133943B (zh) | 2017-04-26 | 2018-07-06 | 贵州电网有限责任公司输电运行检修分公司 | 一种防震锤缺陷检测的视觉检测方法 |
US10319066B2 (en) | 2017-04-27 | 2019-06-11 | Apple Inc. | Convolution engine with per-channel processing of interleaved channel data |
US10318794B2 (en) | 2017-04-28 | 2019-06-11 | Microsoft Technology Licensing, Llc | Intelligent auto cropping of digital images |
US10838936B2 (en) | 2017-05-12 | 2020-11-17 | Harris Lee Cohen | Computer-implemented methods, computer readable medium and systems for generating an orchard data model for a precision agriculture platform |
US10698974B2 (en) | 2017-05-17 | 2020-06-30 | Google Llc | Low latency matrix multiply unit |
US10372130B1 (en) | 2017-05-19 | 2019-08-06 | Zoox, Inc. | Communicating reasons for vehicle actions |
US20180374105A1 (en) | 2017-05-26 | 2018-12-27 | Get Attached, Inc. | Leveraging an intermediate machine learning analysis |
WO2018218149A1 (en) | 2017-05-26 | 2018-11-29 | Google Llc | Data fusion system |
US10310087B2 (en) | 2017-05-31 | 2019-06-04 | Uber Technologies, Inc. | Range-view LIDAR-based object detection |
US11983641B2 (en) | 2017-06-05 | 2024-05-14 | Umajin Inc. | Asset tracking system and methods |
US11273553B2 (en) | 2017-06-05 | 2022-03-15 | Autodesk, Inc. | Adapting simulation data to real-world conditions encountered by physical processes |
US11361243B2 (en) | 2017-06-07 | 2022-06-14 | Accenture Global Solutions Limited | Recommending machine learning techniques, features, and feature relevance scores |
US10853739B2 (en) | 2017-06-09 | 2020-12-01 | Sap Se | Machine learning models for evaluating entities in a high-volume computer network |
CN108229526B (zh) | 2017-06-16 | 2020-09-29 | 北京市商汤科技开发有限公司 | 网络训练、图像处理方法、装置、存储介质和电子设备 |
US10007269B1 (en) | 2017-06-23 | 2018-06-26 | Uber Technologies, Inc. | Collision-avoidance system for autonomous-capable vehicle |
JP7050006B2 (ja) | 2017-06-28 | 2022-04-07 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 移動体制御装置、移動体制御方法、及び学習方法 |
US10567674B2 (en) | 2017-06-30 | 2020-02-18 | Harman International Industries, Incorporated | Systems and methods for detecting objects in imaging systems |
CN109215067B (zh) | 2017-07-03 | 2023-03-10 | 百度(美国)有限责任公司 | 基于cnn和crf模型生成高分辨率3-d点云 |
US10474161B2 (en) | 2017-07-03 | 2019-11-12 | Baidu Usa Llc | High resolution 3D point clouds generation from upsampled low resolution lidar 3D point clouds and camera images |
US10474160B2 (en) | 2017-07-03 | 2019-11-12 | Baidu Usa Llc | High resolution 3D point clouds generation from downsampled low resolution LIDAR 3D point clouds and camera images |
US10671082B2 (en) | 2017-07-03 | 2020-06-02 | Baidu Usa Llc | High resolution 3D point clouds generation based on CNN and CRF models |
US10402687B2 (en) | 2017-07-05 | 2019-09-03 | Perceptive Automata, Inc. | System and method of predicting human interaction with vehicles |
JP7080594B2 (ja) | 2017-07-06 | 2022-06-06 | 株式会社東芝 | 計測装置および方法 |
US10606990B2 (en) | 2017-07-06 | 2020-03-31 | Ebay Inc. | Machine learning system for computing asset access |
US10592785B2 (en) | 2017-07-12 | 2020-03-17 | Futurewei Technologies, Inc. | Integrated system for detection of driver condition |
DE102017116017A1 (de) | 2017-07-17 | 2019-01-17 | Valeo Schalter Und Sensoren Gmbh | Kraftfahrzeug-Sensorvorrichtung mit mehreren Sensoreinheiten und mehreren neuronalen Netzen zum Erzeugen einer kombinierten Repräsentation einer Umgebung |
US10733755B2 (en) | 2017-07-18 | 2020-08-04 | Qualcomm Incorporated | Learning geometric differentials for matching 3D models to objects in a 2D image |
DE102017116411B4 (de) | 2017-07-20 | 2022-02-03 | Infineon Technologies Ag | Elektronischen Steuerungseinheit, Gatewayschaltung für eine elektronische Airbag-Steuerungseinheit, Sicherheitssystem für ein Fahrzeug und Umgebungssensorelement |
US10579063B2 (en) | 2017-07-21 | 2020-03-03 | Uatc, Llc | Machine learning for predicting locations of objects perceived by autonomous vehicles |
US10650278B1 (en) | 2017-07-21 | 2020-05-12 | Apple Inc. | Semantic labeling of point clouds using images |
US10671349B2 (en) * | 2017-07-24 | 2020-06-02 | Tesla, Inc. | Accelerated mathematical engine |
US10395144B2 (en) | 2017-07-24 | 2019-08-27 | GM Global Technology Operations LLC | Deeply integrated fusion architecture for automated driving systems |
US11157287B2 (en) * | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system with variable latency memory access |
US11893393B2 (en) * | 2017-07-24 | 2024-02-06 | Tesla, Inc. | Computational array microprocessor system with hardware arbiter managing memory requests |
US11157441B2 (en) * | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system using non-consecutive data formatting |
US11409692B2 (en) * | 2017-07-24 | 2022-08-09 | Tesla, Inc. | Vector computational unit |
US10542930B1 (en) | 2017-07-25 | 2020-01-28 | BlueOwl, LLC | Audio assessment for analyzing sleep trends using machine learning techniques |
CN107451659B (zh) | 2017-07-27 | 2020-04-10 | 清华大学 | 用于位宽分区的神经网络加速器及其实现方法 |
CN107368926B (zh) | 2017-07-28 | 2018-07-10 | 中南大学 | 一种智能环境运载机器人识别楼层的多自然传感参数融合处理方法 |
JP7002729B2 (ja) | 2017-07-31 | 2022-01-20 | 株式会社アイシン | 画像データ生成装置、画像認識装置、画像データ生成プログラム、及び画像認識プログラム |
EP3651055A4 (en) | 2017-08-01 | 2020-10-21 | Huawei Technologies Co., Ltd. | METHOD, APPARATUS AND DEVICE FOR GESTURE RECOGNITION |
CN109389552B (zh) | 2017-08-02 | 2023-03-28 | 中山大学 | 一种基于上下文相关多任务深度学习的图像超分辨算法 |
US11170288B2 (en) | 2017-08-03 | 2021-11-09 | Facebook, Inc. | Systems and methods for predicting qualitative ratings for advertisements based on machine learning |
KR102601604B1 (ko) | 2017-08-04 | 2023-11-13 | 삼성전자주식회사 | 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치 |
KR102541559B1 (ko) | 2017-08-04 | 2023-06-08 | 삼성전자주식회사 | 관심 객체를 검출하는 방법 및 장치 |
US10656657B2 (en) | 2017-08-08 | 2020-05-19 | Uatc, Llc | Object motion prediction and autonomous vehicle control |
US10423934B1 (en) | 2017-08-10 | 2019-09-24 | Zoox, Inc. | Automated vehicle diagnostics and maintenance |
CN108229647A (zh) | 2017-08-18 | 2018-06-29 | 北京市商汤科技开发有限公司 | 神经网络结构的生成方法和装置、电子设备、存储介质 |
US10167800B1 (en) | 2017-08-18 | 2019-01-01 | Microsoft Technology Licensing, Llc | Hardware node having a matrix vector unit with block-floating point processing |
US10860924B2 (en) | 2017-08-18 | 2020-12-08 | Microsoft Technology Licensing, Llc | Hardware node having a mixed-signal matrix vector unit |
US20190228037A1 (en) | 2017-08-19 | 2019-07-25 | Wave Computing, Inc. | Checkpointing data flow graph computation for machine learning |
US10216189B1 (en) | 2017-08-23 | 2019-02-26 | Uber Technologies, Inc. | Systems and methods for prioritizing object prediction for autonomous vehicles |
US11455565B2 (en) | 2017-08-31 | 2022-09-27 | Ford Global Technologies, Llc | Augmenting real sensor recordings with simulated sensor data |
US10783381B2 (en) | 2017-08-31 | 2020-09-22 | Tusimple, Inc. | System and method for vehicle occlusion detection |
US10629080B2 (en) | 2017-08-31 | 2020-04-21 | Uatc Llc | Autonomous vehicles featuring vehicle intention system |
US20190072978A1 (en) | 2017-09-01 | 2019-03-07 | GM Global Technology Operations LLC | Methods and systems for generating realtime map information |
US11430331B2 (en) | 2017-09-08 | 2022-08-30 | Uatc, Llc | Power and thermal management systems and methods for autonomous vehicles |
US20190079526A1 (en) | 2017-09-08 | 2019-03-14 | Uber Technologies, Inc. | Orientation Determination in Object Detection and Tracking for Autonomous Vehicles |
JP6939307B2 (ja) | 2017-09-19 | 2021-09-22 | トヨタ自動車株式会社 | 水系リチウムイオン二次電池、負極活物質複合体の製造方法及び水系リチウムイオン二次電池の製造方法 |
US10402646B2 (en) | 2017-09-21 | 2019-09-03 | Amazon Technologies, Inc. | Object detection and avoidance for aerial vehicles |
CN107507134B (zh) | 2017-09-21 | 2020-09-11 | 大连理工大学 | 基于卷积神经网络的超分辨率方法 |
US10551297B2 (en) | 2017-09-22 | 2020-02-04 | Saudi Arabian Oil Company | Thermography image processing with neural networks to identify corrosion under insulation (CUI) |
US10891715B2 (en) | 2017-09-22 | 2021-01-12 | Continental Automotive Systems, Inc. | Deep neural network for image enhancement |
CN111226257B (zh) | 2017-09-22 | 2024-03-01 | 豪夫迈·罗氏有限公司 | 组织图像中的伪像移除 |
US20190095946A1 (en) | 2017-09-25 | 2019-03-28 | Get Attached, Inc. | Automatically analyzing media using a machine learning model trained on user engagement information |
US10546197B2 (en) | 2017-09-26 | 2020-01-28 | Ambient AI, Inc. | Systems and methods for intelligent and interpretive analysis of video image data using machine learning |
CN110809784B (zh) | 2017-09-27 | 2021-04-20 | 谷歌有限责任公司 | 高分辨率图像分割的端到端网络模型 |
US10679129B2 (en) | 2017-09-28 | 2020-06-09 | D5Ai Llc | Stochastic categorical autoencoder network |
CA3076912C (en) | 2017-09-29 | 2023-05-02 | United Parcel Service Of America, Inc. | Predictive parcel damage identification, analysis, and mitigation |
CN107742311B (zh) | 2017-09-29 | 2020-02-18 | 北京易达图灵科技有限公司 | 一种视觉定位的方法及装置 |
US10872531B2 (en) | 2017-09-29 | 2020-12-22 | Uber Technologies, Inc. | Image processing for vehicle collision avoidance system |
WO2019067695A1 (en) | 2017-10-01 | 2019-04-04 | Airspace Systems, Inc. | FLIGHT CONTROL USING VISION BY COMPUTER |
US20190101914A1 (en) | 2017-10-02 | 2019-04-04 | Allstate Insurance Company | Data Processing System with Machine Learning Engine for Providing Driving Data Analysis and Vehicle Control Functions |
US10579897B2 (en) | 2017-10-02 | 2020-03-03 | Xnor.ai Inc. | Image based object detection |
US10678997B2 (en) | 2017-10-05 | 2020-06-09 | Microsoft Technology Licensing, Llc | Machine learned models for contextual editing of social networking profiles |
US10733262B2 (en) | 2017-10-05 | 2020-08-04 | Adobe Inc. | Attribute control for updating digital content in a digital medium environment |
US11748653B2 (en) | 2017-10-05 | 2023-09-05 | DataRobot, Inc. | Machine learning abstraction |
WO2019070290A1 (en) | 2017-10-06 | 2019-04-11 | Hitachi, Ltd. | MANAGEMENT AND EXECUTION OF A REPAIR |
DE102017123452A1 (de) | 2017-10-10 | 2019-04-11 | Connaught Electronics Ltd. | Verfahren zum Erzeugen eines ein Kraftfahrzeug und einen Umgebungsbereich des Kraftfahrzeugs in einer vorbestimmten Zielansicht zeigenden Ausgangsbildes, Kamerasystem sowie Kraftfahrzeug |
US10652565B1 (en) | 2017-10-12 | 2020-05-12 | Amazon Technologies, Inc. | Image compression and decompression using embeddings |
CN107622258B (zh) | 2017-10-16 | 2020-10-30 | 中南大学 | 一种结合静态底层特征和运动信息的快速行人检测方法 |
US10796221B2 (en) | 2017-10-19 | 2020-10-06 | General Electric Company | Deep learning architecture for automated image feature extraction |
US20190122111A1 (en) | 2017-10-24 | 2019-04-25 | Nec Laboratories America, Inc. | Adaptive Convolutional Neural Knowledge Graph Learning System Leveraging Entity Descriptions |
US20200250515A1 (en) | 2017-10-27 | 2020-08-06 | Google Llc | Systems and Methods for Improved Optimization of Machine-Learned Models |
US10467501B2 (en) | 2017-10-30 | 2019-11-05 | Sap Se | Computer vision architecture with machine learned image recognition models |
CN107729998B (zh) | 2017-10-31 | 2020-06-05 | 中国科学院计算技术研究所 | 一种用于神经网络处理器的方法 |
US10346721B2 (en) | 2017-11-01 | 2019-07-09 | Salesforce.Com, Inc. | Training a neural network using augmented training datasets |
US11521068B2 (en) | 2017-11-02 | 2022-12-06 | The Trustees Of Princeton University | Method and system for neural network synthesis |
KR102589303B1 (ko) | 2017-11-02 | 2023-10-24 | 삼성전자주식회사 | 고정 소수점 타입의 뉴럴 네트워크를 생성하는 방법 및 장치 |
US11054811B2 (en) | 2017-11-03 | 2021-07-06 | Drishti Technologies, Inc. | Systems and methods for line balancing |
EP3625697A1 (en) | 2017-11-07 | 2020-03-25 | Google LLC | Semantic state based sensor tracking and updating |
US10591914B2 (en) | 2017-11-08 | 2020-03-17 | GM Global Technology Operations LLC | Systems and methods for autonomous vehicle behavior control |
US11635815B2 (en) | 2017-11-13 | 2023-04-25 | Bios Health Ltd | Neural interface |
US20190147112A1 (en) | 2017-11-13 | 2019-05-16 | Facebook, Inc. | Systems and methods for ranking ephemeral content item collections associated with a social networking system |
US10678839B2 (en) | 2017-11-13 | 2020-06-09 | Facebook, Inc. | Systems and methods for ranking ephemeral content item collections associated with a social networking system |
US10824862B2 (en) | 2017-11-14 | 2020-11-03 | Nuro, Inc. | Three-dimensional object detection for autonomous robotic systems using image proposals |
US11061402B2 (en) | 2017-11-15 | 2021-07-13 | Uatc, Llc | Sparse convolutional neural networks |
WO2019099622A1 (en) | 2017-11-15 | 2019-05-23 | Uber Technologies, Inc. | Autonomous vehicle lane boundary detection systems and methods |
KR102095335B1 (ko) | 2017-11-15 | 2020-03-31 | 에스케이텔레콤 주식회사 | 연산 가속화가 적용된 신경망 모델의 생성 및 활용을 위한 장치 및 방법 |
US20190147255A1 (en) | 2017-11-15 | 2019-05-16 | Uber Technologies, Inc. | Systems and Methods for Generating Sparse Geographic Data for Autonomous Vehicles |
US11475351B2 (en) | 2017-11-15 | 2022-10-18 | Uatc, Llc | Systems and methods for object detection, tracking, and motion prediction |
US11556777B2 (en) | 2017-11-15 | 2023-01-17 | Uatc, Llc | Continuous convolution and fusion in neural networks |
US10970553B2 (en) | 2017-11-15 | 2021-04-06 | Uatc, Llc | Semantic segmentation of three-dimensional data |
US10803328B1 (en) | 2017-11-15 | 2020-10-13 | Uatc, Llc | Semantic and instance segmentation |
US10803325B2 (en) | 2017-11-15 | 2020-10-13 | Uatc, Llc | Autonomous vehicle lane boundary detection systems and methods |
US20190145765A1 (en) | 2017-11-15 | 2019-05-16 | Uber Technologies, Inc. | Three Dimensional Object Detection |
US11080537B2 (en) | 2017-11-15 | 2021-08-03 | Uatc, Llc | Autonomous vehicle lane boundary detection systems and methods |
US10828790B2 (en) | 2017-11-16 | 2020-11-10 | Google Llc | Component feature detector for robotic systems |
KR102073351B1 (ko) | 2017-11-17 | 2020-02-05 | 주식회사 하이퍼커넥트 | 서버 및 그것의 동작 방법 |
US10698868B2 (en) | 2017-11-17 | 2020-06-30 | Accenture Global Solutions Limited | Identification of domain information for use in machine learning models |
EP3486674A1 (en) | 2017-11-17 | 2019-05-22 | Koninklijke Philips N.V. | Artificial intelligence-enabled localization of anatomical landmarks |
US10409898B2 (en) | 2017-11-17 | 2019-09-10 | Adobe Inc. | Generating a targeted summary of textual content tuned to a target audience vocabulary |
US10535138B2 (en) | 2017-11-21 | 2020-01-14 | Zoox, Inc. | Sensor data segmentation |
US20180074506A1 (en) | 2017-11-21 | 2018-03-15 | GM Global Technology Operations LLC | Systems and methods for mapping roadway-interfering objects in autonomous vehicles |
CN107885214A (zh) | 2017-11-22 | 2018-04-06 | 济南浪潮高新科技投资发展有限公司 | 一种基于fpga的加速自动驾驶视觉感知的方法及装置 |
US11989861B2 (en) | 2017-11-28 | 2024-05-21 | Intel Corporation | Deep learning-based real-time detection and correction of compromised sensors in autonomous machines |
JP2019101535A (ja) | 2017-11-29 | 2019-06-24 | コニカミノルタ株式会社 | 教師データ作成装置および該方法ならびに画像セグメンテーション装置および該方法 |
CN111656367A (zh) | 2017-12-04 | 2020-09-11 | 优创半导体科技有限公司 | 神经网络加速器的系统和体系结构 |
DE102017128825A1 (de) | 2017-12-05 | 2018-01-25 | FEV Europe GmbH | Doppelkupplungsgetriebe für einen Hybrid-Antriebsstrang und Hybrid-Fahrzeug |
US10762396B2 (en) | 2017-12-05 | 2020-09-01 | Utac, Llc | Multiple stage image based object detection and recognition |
US10693740B2 (en) | 2017-12-07 | 2020-06-23 | Accenture Global Solutions Limited | Data transformation of performance statistics and ticket information for network devices for use in machine learning models |
US10528824B2 (en) | 2017-12-11 | 2020-01-07 | GM Global Technology Operations LLC | Artificial neural network for lane feature classification and localization |
US10747844B2 (en) * | 2017-12-12 | 2020-08-18 | Tesla, Inc. | Systems and methods for converting a matrix input to a vectorized input for a matrix processor |
US10768628B2 (en) | 2017-12-12 | 2020-09-08 | Uatc, Llc | Systems and methods for object detection at various ranges using multiple range imagery |
RU2691214C1 (ru) | 2017-12-13 | 2019-06-11 | Общество с ограниченной ответственностью "Аби Продакшн" | Распознавание текста с использованием искусственного интеллекта |
US10599958B2 (en) | 2017-12-14 | 2020-03-24 | Avigilon Corporation | Method and system for classifying an object-of-interest using an artificial neural network |
KR101969864B1 (ko) | 2017-12-15 | 2019-04-18 | 동국대학교 산학협력단 | 객체영상과 배경영상의 상호 연동에 기반한 영상 합성 방법 |
US20190185010A1 (en) | 2017-12-18 | 2019-06-20 | PlusAI Corp | Method and system for self capability aware route planning in autonomous driving vehicles |
US11183274B2 (en) | 2017-12-18 | 2021-11-23 | International Business Machines Corporation | Analysis of answers to questions |
US11587264B2 (en) | 2017-12-18 | 2023-02-21 | Motorola Solutions, Inc. | Method and device for generating an augmented image |
WO2019122952A1 (en) | 2017-12-18 | 2019-06-27 | PlusAI Corp | Method and system for personalized motion planning in autonomous driving vehicles |
US10713502B2 (en) | 2017-12-19 | 2020-07-14 | Micron Technology, Inc. | Providing autonomous vehicle assistance |
DE102017130566B4 (de) | 2017-12-19 | 2021-07-22 | Mekra Lang Gmbh & Co. Kg | Sichtsystem zur Erfassung einer Fahrzeugumgebung und Spiegelersatzsystem für ein Fahrzeug mit einem Sichtsystem |
US10402986B2 (en) | 2017-12-20 | 2019-09-03 | Facebook, Inc. | Unsupervised video segmentation |
US10535191B2 (en) | 2017-12-21 | 2020-01-14 | Luminar Technologies, Inc. | Object identification and labeling tool for training autonomous vehicle controllers |
WO2019126755A1 (en) | 2017-12-21 | 2019-06-27 | Fugro N.V. | Generating and classifying training data for machine learning functions |
US10872254B2 (en) | 2017-12-22 | 2020-12-22 | Texas Instruments Incorporated | Digital mirror systems for vehicles and methods of operating the same |
US10748247B2 (en) | 2017-12-26 | 2020-08-18 | Facebook, Inc. | Computing high-resolution depth images using machine learning techniques |
US10657418B2 (en) | 2017-12-27 | 2020-05-19 | International Business Machines Corporation | Object detection on local devices using remotely generated machine learning models |
WO2019127363A1 (zh) | 2017-12-29 | 2019-07-04 | 清华大学 | 神经网络权重编码方法、计算装置及硬件系统 |
US10755115B2 (en) | 2017-12-29 | 2020-08-25 | Here Global B.V. | Method, apparatus, and system for generating synthetic image data for machine learning |
CN108111873B (zh) | 2017-12-29 | 2020-04-14 | 国网山东省电力公司泰安供电公司 | 一种基于机器学习的gis图像数据传输方法 |
US20190204842A1 (en) | 2018-01-02 | 2019-07-04 | GM Global Technology Operations LLC | Trajectory planner with dynamic cost learning for autonomous driving |
US11170006B2 (en) | 2018-01-03 | 2021-11-09 | Facebook, Inc. | Machine-learning model for ranking diverse content |
US10657391B2 (en) | 2018-01-05 | 2020-05-19 | Uatc, Llc | Systems and methods for image-based free space detection |
US10896763B2 (en) | 2018-01-12 | 2021-01-19 | Koninklijke Philips N.V. | System and method for providing model-based treatment recommendation via individual-specific machine learning models |
US11161464B2 (en) | 2018-01-12 | 2021-11-02 | Uatc, Llc | Systems and methods for streaming processing for autonomous vehicles |
EP3514494A1 (en) | 2018-01-19 | 2019-07-24 | Zenuity AB | Constructing and updating a behavioral layer of a multi layered road network high definition digital map |
US10909368B2 (en) | 2018-01-23 | 2021-02-02 | X Development Llc | Crop type classification in images |
US20180150081A1 (en) | 2018-01-24 | 2018-05-31 | GM Global Technology Operations LLC | Systems and methods for path planning in autonomous vehicles |
CN108399362B (zh) | 2018-01-24 | 2022-01-07 | 中山大学 | 一种快速行人检测方法及装置 |
SG11202007109QA (en) | 2018-01-26 | 2020-08-28 | Ge Inspection Technologies Lp | Generating natural language recommendations based on an industrial language model |
KR102098713B1 (ko) | 2018-01-29 | 2020-04-08 | 주식회사 유엑스팩토리 | Cnn과 rnn이 하나의 고성능 저전력 칩으로 집적된 이기종 프로세서 구조 |
WO2019152308A1 (en) | 2018-01-30 | 2019-08-08 | D5Ai Llc | Self-organizing partially ordered networks |
US10962973B2 (en) | 2018-01-30 | 2021-03-30 | Uatc, Llc | Autonomous vehicle safe stop |
US10733668B2 (en) | 2018-01-30 | 2020-08-04 | PointPredictive Inc. | Multi-layer machine learning classifier |
CN110096937A (zh) | 2018-01-31 | 2019-08-06 | 北京四维图新科技股份有限公司 | 一种用于辅助车辆自动驾驶的图像识别的方法及装置 |
US11561791B2 (en) * | 2018-02-01 | 2023-01-24 | Tesla, Inc. | Vector computational unit receiving data elements in parallel from a last row of a computational array |
DE112019000065T5 (de) | 2018-02-02 | 2020-03-05 | Nvidia Corporation | Sicherheitsprozeduranalyse zur hindernisvermeidung in einem autonomen fahrzeug |
US20190244138A1 (en) | 2018-02-08 | 2019-08-08 | Apple Inc. | Privatized machine learning using generative adversarial networks |
US10996683B2 (en) | 2018-02-09 | 2021-05-04 | Skydio, Inc. | Aerial vehicle touchdown detection |
WO2019157193A1 (en) | 2018-02-09 | 2019-08-15 | Nvidia Corporation | Controlling autonomous vehicles using safe arrival times |
US10489126B2 (en) | 2018-02-12 | 2019-11-26 | Oracle International Corporation | Automated code generation |
CN110147698A (zh) | 2018-02-13 | 2019-08-20 | Kpit技术有限责任公司 | 用于车道检测的系统和方法 |
US10955851B2 (en) | 2018-02-14 | 2021-03-23 | Zoox, Inc. | Detecting blocking objects |
KR101996167B1 (ko) | 2018-02-14 | 2019-07-03 | 동국대학교 산학협력단 | 자율 무인 이동체를 학습하기 위한 학습용 이미지를 생성하는 장치 및 그 방법 |
US10839578B2 (en) | 2018-02-14 | 2020-11-17 | Smarter Reality, LLC | Artificial-intelligence enhanced visualization of non-invasive, minimally-invasive and surgical aesthetic medical procedures |
US10805629B2 (en) | 2018-02-17 | 2020-10-13 | Google Llc | Video compression through motion warping using learning-based motion segmentation |
DE112019000049T5 (de) | 2018-02-18 | 2020-01-23 | Nvidia Corporation | Für autonomes fahren geeignete objekterfassung und erfassungssicherheit |
US10628432B2 (en) | 2018-02-19 | 2020-04-21 | Microsoft Technology Licensing, Llc | Personalized deep models for smart suggestions ranking |
US20190266610A1 (en) | 2018-02-21 | 2019-08-29 | Accenture Global Solutions Limited | Transaction management using machine learning and similarity analysis |
US20200380362A1 (en) | 2018-02-23 | 2020-12-03 | Asml Netherlands B.V. | Methods for training machine learning model for computation lithography |
CN110197270B (zh) | 2018-02-27 | 2020-10-30 | 上海寒武纪信息科技有限公司 | 集成电路芯片装置及相关产品 |
KR102022388B1 (ko) | 2018-02-27 | 2019-09-18 | (주)캠시스 | 실세계 물체 정보를 이용한 카메라 공차 보정 시스템 및 방법 |
US10997433B2 (en) | 2018-02-27 | 2021-05-04 | Nvidia Corporation | Real-time detection of lanes and boundaries by autonomous vehicles |
US11501105B2 (en) | 2018-03-02 | 2022-11-15 | Zoox, Inc. | Automatic creation and updating of maps |
US10990832B2 (en) | 2018-03-06 | 2021-04-27 | Phantom AI, Inc. | Lane line reconstruction using future scenes and trajectory |
KR101967339B1 (ko) | 2018-03-06 | 2019-04-09 | 단국대학교 산학협력단 | 심층학습 기반의 adas 센서 고장 진단 및 백업을 위한 장치 및 방법 |
US10223611B1 (en) | 2018-03-08 | 2019-03-05 | Capital One Services, Llc | Object detection using image classification models |
US10621513B2 (en) | 2018-03-08 | 2020-04-14 | Capital One Services, Llc | System and method for deploying and versioning machine learning models |
US10157331B1 (en) | 2018-03-08 | 2018-12-18 | Capital One Services, Llc | Systems and methods for image preprocessing to improve accuracy of object recognition |
US10572757B2 (en) | 2018-03-09 | 2020-02-25 | Ricoh Co., Ltd. | User interface for object detection and labeling |
US10628686B2 (en) | 2018-03-12 | 2020-04-21 | Waymo Llc | Neural networks for object detection and characterization |
US10798368B2 (en) | 2018-03-13 | 2020-10-06 | Lyft, Inc. | Exposure coordination for multiple cameras |
US10755112B2 (en) | 2018-03-13 | 2020-08-25 | Toyota Research Institute, Inc. | Systems and methods for reducing data storage in machine learning |
JP7418340B2 (ja) | 2018-03-13 | 2024-01-19 | マジック リープ, インコーポレイテッド | 機械学習を使用した画像増強深度感知 |
US20190286972A1 (en) | 2018-03-14 | 2019-09-19 | Microsoft Technology Licensing, Llc | Hardware accelerated neural network subgraphs |
US11221413B2 (en) | 2018-03-14 | 2022-01-11 | Uatc, Llc | Three-dimensional object detection |
US20190287028A1 (en) | 2018-03-15 | 2019-09-19 | Arm Ltd. | Systems, devices, and/or processes for behavioral content processing |
KR102329590B1 (ko) | 2018-03-19 | 2021-11-19 | 에스알아이 인터내셔널 | 딥 신경망들의 동적 적응 |
US11429862B2 (en) | 2018-03-20 | 2022-08-30 | Sri International | Dynamic adaptation of deep neural networks |
US11657087B2 (en) | 2018-03-19 | 2023-05-23 | Verily Life Sciences Llc | Surgical video retrieval based on preoperative images |
US10901508B2 (en) | 2018-03-20 | 2021-01-26 | X Development Llc | Fused electroencephalogram and machine learning for precognitive brain-computer interface for computer control |
WO2019183087A1 (en) | 2018-03-20 | 2019-09-26 | Phantom AI, Inc. | Data augmentation using computer simulated objects for autonomous control systems |
US20190294975A1 (en) | 2018-03-21 | 2019-09-26 | Swim.IT Inc | Predicting using digital twins |
WO2019182782A1 (en) | 2018-03-21 | 2019-09-26 | Zoox, Inc. | Generating maps without shadows |
US10699477B2 (en) | 2018-03-21 | 2020-06-30 | Zoox, Inc. | Generating maps without shadows |
US10836379B2 (en) | 2018-03-23 | 2020-11-17 | Sf Motors, Inc. | Multi-network-based path generation for vehicle parking |
US10627818B2 (en) | 2018-03-28 | 2020-04-21 | Zoox, Inc. | Temporal prediction model for semantic intent understanding |
WO2019191578A1 (en) | 2018-03-30 | 2019-10-03 | Wave Computing, Inc. | Data flow graph computation for machine learning |
CN108491889A (zh) | 2018-04-02 | 2018-09-04 | 深圳市易成自动驾驶技术有限公司 | 图像语义分割方法、装置及计算机可读存储介质 |
US10140544B1 (en) | 2018-04-02 | 2018-11-27 | 12 Sigma Technologies | Enhanced convolutional neural network for image segmentation |
US10776939B2 (en) | 2018-04-03 | 2020-09-15 | Altumview Systems Inc. | Obstacle avoidance system based on embedded stereo vision for unmanned aerial vehicles |
US10468062B1 (en) | 2018-04-03 | 2019-11-05 | Zoox, Inc. | Detecting errors in sensor data |
US10887433B2 (en) | 2018-04-03 | 2021-01-05 | Pony Ai Inc. | System and method for incremental data processing |
US20190311290A1 (en) | 2018-04-06 | 2019-10-10 | Mentor Graphics Corporation | Deep Learning Based Test Compression Analyzer |
US10414395B1 (en) | 2018-04-06 | 2019-09-17 | Zoox, Inc. | Feature-based prediction |
US10725475B2 (en) | 2018-04-09 | 2020-07-28 | Toyota Jidosha Kabushiki Kaisha | Machine learning enhanced vehicle merging |
US10769494B2 (en) | 2018-04-10 | 2020-09-08 | Pony Ai Inc. | Enhanced training information generation |
US10740914B2 (en) | 2018-04-10 | 2020-08-11 | Pony Ai Inc. | Enhanced three-dimensional training data generation |
US11132444B2 (en) | 2018-04-16 | 2021-09-28 | International Business Machines Corporation | Using gradients to detect backdoors in neural networks |
CN108520247B (zh) | 2018-04-16 | 2020-04-28 | 腾讯科技(深圳)有限公司 | 对图像中的对象节点的识别方法、装置、终端及可读介质 |
US10816992B2 (en) | 2018-04-17 | 2020-10-27 | Baidu Usa Llc | Method for transforming 2D bounding boxes of objects into 3D positions for autonomous driving vehicles (ADVs) |
CN115393536A (zh) | 2018-04-18 | 2022-11-25 | 移动眼视力科技有限公司 | 利用相机进行车辆环境建模 |
US20200151692A1 (en) | 2018-04-18 | 2020-05-14 | Sbot Technologies, Inc. d/b/a Caper Inc. | Systems and methods for training data generation for object identification and self-checkout anti-theft |
US10321728B1 (en) | 2018-04-20 | 2019-06-18 | Bodygram, Inc. | Systems and methods for full body measurements extraction |
US11030486B2 (en) | 2018-04-20 | 2021-06-08 | XNOR.ai, Inc. | Image classification through label progression |
US11244484B2 (en) | 2018-04-23 | 2022-02-08 | Accenture Global Solutions Limited | AI-driven design platform |
DE102018206208A1 (de) | 2018-04-23 | 2019-10-24 | Robert Bosch Gmbh | Verfahren, Vorrichtung, Erzeugnis und Computerprogramm zum Betreiben eines technischen Systems |
US10565475B2 (en) | 2018-04-24 | 2020-02-18 | Accenture Global Solutions Limited | Generating a machine learning model for objects based on augmenting the objects with physical properties |
CN108549934B (zh) | 2018-04-25 | 2020-06-19 | 福州瑞芯微电子股份有限公司 | 一种基于自动集群神经网络芯片组的运算方法和装置 |
US20190329790A1 (en) | 2018-04-25 | 2019-10-31 | Uber Technologies, Inc. | Systems and Methods for Using Machine Learning to Determine Passenger Ride Experience |
CN108647591A (zh) | 2018-04-25 | 2018-10-12 | 长沙学院 | 一种基于视觉-语义特征的视频中行为识别方法和系统 |
US11138745B2 (en) | 2018-04-30 | 2021-10-05 | Uatc, Llc | Object association for autonomous vehicles |
US11334753B2 (en) | 2018-04-30 | 2022-05-17 | Uatc, Llc | Traffic signal state classification for autonomous vehicles |
US11244195B2 (en) | 2018-05-01 | 2022-02-08 | Adobe Inc. | Iteratively applying neural networks to automatically identify pixels of salient objects portrayed in digital images |
US10803743B2 (en) | 2018-05-02 | 2020-10-13 | Lyft, Inc. | Monitoring ambient light for object detection |
US11494200B2 (en) | 2018-05-02 | 2022-11-08 | Microsoft Technology Licensing, Llc. | Configuring an electronic device using artificial intelligence |
US20190340499A1 (en) | 2018-05-04 | 2019-11-07 | Microsoft Technology Licensing, Llc | Quantization for dnn accelerators |
US10699140B2 (en) | 2018-05-04 | 2020-06-30 | Qualcomm Incorporated | System and method for capture and distribution of information collected from signs |
US11645493B2 (en) | 2018-05-04 | 2023-05-09 | Microsoft Technology Licensing, Llc | Flow for quantized neural networks |
JP7440420B2 (ja) | 2018-05-07 | 2024-02-28 | グーグル エルエルシー | 包括的機械学習サービスを提供するアプリケーション開発プラットフォームおよびソフトウェア開発キット |
CN112088383A (zh) | 2018-05-10 | 2020-12-15 | 松下半导体解决方案株式会社 | 神经网络构筑装置、信息处理装置、神经网络构筑方法及程序 |
US10748021B2 (en) | 2018-05-11 | 2020-08-18 | Samsung Electronics Co., Ltd. | Method of analyzing objects in images recorded by a camera of a head mounted device |
US20190349571A1 (en) | 2018-05-11 | 2019-11-14 | Ford Global Technologies, Llc | Distortion correction for vehicle surround view camera projections |
WO2019220436A2 (en) | 2018-05-14 | 2019-11-21 | BrainVu Ltd. | Driver predictive mental response profile and application to automated vehicle brain interface control |
US10776626B1 (en) | 2018-05-14 | 2020-09-15 | Amazon Technologies, Inc. | Machine learning based identification of visually complementary item collections |
US20190354850A1 (en) | 2018-05-17 | 2019-11-21 | International Business Machines Corporation | Identifying transfer models for machine learning tasks |
US11164016B2 (en) | 2018-05-17 | 2021-11-02 | Uatc, Llc | Object detection and property determination for autonomous vehicles |
US11126873B2 (en) | 2018-05-17 | 2021-09-21 | Zoox, Inc. | Vehicle lighting state determination |
US11301733B2 (en) | 2018-05-18 | 2022-04-12 | Google Llc | Learning data augmentation strategies for object detection |
US11138471B2 (en) | 2018-05-18 | 2021-10-05 | Google Llc | Augmentation of audiographic images for improved machine learning |
CN108710865B (zh) | 2018-05-28 | 2022-04-22 | 电子科技大学 | 一种基于神经网络的司机异常行为检测方法 |
US20190373322A1 (en) | 2018-05-29 | 2019-12-05 | Sony Interactive Entertainment LLC | Interactive Video Content Delivery |
US11491350B2 (en) | 2018-05-30 | 2022-11-08 | Siemens Healthcare Gmbh | Decision support system for individualizing radiotherapy dose |
US20190370575A1 (en) | 2018-05-31 | 2019-12-05 | Uber Technologies, Inc. | Systems and Methods for Implementing Trip Checks for Vehicles |
TWI681366B (zh) | 2018-05-31 | 2020-01-01 | 廣達電腦股份有限公司 | 非線性延展裁切影像之方法及系統 |
US20190370398A1 (en) | 2018-06-01 | 2019-12-05 | SayMosaic Inc. | Method and apparatus for searching historical data |
CN108764185B (zh) | 2018-06-01 | 2022-07-19 | 京东方科技集团股份有限公司 | 一种图像处理方法及装置 |
US11966835B2 (en) * | 2018-06-05 | 2024-04-23 | Nvidia Corp. | Deep neural network accelerator with fine-grained parallelism discovery |
US20190042944A1 (en) | 2018-06-08 | 2019-02-07 | Intel Corporation | Artificial neural network training using flexible floating point tensors |
US11334960B2 (en) | 2018-06-08 | 2022-05-17 | Uatc, Llc | Systems and methods for pipelined processing of sensor data using hardware |
US20190378051A1 (en) | 2018-06-12 | 2019-12-12 | Bank Of America Corporation | Machine learning system coupled to a graph structure detecting outlier patterns using graph scanning |
US20190378049A1 (en) | 2018-06-12 | 2019-12-12 | Bank Of America Corporation | Ensemble of machine learning engines coupled to a graph structure that spreads heat |
US11740630B2 (en) | 2018-06-12 | 2023-08-29 | Skydio, Inc. | Fitness and sports applications for an autonomous unmanned aerial vehicle |
WO2019241022A1 (en) | 2018-06-13 | 2019-12-19 | Nvidia Corporation | Path detection for autonomous machines using deep neural networks |
SG11201811261SA (en) | 2018-06-14 | 2020-01-30 | Beijing Didi Infinity Technology & Development Co Ltd | Systems and methods for updating a high-resolution map based on binocular images |
US11370423B2 (en) | 2018-06-15 | 2022-06-28 | Uatc, Llc | Multi-task machine-learned models for object intention determination in autonomous driving |
US11341356B2 (en) | 2018-06-15 | 2022-05-24 | Uatc, Llc | System and method for determining object intention through visual attributes |
US11048265B2 (en) | 2018-06-18 | 2021-06-29 | Zoox, Inc. | Occlusion aware planning |
JP7422687B2 (ja) | 2018-06-18 | 2024-01-26 | ズークス インコーポレイテッド | オクルージョン認識プランニング |
US10642275B2 (en) | 2018-06-18 | 2020-05-05 | Zoox, Inc. | Occulsion aware planning and control |
US11966838B2 (en) | 2018-06-19 | 2024-04-23 | Nvidia Corporation | Behavior-guided path planning in autonomous machine applications |
US11501140B2 (en) | 2018-06-19 | 2022-11-15 | International Business Machines Corporation | Runtime reconfigurable neural network processor core |
US10726264B2 (en) | 2018-06-25 | 2020-07-28 | Microsoft Technology Licensing, Llc | Object-based localization |
CN108898177A (zh) | 2018-06-26 | 2018-11-27 | 广东电网有限责任公司 | 一种输电线路走廊地表分类方法、系统、介质及设备 |
CN113056390A (zh) | 2018-06-26 | 2021-06-29 | 伊泰·卡茨 | 情境驾驶员监控系统 |
CN108845574B (zh) | 2018-06-26 | 2021-01-12 | 北京旷视机器人技术有限公司 | 目标识别与追踪方法、装置、设备及介质 |
US10685159B2 (en) | 2018-06-27 | 2020-06-16 | Intel Corporation | Analog functional safety with anomaly detection |
US11454975B2 (en) | 2018-06-28 | 2022-09-27 | Uatc, Llc | Providing actionable uncertainties in autonomous vehicles |
US10810445B1 (en) | 2018-06-29 | 2020-10-20 | Zoox, Inc. | Pipeline with point cloud filtering |
US10921817B1 (en) | 2018-06-29 | 2021-02-16 | Zoox, Inc. | Point cloud filtering with semantic segmentation |
CN109086867B (zh) | 2018-07-02 | 2021-06-08 | 武汉魅瞳科技有限公司 | 一种基于fpga的卷积神经网络加速系统 |
US11500477B2 (en) | 2018-07-02 | 2022-11-15 | Google Llc | Systems and methods for interacting and interfacing with an artificial intelligence system |
KR20200004700A (ko) | 2018-07-04 | 2020-01-14 | 삼성전자주식회사 | 뉴럴 네트워크에서 파라미터를 처리하는 방법 및 장치 |
US10685188B1 (en) | 2018-07-06 | 2020-06-16 | Facebook, Inc. | Systems and methods for training machine learning models for language clusters |
US11537906B2 (en) | 2018-07-12 | 2022-12-27 | The Regents Of The University Of California | Machine learning based target localization for autonomous unmanned vehicles |
JP7140580B2 (ja) | 2018-07-13 | 2022-09-21 | マクセル株式会社 | ステレオ撮像装置 |
WO2020018394A1 (en) | 2018-07-14 | 2020-01-23 | Moove.Ai | Vehicle-data analytics |
EP3985684A1 (en) | 2018-07-18 | 2022-04-20 | NVIDIA Corporation | Virtualized computing platform for inferencing, advanced processing, and machine learning applications |
US10901416B2 (en) | 2018-07-19 | 2021-01-26 | Honda Motor Co., Ltd. | Scene creation system for autonomous vehicles and methods thereof |
US11042157B2 (en) | 2018-07-23 | 2021-06-22 | Baidu Usa Llc | Lane/object detection and tracking perception system for autonomous vehicles |
US20200033865A1 (en) | 2018-07-24 | 2020-01-30 | Qualcomm Incorporated | Managing Cleaning Robot Behavior |
US10768629B2 (en) | 2018-07-24 | 2020-09-08 | Pony Ai Inc. | Generative adversarial network enriched driving simulation |
US11636333B2 (en) | 2018-07-26 | 2023-04-25 | Tesla, Inc. | Optimizing neural network structures for embedded systems |
US11353871B2 (en) | 2018-07-30 | 2022-06-07 | Pony Ai Inc. | Systems and methods for vehicle smart seats |
US11284051B2 (en) | 2018-07-30 | 2022-03-22 | Pony Ai Inc. | Systems and methods for autonomous vehicle interactive content presentation |
US20200034665A1 (en) | 2018-07-30 | 2020-01-30 | DataRobot, Inc. | Determining validity of machine learning algorithms for datasets |
WO2020025696A1 (en) | 2018-07-31 | 2020-02-06 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Method and system for augmented imaging using multispectral information |
US11584379B2 (en) | 2018-08-06 | 2023-02-21 | Honda Motor Co., Ltd. | System and method for learning naturalistic driving behavior based on vehicle dynamic data |
US10706308B2 (en) | 2018-08-07 | 2020-07-07 | Accenture Global Solutions Limited | Image processing for automated object identification |
US10609434B2 (en) | 2018-08-07 | 2020-03-31 | Adobe Inc. | Machine-learning based multi-step engagement strategy generation and visualization |
US10733638B1 (en) | 2018-08-08 | 2020-08-04 | Facebook, Inc. | Analyzing tracking requests generated by client devices based on attributes describing items |
US11138350B2 (en) | 2018-08-09 | 2021-10-05 | Zoox, Inc. | Procedural world generation using tertiary data |
WO2020034663A1 (en) | 2018-08-13 | 2020-02-20 | The Hong Kong Polytechnic University | Grid-based image cropping |
US11861458B2 (en) | 2018-08-21 | 2024-01-02 | Lyft, Inc. | Systems and methods for detecting and recording anomalous vehicle events |
US20200065879A1 (en) | 2018-08-22 | 2020-02-27 | Midea Group Co., Ltd. | Methods and systems for home device recommendation |
US10871444B2 (en) | 2018-08-30 | 2020-12-22 | Saudi Arabian Oil Company | Inspection and failure detection of corrosion under fireproofing insulation using a hybrid sensory system |
US10755575B2 (en) | 2018-08-30 | 2020-08-25 | Cisco Technology, Inc. | Raw sensor data sharing for enhanced fleet-wide environmental awareness and safety |
US11521009B2 (en) | 2018-09-04 | 2022-12-06 | Luminar, Llc | Automatically generating training data for a lidar using simulated vehicles in virtual space |
US11307584B2 (en) | 2018-09-04 | 2022-04-19 | Skydio, Inc. | Applications and skills for an autonomous unmanned aerial vehicle |
US10839230B2 (en) | 2018-09-06 | 2020-11-17 | Ford Global Technologies, Llc | Multi-tier network for task-oriented deep neural network |
US20200158822A1 (en) | 2018-09-06 | 2020-05-21 | Airspace Systems, Inc. | Unmanned aerial vehicle radar detection |
WO2020056157A1 (en) | 2018-09-12 | 2020-03-19 | Electra Vehicles, Inc. | Systems and methods for managing energy storage systems |
US11195030B2 (en) | 2018-09-14 | 2021-12-07 | Honda Motor Co., Ltd. | Scene classification |
US11465630B2 (en) | 2018-09-14 | 2022-10-11 | Uatc, Llc | Driving surface friction estimations using vehicle steering |
US11427223B2 (en) | 2018-09-14 | 2022-08-30 | Uatc, Llc | Driving surface friction estimations for autonomous vehicles |
EP3627399B1 (en) | 2018-09-19 | 2024-08-14 | Tata Consultancy Services Limited | Systems and methods for real time configurable recommendation using user data |
GB2577485B (en) | 2018-09-20 | 2022-06-15 | Jaguar Land Rover Ltd | Control system for a vehicle |
US11449771B2 (en) | 2018-09-21 | 2022-09-20 | Woven Planet North America, Inc. | Systems and methods for processing vehicle data |
US10846888B2 (en) | 2018-09-26 | 2020-11-24 | Facebook Technologies, Llc | Systems and methods for generating and transmitting image sequences based on sampled color information |
DE102018216413A1 (de) | 2018-09-26 | 2020-03-26 | Robert Bosch Gmbh | Vorrichtung und Verfahren zur automatischen Bildverbesserung bei Fahrzeugen |
CN109359731B (zh) | 2018-09-27 | 2022-01-28 | 中科物栖(北京)科技有限责任公司 | 一种基于芯片设计缺陷的神经网络处理方法及装置 |
US11526713B2 (en) | 2018-09-28 | 2022-12-13 | Intel Corporation | Embedding human labeler influences in machine learning interfaces in computing environments |
EP3807821A1 (en) | 2018-09-28 | 2021-04-21 | Apple Inc. | Distributed labeling for supervised learning |
US10943101B2 (en) | 2018-09-28 | 2021-03-09 | Accenture Global Solutions Limited | Target recognition and verification using image processing techniques and/or artifical intelligence |
KR102354615B1 (ko) | 2018-09-28 | 2022-01-24 | 바이두닷컴 타임즈 테크놀로지(베이징) 컴퍼니 리미티드 | 자율 주행 차량의 저속 정경을 위한 보행자 상호 작용 시스템 |
US11169531B2 (en) | 2018-10-04 | 2021-11-09 | Zoox, Inc. | Trajectory prediction on top-down scenes |
US11403509B2 (en) | 2018-10-08 | 2022-08-02 | Google Llc | Systems and methods for providing feedback for artificial intelligence-based image capture devices |
CN109389207A (zh) | 2018-10-09 | 2019-02-26 | 四川理工学院 | 一种自适应神经网络学习方法及神经网络系统 |
US11403565B2 (en) | 2018-10-10 | 2022-08-02 | Wipro Limited | Method and system for generating a learning path using machine learning |
KR102545105B1 (ko) | 2018-10-10 | 2023-06-19 | 현대자동차주식회사 | 차량용 허위 타겟 판별 장치 및 그의 허위 타겟 판별 방법과 그를 포함하는 차량 |
US11068724B2 (en) | 2018-10-11 | 2021-07-20 | Baidu Usa Llc | Deep learning continuous lane lines detection system for autonomous vehicles |
US11704568B2 (en) | 2018-10-16 | 2023-07-18 | Carnegie Mellon University | Method and system for hand activity sensing |
US11430025B2 (en) | 2018-10-19 | 2022-08-30 | Airbnb, Inc. | Synthetic data generation modeling system |
US11676244B2 (en) | 2018-10-19 | 2023-06-13 | Mineral Earth Sciences Llc | Crop yield prediction at field-level and pixel-level |
MX2021004475A (es) | 2018-10-19 | 2021-06-04 | Climate Llc | Tecnica de aprendizaje automatico para identificar nubes y sombras de nubes en imagenes satelitales. |
US11163998B2 (en) | 2018-10-22 | 2021-11-02 | Woven Planet North America, Inc. | Systems and methods for automated image labeling for images captured from vehicles |
US11568260B2 (en) | 2018-10-29 | 2023-01-31 | Google Llc | Exponential modeling with deep learning features |
US11055866B2 (en) | 2018-10-29 | 2021-07-06 | Samsung Electronics Co., Ltd | System and method for disparity estimation using cameras with different fields of view |
KR20200052444A (ko) | 2018-10-30 | 2020-05-15 | 삼성전자주식회사 | 신경망을 이용하여 예측 결과를 출력하는 방법, 신경망을 생성하는 방법 및 그 장치들 |
CN109579856A (zh) | 2018-10-31 | 2019-04-05 | 百度在线网络技术(北京)有限公司 | 高精度地图生成方法、装置、设备及计算机可读存储介质 |
US11829143B2 (en) | 2018-11-02 | 2023-11-28 | Aurora Operations, Inc. | Labeling autonomous vehicle data |
US11403492B2 (en) | 2018-11-02 | 2022-08-02 | Aurora Operations, Inc. | Generating labeled training instances for autonomous vehicles |
US11604992B2 (en) | 2018-11-02 | 2023-03-14 | Microsoft Technology Licensing, Llc | Probabilistic neural network architecture generation |
US20200143279A1 (en) | 2018-11-06 | 2020-05-07 | DeepSig Inc. | Radio frequency band segmentation, signal detection and labelling using machine learning |
CN111158355A (zh) | 2018-11-07 | 2020-05-15 | 富华科精密工业(深圳)有限公司 | 自动导航云服务器及自动导航控制方法 |
EP3877867A4 (en) | 2018-11-08 | 2022-07-27 | Evangelos Simoudis | VEHICLE DATA MANAGEMENT SYSTEMS AND METHODS |
US11481665B2 (en) | 2018-11-09 | 2022-10-25 | Hewlett Packard Enterprise Development Lp | Systems and methods for determining machine learning training approaches based on identified impacts of one or more types of concept drift |
US11124185B2 (en) | 2018-11-13 | 2021-09-21 | Zoox, Inc. | Perception collision avoidance |
WO2020101246A1 (en) | 2018-11-13 | 2020-05-22 | Samsung Electronics Co., Ltd. | Joint unsupervised object segmentation and inpainting |
US11461583B2 (en) | 2018-11-16 | 2022-10-04 | Uatc, Llc | Binary feature compression for autonomous devices |
WO2020102733A1 (en) | 2018-11-16 | 2020-05-22 | Nvidia Corporation | Learning to generate synthetic datasets for training neural networks |
US11461963B2 (en) | 2018-11-16 | 2022-10-04 | Uatc, Llc | Systems and methods for generating synthetic light detection and ranging data via machine learning |
US11449713B2 (en) | 2018-11-16 | 2022-09-20 | Uatc, Llc | Attention based feature compression and localization for autonomous devices |
US11217012B2 (en) | 2018-11-16 | 2022-01-04 | Uatc, Llc | System and method for identifying travel way features for autonomous vehicle motion control |
US11755018B2 (en) | 2018-11-16 | 2023-09-12 | Uatc, Llc | End-to-end interpretable motion planner for autonomous vehicles |
US20200162489A1 (en) | 2018-11-16 | 2020-05-21 | Airspace Systems, Inc. | Security event detection and threat assessment |
US11494937B2 (en) | 2018-11-16 | 2022-11-08 | Uatc, Llc | Multi-task multi-sensor fusion for three-dimensional object detection |
US11354820B2 (en) | 2018-11-17 | 2022-06-07 | Uatc, Llc | Image based localization system |
US11346950B2 (en) | 2018-11-19 | 2022-05-31 | Huawei Technologies Co., Ltd. | System, device and method of generating a high resolution and high accuracy point cloud |
US10904072B2 (en) | 2018-11-19 | 2021-01-26 | Accenture Global Solutions Limited | System and method for recommending automation solutions for technology infrastructure issues |
US10853670B2 (en) | 2018-11-21 | 2020-12-01 | Ford Global Technologies, Llc | Road surface characterization using pose observations of adjacent vehicles |
KR102701601B1 (ko) | 2018-11-21 | 2024-09-03 | 삼성전자주식회사 | 영상 처리 장치 및 그 제어방법 |
US11636681B2 (en) | 2018-11-21 | 2023-04-25 | Meta Platforms, Inc. | Anticipating future video based on present video |
US11423196B2 (en) | 2018-11-28 | 2022-08-23 | Toyota Research Institute, Inc. | Systems and methods for predicting responses of a particle to a stimulus |
US10867444B2 (en) | 2018-11-29 | 2020-12-15 | Adobe Inc. | Synthetic data generation for training a machine learning model for dynamic object compositing in scenes |
US11215997B2 (en) | 2018-11-30 | 2022-01-04 | Zoox, Inc. | Probabilistic risk assessment for trajectory evaluation |
US20200175354A1 (en) | 2018-12-03 | 2020-06-04 | Deep Learn, Inc. | Time and accuracy estimate-based selection of machine-learning predictive models |
CN109615073B (zh) | 2018-12-03 | 2021-06-04 | 郑州云海信息技术有限公司 | 一种神经网络模型的构建方法、设备以及存储介质 |
US11816585B2 (en) | 2018-12-03 | 2023-11-14 | Tesla, Inc. | Machine learning models operating at different frequencies for autonomous vehicles |
US11537811B2 (en) | 2018-12-04 | 2022-12-27 | Tesla, Inc. | Enhanced object detection for autonomous vehicles based on field view |
US12093827B2 (en) | 2018-12-04 | 2024-09-17 | Bank Of America Corporation | System and method for self constructing deep neural network design through adversarial learning |
US11093783B2 (en) | 2018-12-05 | 2021-08-17 | Subaru Corporation | Vehicle detection apparatus |
US11048318B2 (en) | 2018-12-06 | 2021-06-29 | Intel Corporation | Reducing microprocessor power with minimal performance impact by dynamically adapting runtime operating configurations using machine learning |
CN113243016A (zh) | 2018-12-10 | 2021-08-10 | 株式会社小糸制作所 | 物体识别系统、运算处理装置、汽车、车辆用灯具、分类器的学习方法 |
CN110084086A (zh) | 2018-12-11 | 2019-08-02 | 安徽江淮汽车集团股份有限公司 | 一种基于视觉传感器的自动驾驶车辆可行驶区域检测方法 |
CN111326023B (zh) | 2018-12-13 | 2022-03-29 | 丰翼科技(深圳)有限公司 | 一种无人机航线预警方法、装置、设备及存储介质 |
US10915783B1 (en) | 2018-12-14 | 2021-02-09 | Amazon Technologies, Inc. | Detecting and locating actors in scenes based on degraded or supersaturated depth data |
US20200193313A1 (en) | 2018-12-14 | 2020-06-18 | Parallel Machines, Inc. | Interpretability-based machine learning adjustment during production |
DE112019006209T5 (de) | 2018-12-14 | 2021-09-02 | Apple Inc. | Maschinenlernunterstützte Bildvorhersage |
US20220028052A1 (en) | 2018-12-14 | 2022-01-27 | Asml Netherlands B.V. | Apparatus and method for grouping image patterns to determine wafer behavior in a patterning process |
US11092966B2 (en) | 2018-12-14 | 2021-08-17 | The Boeing Company | Building an artificial-intelligence system for an autonomous vehicle |
KR20210006971A (ko) | 2018-12-18 | 2021-01-19 | 구글 엘엘씨 | 지오로케이션 예측을 위한 시스템 및 방법 |
US10846831B2 (en) | 2018-12-19 | 2020-11-24 | GM Global Technology Operations LLC | Computing system for rectifying ultra-wide fisheye lens images |
US10937186B2 (en) | 2018-12-19 | 2021-03-02 | Fca Us Llc | Techniques for precisely locating landmarks in monocular camera images with deep learning |
JP7293644B2 (ja) | 2018-12-20 | 2023-06-20 | カシオ計算機株式会社 | 画像識別装置、識別器学習方法、画像識別方法及びプログラム |
US10817732B2 (en) | 2018-12-20 | 2020-10-27 | Trimble Inc. | Automated assessment of collision risk based on computer vision |
US11443515B2 (en) | 2018-12-21 | 2022-09-13 | Ambient AI, Inc. | Systems and methods for machine learning enhanced intelligent building access endpoint security monitoring and management |
US11861481B2 (en) | 2018-12-21 | 2024-01-02 | Waymo Llc | Searching an autonomous vehicle sensor data repository |
CN109978132A (zh) | 2018-12-24 | 2019-07-05 | 中国科学院深圳先进技术研究院 | 一种精细化车辆识别的神经网络方法及系统 |
CN113748315B (zh) | 2018-12-27 | 2024-06-07 | 北京嘀嘀无限科技发展有限公司 | 用于自动车道标记的系统 |
US11023745B2 (en) | 2018-12-27 | 2021-06-01 | Beijing Didi Infinity Technology And Development Co., Ltd. | System for automated lane marking |
WO2020139357A1 (en) | 2018-12-27 | 2020-07-02 | Didi Research America, Llc | Using image pre-processing to generate a machine learning model |
CN109934163B (zh) | 2018-12-27 | 2022-07-08 | 北京航空航天大学 | 一种基于场景先验和特征再融合的航空图像车辆检测方法 |
US11087173B2 (en) | 2018-12-27 | 2021-08-10 | Beijing Didi Infinity Technology And Development Co., Ltd. | Using image pre-processing to generate a machine learning model |
US11170299B2 (en) | 2018-12-28 | 2021-11-09 | Nvidia Corporation | Distance estimation to objects and free-space boundaries in autonomous machine applications |
EP3903243A4 (en) | 2018-12-28 | 2022-08-31 | Telefonaktiebolaget Lm Ericsson (Publ) | WIRELESS DEVICE, NETWORK NODE AND RELATED METHODS FOR UPDATING A FIRST INSTANCE OF A MACHINE LEARNING MODEL |
US20200209874A1 (en) | 2018-12-31 | 2020-07-02 | Chongqing Jinkang New Energy Vehicle, Ltd. | Combined virtual and real environment for autonomous vehicle planning and control testing |
US20200331476A1 (en) | 2018-12-31 | 2020-10-22 | Chongqing Jinkang New Energy Vehicle, Ltd. | Automatic lane change with minimum gap distance |
KR102097120B1 (ko) | 2018-12-31 | 2020-04-09 | 주식회사 애자일소다 | 딥러닝 기반의 자동차 부위별 파손정도 자동 판정 시스템 및 방법 |
US20200210840A1 (en) | 2018-12-31 | 2020-07-02 | Microsoft Technology Licensing, Llc | Adjusting precision and topology parameters for neural network training based on a performance metric |
US20200209857A1 (en) | 2018-12-31 | 2020-07-02 | Uber Technologies, Inc. | Multimodal control system for self driving vehicle |
GB2584268B (en) * | 2018-12-31 | 2021-06-30 | Graphcore Ltd | Load-Store Instruction |
GB2580327B (en) * | 2018-12-31 | 2021-04-28 | Graphcore Ltd | Register files in a multi-threaded processor |
US20200218722A1 (en) | 2019-01-04 | 2020-07-09 | SayMosaic Inc. | System and method for natural language processing (nlp) based searching and question answering |
WO2020146445A1 (en) | 2019-01-08 | 2020-07-16 | Philip Christopher Du Toit | Classifying perceived objects based on activity |
US11294472B2 (en) | 2019-01-11 | 2022-04-05 | Microsoft Technology Licensing, Llc | Augmented two-stage hand gesture input |
CN109886997B (zh) | 2019-01-23 | 2023-07-11 | 平安科技(深圳)有限公司 | 基于目标检测的识别框确定方法、装置及终端设备 |
US10692002B1 (en) | 2019-01-28 | 2020-06-23 | StradVision, Inc. | Learning method and learning device of pedestrian detector for robust surveillance based on image analysis by using GAN and testing method and testing device using the same |
CN109948428B (zh) | 2019-01-28 | 2022-12-09 | 上海理工大学 | 面向传感信息处理的gpu集群深度学习边缘计算系统 |
US10373026B1 (en) | 2019-01-28 | 2019-08-06 | StradVision, Inc. | Learning method and learning device for generation of virtual feature maps whose characteristics are same as or similar to those of real feature maps by using GAN capable of being applied to domain adaptation to be used in virtual driving environments |
CN111488770A (zh) | 2019-01-28 | 2020-08-04 | 初速度(苏州)科技有限公司 | 交通标志识别方法、神经网络模型的训练方法和装置 |
US10628688B1 (en) | 2019-01-30 | 2020-04-21 | Stadvision, Inc. | Learning method and learning device, and testing method and testing device for detecting parking spaces by using point regression results and relationship between points to thereby provide an auto-parking system |
US11087175B2 (en) | 2019-01-30 | 2021-08-10 | StradVision, Inc. | Learning method and learning device of recurrent neural network for autonomous driving safety check for changing driving mode between autonomous driving mode and manual driving mode, and testing method and testing device using them |
US20200242511A1 (en) | 2019-01-30 | 2020-07-30 | Oracle International Corporation | Dynamic Data Selection for a Machine Learning Model |
US10824947B2 (en) | 2019-01-31 | 2020-11-03 | StradVision, Inc. | Learning method for supporting safer autonomous driving without danger of accident by estimating motions of surrounding objects through fusion of information from multiple sources, learning device, testing method and testing device using the same |
US10726279B1 (en) | 2019-01-31 | 2020-07-28 | StradVision, Inc. | Method and device for attention-driven resource allocation by using AVM and reinforcement learning to thereby achieve safety of autonomous driving |
WO2020157761A1 (en) | 2019-01-31 | 2020-08-06 | Amnon Buxboim | Automated evaluation of embryo implantation potential |
US10540572B1 (en) | 2019-01-31 | 2020-01-21 | StradVision, Inc. | Method for auto-labeling training images for use in deep learning network to analyze images with high precision, and auto-labeling device using the same |
US10776673B2 (en) | 2019-01-31 | 2020-09-15 | StradVision, Inc. | Learning method and learning device for sensor fusion to integrate information acquired by radar capable of distance estimation and information acquired by camera to thereby improve neural network for supporting autonomous driving, and testing method and testing device using the same |
US10943355B2 (en) | 2019-01-31 | 2021-03-09 | Uatc, Llc | Systems and methods for detecting an object velocity |
US11150664B2 (en) | 2019-02-01 | 2021-10-19 | Tesla, Inc. | Predicting three-dimensional features for autonomous driving |
US11317863B2 (en) | 2019-02-01 | 2022-05-03 | Starkey Laboratories, Inc. | Efficient wellness measurement in ear-wearable devices |
BR112021015306A2 (pt) | 2019-02-05 | 2021-10-05 | Urugus S.A. | Método e sistema para transferir automaticamente conhecimento em algoritmos de aprendizado por máquina |
US10984575B2 (en) | 2019-02-06 | 2021-04-20 | Snap Inc. | Body pose estimation |
EP3924971A1 (en) | 2019-02-11 | 2021-12-22 | Flagship Pioneering Innovations VI, LLC | Machine learning guided polypeptide analysis |
US11635767B2 (en) | 2019-02-13 | 2023-04-25 | Semyon Nisenzon | System and method of using multi-resolution camera clusters input data for controlling autonomous vehicles |
US10568570B1 (en) | 2019-02-14 | 2020-02-25 | Trungram Gyaltrul Sherpa | Methods and systems for providing a preferred fitness state of a user |
US10726374B1 (en) | 2019-02-19 | 2020-07-28 | Icertis, Inc. | Risk prediction based on automated analysis of documents |
US10956755B2 (en) | 2019-02-19 | 2021-03-23 | Tesla, Inc. | Estimating object properties using visual image data |
US11977388B2 (en) | 2019-02-21 | 2024-05-07 | Nvidia Corporation | Quantizing autoencoders in a neural network |
US10970911B2 (en) | 2019-02-21 | 2021-04-06 | Facebook Technologies, Llc | Graphics processing chip with machine-learning based shader |
US11635764B2 (en) | 2019-02-22 | 2023-04-25 | Uatc, Llc. | Motion prediction for autonomous devices |
CN109902732B (zh) | 2019-02-22 | 2021-08-27 | 哈尔滨工业大学(深圳) | 车辆自动分类方法及相关装置 |
US11562176B2 (en) | 2019-02-22 | 2023-01-24 | Cisco Technology, Inc. | IoT fog as distributed machine learning structure search platform |
WO2020176442A1 (en) | 2019-02-25 | 2020-09-03 | Walmart Apollo, Llc | Systems and methods of product recognition through multi-model image processing |
US11710034B2 (en) | 2019-02-27 | 2023-07-25 | Intel Corporation | Misuse index for explainable artificial intelligence in computing environments |
EP3932105A1 (en) | 2019-02-27 | 2022-01-05 | Telefonaktiebolaget LM Ericsson (publ) | Transfer learning for radio resource management |
WO2020176304A1 (en) | 2019-02-28 | 2020-09-03 | Skidmore Owings & Merrill Llp | Machine learning tool for structures |
CN110223301B (zh) | 2019-03-01 | 2021-08-03 | 华为技术有限公司 | 一种图像裁剪方法和电子设备 |
CN109949257B (zh) | 2019-03-06 | 2021-09-10 | 西安电子科技大学 | 基于深度学习的感兴趣区域压缩感知图像重构方法 |
US10949997B2 (en) | 2019-03-08 | 2021-03-16 | Ford Global Technologies, Llc | Vehicle localization systems and methods |
US10930065B2 (en) | 2019-03-08 | 2021-02-23 | X Development Llc | Three-dimensional modeling with two dimensional data |
CN109978161B (zh) | 2019-03-08 | 2022-03-04 | 吉林大学 | 一种通用的卷积-池化同步处理卷积核系统 |
US11648945B2 (en) | 2019-03-11 | 2023-05-16 | Nvidia Corporation | Intersection detection and classification in autonomous machine applications |
CN109902186B (zh) | 2019-03-12 | 2021-05-11 | 北京百度网讯科技有限公司 | 用于生成神经网络的方法和装置 |
US20200294162A1 (en) | 2019-03-13 | 2020-09-17 | Opendoor Labs Inc. | Value prediction error generation system |
AU2019201716A1 (en) | 2019-03-13 | 2020-10-01 | Canon Kabushiki Kaisha | System and method of generating a neural network architecture |
US11483370B2 (en) | 2019-03-14 | 2022-10-25 | Hewlett-Packard Development Company, L.P. | Preprocessing sensor data for machine learning |
US11983909B2 (en) | 2019-03-14 | 2024-05-14 | Hewlett-Packard Development Company, L.P. | Responding to machine learning requests from multiple clients |
CN116569211A (zh) | 2019-03-15 | 2023-08-08 | 辉达公司 | 使用变换训练神经网络的技术 |
CN109975308B (zh) | 2019-03-15 | 2023-03-24 | 维库(厦门)信息技术有限公司 | 一种基于深度学习的表面检测方法 |
CN109871828B (zh) | 2019-03-15 | 2022-12-02 | 京东方科技集团股份有限公司 | 视频识别方法和识别装置、存储介质 |
US11468582B2 (en) | 2019-03-16 | 2022-10-11 | Nvidia Corporation | Leveraging multidimensional sensor data for computationally efficient object detection for autonomous machine applications |
JP7399164B2 (ja) | 2019-03-16 | 2023-12-15 | エヌビディア コーポレーション | 駐車スペース検出に適したスキューされたポリゴンを使用した物体検出 |
US11580386B2 (en) | 2019-03-18 | 2023-02-14 | Electronics And Telecommunications Research Institute | Convolutional layer acceleration unit, embedded system having the same, and method for operating the embedded system |
EP3942752A1 (en) | 2019-03-19 | 2022-01-26 | Liveperson, Inc. | Dynamic communications routing to disparate endpoints |
US10402641B1 (en) | 2019-03-19 | 2019-09-03 | Capital One Services, Llc | Platform for document classification |
US20200302288A1 (en) | 2019-03-20 | 2020-09-24 | Gyrfalcon Technology Inc. | Using output equalization in training an artificial intelligence model in a semiconductor solution |
US11559221B2 (en) | 2019-03-22 | 2023-01-24 | Siemens Healthcare Gmbh | Multi-task progressive networks for patient modeling for medical scans |
JP7240916B2 (ja) | 2019-03-22 | 2023-03-16 | ソニーセミコンダクタソリューションズ株式会社 | 情報処理装置、情報処理方法、および情報処理プログラム |
US11548533B2 (en) | 2019-03-23 | 2023-01-10 | Uatc, Llc | Perception and motion prediction for autonomous devices |
CA3134819A1 (en) | 2019-03-23 | 2020-10-01 | Uatc, Llc | Systems and methods for generating synthetic sensor data via machine learning |
US20200302662A1 (en) | 2019-03-23 | 2020-09-24 | Uatc, Llc | System and Methods for Generating High Definition Maps Using Machine-Learned Models to Analyze Topology Data Gathered From Sensors |
WO2020198119A1 (en) | 2019-03-23 | 2020-10-01 | Uatc, Llc | Depth estimation for autonomous devices |
US11021148B2 (en) | 2019-03-25 | 2021-06-01 | Zoox, Inc. | Pedestrian prediction based on attributes |
CN113632096A (zh) | 2019-03-25 | 2021-11-09 | 祖克斯有限公司 | 基于属性的行人预测 |
US11351991B2 (en) | 2019-03-25 | 2022-06-07 | Zoox, Inc. | Prediction based on attributes |
US10790919B1 (en) | 2019-03-26 | 2020-09-29 | Electronic Arts Inc. | Personalized real-time audio generation based on user physiological response |
CN109951710B (zh) | 2019-03-26 | 2021-07-02 | 中国民航大学 | 基于深度学习的机坪监控视频压缩方法及系统 |
US11199415B2 (en) | 2019-03-26 | 2021-12-14 | Lyft, Inc. | Systems and methods for estimating vehicle position based on contextual sensor information |
US11276216B2 (en) | 2019-03-27 | 2022-03-15 | Electronic Arts Inc. | Virtual animal character generation from image or video data |
US11740335B2 (en) | 2019-03-27 | 2023-08-29 | Zoox, Inc. | Identifying and/or removing false positive detections from LIDAR sensor output |
US10657934B1 (en) | 2019-03-27 | 2020-05-19 | Electronic Arts Inc. | Enhancements for musical composition applications |
US10953334B2 (en) | 2019-03-27 | 2021-03-23 | Electronic Arts Inc. | Virtual character generation from image or video data |
US20220126878A1 (en) | 2019-03-29 | 2022-04-28 | Intel Corporation | Autonomous vehicle system |
US11709495B2 (en) | 2019-03-29 | 2023-07-25 | SafeAI, Inc. | Systems and methods for transfer of material using autonomous machines with reinforcement learning and visual servo control |
US10661902B1 (en) | 2019-03-29 | 2020-05-26 | QuantumID Technologies Inc | Artificial intelligence system for estimating excess non-sapient payload capacity on mixed-payload aeronautic excursions |
US20200311601A1 (en) | 2019-03-29 | 2020-10-01 | Optum, Inc. | Hybrid rule-based and machine learning predictions |
US11877801B2 (en) | 2019-04-02 | 2024-01-23 | Medicrea International | Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures |
US10559386B1 (en) | 2019-04-02 | 2020-02-11 | Kpn Innovations, Llc | Methods and systems for an artificial intelligence support network for vibrant constituional guidance |
WO2020198779A1 (en) | 2019-04-04 | 2020-10-08 | Presagen Pty Ltd | Method and system for selecting embryos |
US11250062B2 (en) | 2019-04-04 | 2022-02-15 | Kpn Innovations Llc | Artificial intelligence methods and systems for generation and implementation of alimentary instruction sets |
CN111797657A (zh) | 2019-04-09 | 2020-10-20 | Oppo广东移动通信有限公司 | 车辆周边障碍检测方法、装置、存储介质及电子设备 |
US11636380B2 (en) | 2019-04-09 | 2023-04-25 | Nxp B.V. | Method for protecting a machine learning model against extraction using an ensemble of a plurality of machine learning models |
EP3722992B1 (en) | 2019-04-10 | 2023-03-01 | Teraki GmbH | System and method for pre-processing images captured by a vehicle |
US10943132B2 (en) | 2019-04-10 | 2021-03-09 | Black Sesame International Holding Limited | Distant on-road object detection |
US11410303B2 (en) | 2019-04-11 | 2022-08-09 | Agilent Technologies Inc. | Deep learning based instance segmentation via multiple regression layers |
CN109961491B (zh) | 2019-04-12 | 2023-05-26 | 上海联影医疗科技股份有限公司 | 多模态图像截断补偿方法、装置、计算机设备和介质 |
US11588760B2 (en) | 2019-04-12 | 2023-02-21 | Asapp, Inc. | Initialization of automated workflows |
US10928508B2 (en) | 2019-04-12 | 2021-02-23 | Ford Global Technologies, Llc | Camera and radar fusion |
EP3725354B1 (en) | 2019-04-15 | 2023-04-12 | Nxp B.V. | Audio controller |
US20200327449A1 (en) | 2019-04-15 | 2020-10-15 | Accenture Global Solutions Limited | User retention platform |
JP2020173744A (ja) | 2019-04-15 | 2020-10-22 | 株式会社日立製作所 | 機械学習を用いた画像処理方式,およびそれを用いた電子制御装置 |
US11790171B2 (en) | 2019-04-16 | 2023-10-17 | Covera Health | Computer-implemented natural language understanding of medical reports |
JP7188255B2 (ja) | 2019-04-16 | 2022-12-13 | 富士通株式会社 | 学習方法、学習プログラムおよび学習装置 |
CN109901595A (zh) | 2019-04-16 | 2019-06-18 | 山东大学 | 一种基于单目摄像头和树莓派的自动驾驶系统及方法 |
US11809993B2 (en) | 2019-04-18 | 2023-11-07 | Google Llc | Systems and methods for determining graph similarity |
US11126890B2 (en) | 2019-04-18 | 2021-09-21 | Adobe Inc. | Robust training of large-scale object detectors with a noisy dataset |
US10893070B2 (en) | 2019-04-18 | 2021-01-12 | Facebook, Inc. | Detecting a page for a real-world entity, an imposter of a real-world entity, or a non-real-world entity that complies with or violates a policy of an online system |
CN110060202B (zh) | 2019-04-19 | 2021-06-08 | 湖北亿咖通科技有限公司 | 一种单目slam算法的初始化方法及系统 |
KR20230019263A (ko) | 2019-04-23 | 2023-02-07 | 딥시그 인크. | 머신-러닝 네트워크를 이용한 통신 신호들의 프로세싱 |
US20200342968A1 (en) | 2019-04-24 | 2020-10-29 | GE Precision Healthcare LLC | Visualization of medical device event processing |
US11257272B2 (en) | 2019-04-25 | 2022-02-22 | Lucid VR, Inc. | Generating synthetic image data for machine learning |
JP7472170B2 (ja) | 2019-04-26 | 2024-04-22 | エヌビディア コーポレーション | 自律マシン・アプリケーションにおける交差点姿勢検出 |
CN110175671B (zh) | 2019-04-28 | 2022-12-27 | 华为技术有限公司 | 神经网络的构建方法、图像处理方法及装置 |
CN110111340B (zh) | 2019-04-28 | 2021-05-14 | 南开大学 | 基于多路割的弱监督实例分割方法 |
US11176493B2 (en) | 2019-04-29 | 2021-11-16 | Google Llc | Virtualizing external memory as local to a machine learning accelerator |
GB2583509B (en) | 2019-05-01 | 2023-02-22 | Advanced Risc Mach Ltd | System and method for fault detection and correction |
US10789402B1 (en) | 2019-05-01 | 2020-09-29 | Xilinx, Inc. | Compiler and hardware abstraction layer architecture for a neural network accelerator |
US10475208B1 (en) | 2019-05-02 | 2019-11-12 | Capital One Services, Llc | Vehicle analysis platform |
US10924661B2 (en) | 2019-05-02 | 2021-02-16 | International Business Machines Corporation | Generating image capture configurations and compositions |
US11556615B2 (en) | 2019-05-03 | 2023-01-17 | Tesla, Inc. | Data path for scalable matrix node engine with mixed data formats |
US11557392B2 (en) | 2019-05-03 | 2023-01-17 | Gyrus Acmi, Inc. | Context and state aware treatment room efficiency |
CN110135485A (zh) | 2019-05-05 | 2019-08-16 | 浙江大学 | 单目相机与毫米波雷达融合的物体识别与定位方法和系统 |
US11556861B2 (en) | 2019-05-06 | 2023-01-17 | Google Llc | Debugging correctness issues in training machine learning models |
US11461664B2 (en) | 2019-05-07 | 2022-10-04 | Kpn Innovations, Llc. | Methods and systems for an artificial intelligence alimentary professional support network for vibrant constitutional guidance |
US10949684B2 (en) | 2019-05-08 | 2021-03-16 | Ford Global Technologies, Llc | Vehicle image verification |
US10832418B1 (en) | 2019-05-09 | 2020-11-10 | Zoox, Inc. | Object velocity from images |
CN110334801A (zh) | 2019-05-09 | 2019-10-15 | 苏州浪潮智能科技有限公司 | 一种卷积神经网络的硬件加速方法、装置、设备及系统 |
US20200356107A1 (en) | 2019-05-10 | 2020-11-12 | Uber Technologies, Inc. | Walkway Detection for Autonomous Light Electric Vehicle |
EP3739486A1 (en) | 2019-05-14 | 2020-11-18 | CrowdStrike, Inc. | Applications of machine learning models to a binary search engine based on an inverted index of byte sequences |
US20200364508A1 (en) | 2019-05-14 | 2020-11-19 | Nvidia Corporation | Using decay parameters for inferencing with neural networks |
CN110069071B (zh) | 2019-05-15 | 2022-06-14 | 深圳铂石空间科技有限公司 | 无人机导航方法与装置、存储介质、电子设备 |
US11263467B2 (en) | 2019-05-15 | 2022-03-01 | Apical Limited | Image processing |
US11701771B2 (en) | 2019-05-15 | 2023-07-18 | Nvidia Corporation | Grasp generation using a variational autoencoder |
US11475277B2 (en) | 2019-05-16 | 2022-10-18 | Google Llc | Accurate and interpretable classification with hard attention |
US11869037B2 (en) | 2019-05-17 | 2024-01-09 | gStore LLC | Integrating content-delivery platforms into programmatic environments generated by executed applications |
KR102071179B1 (ko) | 2019-05-20 | 2020-01-29 | 주식회사 루닛 | 데이터 셋의 연속적인 학습 방법 및 장치 |
KR102043143B1 (ko) | 2019-05-20 | 2019-11-11 | 호서대학교 산학협력단 | 인공신경망을 이용한 agv 주행제어 방법 및 장치 |
US20200372402A1 (en) | 2019-05-24 | 2020-11-26 | Bank Of America Corporation | Population diversity based learning in adversarial and rapid changing environments |
US11610142B2 (en) | 2019-05-28 | 2023-03-21 | Ati Technologies Ulc | Safety monitor for image misclassification |
US11803981B2 (en) | 2019-05-30 | 2023-10-31 | Mobileye Vision Technologies Ltd. | Vehicle environment modeling with cameras |
CN110225341B (zh) | 2019-06-03 | 2020-08-28 | 中国科学技术大学 | 一种任务驱动的码流结构化图像编码方法 |
KR20200142266A (ko) | 2019-06-12 | 2020-12-22 | (주)리터너블 | 객체 인식 시스템 및 이를 사용한 객체 인식 방법 |
US11928557B2 (en) | 2019-06-13 | 2024-03-12 | Lyft, Inc. | Systems and methods for routing vehicles to capture and evaluate targeted scenarios |
US11823460B2 (en) | 2019-06-14 | 2023-11-21 | Tusimple, Inc. | Image fusion for autonomous vehicle operation |
US11113568B2 (en) | 2019-06-14 | 2021-09-07 | Canon Kabushiki Kaisha | Devices, systems, and methods for device-error analysis using computer vision and machine learning |
US11494930B2 (en) | 2019-06-17 | 2022-11-08 | SafeAI, Inc. | Techniques for volumetric estimation |
KR20220024718A (ko) | 2019-06-18 | 2022-03-03 | 몰로코, 인크. | 머신 러닝 서비스를 제공하기 위한 방법 및 시스템 |
CN112101562B (zh) | 2019-06-18 | 2024-01-30 | 第四范式(北京)技术有限公司 | 机器学习建模过程的实现方法和系统 |
US20200402155A1 (en) | 2019-06-20 | 2020-12-24 | Bank Of America Corporation | Systems for providing real-time resource distribution to a resource event having standard delayed resource availability |
US11501109B2 (en) | 2019-06-20 | 2022-11-15 | Western Digital Technologies, Inc. | Non-volatile memory die with on-chip data augmentation components for use with machine learning |
US11087463B2 (en) | 2019-06-21 | 2021-08-10 | StraxCorp Pty. Ltd. | Image analysis method and system for assessing bone fragility |
US11192558B2 (en) | 2019-06-24 | 2021-12-07 | Here Global B.V. | Method, apparatus, and system for providing road curvature data |
CN114008685A (zh) | 2019-06-25 | 2022-02-01 | 辉达公司 | 用于自主机器应用的路口区域检测和分类 |
CN110310264B (zh) | 2019-06-25 | 2021-07-20 | 北京邮电大学 | 一种基于dcnn的大尺度目标检测方法、装置 |
US20200410288A1 (en) | 2019-06-26 | 2020-12-31 | Here Global B.V. | Managed edge learning in heterogeneous environments |
US11158056B2 (en) | 2019-06-26 | 2021-10-26 | Intel Corporation | Surround camera system with seamless stitching for arbitrary viewpoint selection |
US11170567B2 (en) | 2019-06-28 | 2021-11-09 | Woven Planet North America, Inc. | Dynamic object detection model based on static map collection data |
US11163990B2 (en) | 2019-06-28 | 2021-11-02 | Zoox, Inc. | Vehicle control system and method for pedestrian detection based on head detection in sensor data |
DE102019209565A1 (de) | 2019-06-28 | 2020-12-31 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Überprüfen der Robustheit eines künstlichen neuronalen Netzes |
US11657094B2 (en) | 2019-06-28 | 2023-05-23 | Meta Platforms Technologies, Llc | Memory grounded conversational reasoning and question answering for assistant systems |
WO2020264010A1 (en) | 2019-06-28 | 2020-12-30 | Zoox, Inc. | Low variance region detection for improved detection |
US20210006835A1 (en) | 2019-07-01 | 2021-01-07 | Microsoft Technology Licensing, Llc | Blurring to improve visual quality in an area of interest in a frame |
CN110414362A (zh) | 2019-07-02 | 2019-11-05 | 安徽继远软件有限公司 | 基于生成式对抗网络的电力图像数据增广方法 |
US11113689B2 (en) | 2019-07-03 | 2021-09-07 | Sap Se | Transaction policy audit |
US11467588B2 (en) | 2019-07-03 | 2022-10-11 | Denso International America, Inc. | Systems and methods for controlling an autonomous vehicle using target orientated artificial intelligence |
KR20210004306A (ko) | 2019-07-04 | 2021-01-13 | 삼성전자주식회사 | 뉴럴 네트워크 장치 및 뉴럴 네트워크의 파라미터 양자화 방법 |
US11023749B2 (en) | 2019-07-05 | 2021-06-01 | Zoox, Inc. | Prediction on top-down scenes based on action data |
US11681925B2 (en) | 2019-07-08 | 2023-06-20 | Vianai Systems, Inc. | Techniques for creating, analyzing, and modifying neural networks |
US11475675B2 (en) | 2019-07-08 | 2022-10-18 | Uatc, Llc | Systems and methods for identifying unknown instances |
CN110321965B (zh) | 2019-07-10 | 2021-06-18 | 腾讯科技(深圳)有限公司 | 物体重识别模型的训练方法、物体重识别的方法及装置 |
US11829896B2 (en) | 2019-07-11 | 2023-11-28 | Ghost Autonomy Inc. | Uncertainty-based data filtering in a vehicle |
US20210011908A1 (en) | 2019-07-11 | 2021-01-14 | Ghost Locomotion Inc. | Model-based structured data filtering in an autonomous vehicle |
US20210012239A1 (en) | 2019-07-12 | 2021-01-14 | Microsoft Technology Licensing, Llc | Automated generation of machine learning models for network evaluation |
US11379287B2 (en) | 2019-07-17 | 2022-07-05 | Factualvr, Inc. | System and method for error detection and correction in virtual reality and augmented reality environments |
US11191342B2 (en) | 2019-07-18 | 2021-12-07 | L'oreal | Techniques for identifying skin color in images having uncontrolled lighting conditions |
CN110473173A (zh) | 2019-07-24 | 2019-11-19 | 熵智科技(深圳)有限公司 | 一种基于深度学习语义分割的缺陷检测方法 |
US10893107B1 (en) | 2019-07-25 | 2021-01-12 | Amazon Technologies, Inc. | Techniques for managing processing resources |
US11941976B2 (en) | 2019-07-25 | 2024-03-26 | Pony Ai Inc. | System and method for sharing data collected from the street sensors |
CN110599537A (zh) | 2019-07-25 | 2019-12-20 | 中国地质大学(武汉) | 基于Mask R-CNN的无人机图像建筑物面积计算方法及系统 |
US20210030276A1 (en) | 2019-07-29 | 2021-02-04 | DawnLight Technologies Inc. | Remote Health Monitoring Systems and Method |
CN112308095A (zh) | 2019-07-30 | 2021-02-02 | 顺丰科技有限公司 | 图片预处理及模型训练方法、装置、服务器及存储介质 |
US11200456B2 (en) | 2019-07-31 | 2021-12-14 | GE Precision Healthcare LLC | Systems and methods for generating augmented training data for machine learning models |
CN110399875A (zh) | 2019-07-31 | 2019-11-01 | 山东浪潮人工智能研究院有限公司 | 一种基于深度学习与像素投影的通用表格信息提取方法 |
US11182903B2 (en) | 2019-08-05 | 2021-11-23 | Sony Corporation | Image mask generation using a deep neural network |
CN110426051B (zh) | 2019-08-05 | 2021-05-18 | 武汉中海庭数据技术有限公司 | 一种车道线绘制方法、装置及存储介质 |
US11449709B2 (en) | 2019-08-08 | 2022-09-20 | Nvidia Corporation | Domain restriction of neural networks through synthetic data pre-training |
US11531883B2 (en) | 2019-08-12 | 2022-12-20 | Bank Of America Corporation | System and methods for iterative synthetic data generation and refinement of machine learning models |
US11537880B2 (en) | 2019-08-12 | 2022-12-27 | Bank Of America Corporation | System and methods for generation of synthetic data cluster vectors and refinement of machine learning models |
US11348339B2 (en) | 2019-08-13 | 2022-05-31 | Uatc, Llc | Association and tracking for autonomous devices |
US11593753B2 (en) | 2019-08-13 | 2023-02-28 | United Parcel Service Of America, Inc. | Multi-phase consolidation optimization tool |
US11556992B2 (en) | 2019-08-14 | 2023-01-17 | Royal Bank Of Canada | System and method for machine learning architecture for enterprise capitalization |
US11634162B2 (en) | 2019-08-16 | 2023-04-25 | Uatc, Llc. | Full uncertainty for motion planning in autonomous vehicles |
CN110543837B (zh) | 2019-08-16 | 2022-03-15 | 北京航空航天大学 | 一种基于潜在目标点的可见光机场飞机检测方法 |
US11302009B2 (en) | 2019-08-19 | 2022-04-12 | Fotonation Limited | Method of image processing using a neural network |
US11144754B2 (en) | 2019-08-19 | 2021-10-12 | Nvidia Corporation | Gaze detection using one or more neural networks |
US11594036B2 (en) | 2019-08-21 | 2023-02-28 | Micron Technology, Inc. | Advanced driver-assistance system (ADAS) operation utilizing algorithmic skyline detection |
US11232110B2 (en) | 2019-08-23 | 2022-01-25 | Capital One Services, Llc | Natural language keyword tag extraction |
CN110516665A (zh) | 2019-08-23 | 2019-11-29 | 上海眼控科技股份有限公司 | 识别图像叠加文字区域的神经网络模型构建方法与系统 |
CN110619283B (zh) | 2019-08-26 | 2023-01-10 | 海南撰云空间信息技术有限公司 | 一种无人机正射影像道路自动提取方法 |
CN110619282B (zh) | 2019-08-26 | 2023-01-10 | 海南撰云空间信息技术有限公司 | 一种无人机正射影像建筑物自动提取方法 |
CN110569899B (zh) | 2019-09-03 | 2022-06-10 | 嘉陵江亭子口水利水电开发有限公司 | 坝面缺陷分类模型训练方法及装置 |
CN110619330A (zh) | 2019-09-18 | 2019-12-27 | 上海眼控科技股份有限公司 | 识别模型的训练方法、装置、计算机设备及识别方法 |
CN110751280A (zh) | 2019-09-19 | 2020-02-04 | 华中科技大学 | 一种应用于卷积神经网络的可配置卷积加速器 |
US20210089316A1 (en) * | 2019-09-25 | 2021-03-25 | Intel Corporation | Deep learning implementations using systolic arrays and fused operations |
US11726950B2 (en) * | 2019-09-28 | 2023-08-15 | Intel Corporation | Compute near memory convolution accelerator |
CN110659628A (zh) | 2019-10-09 | 2020-01-07 | 山东浪潮人工智能研究院有限公司 | 一种基于深度学习的煤矿监控视频解压缩方法及系统 |
CN110599864A (zh) | 2019-10-28 | 2019-12-20 | 苏州智行众维智能科技有限公司 | 一种基于室内交通场景模拟传感器建模和验证装置及方法 |
CN110826566B (zh) | 2019-11-01 | 2022-03-01 | 北京环境特性研究所 | 一种基于深度学习的目标切片提取方法 |
US10819923B1 (en) | 2019-11-19 | 2020-10-27 | Waymo Llc | Thermal imaging for self-driving cars |
CN110966991B (zh) | 2019-11-21 | 2021-07-02 | 中国人民解放军国防科技大学 | 一种无控制点下的单幅无人机影像定位方法 |
CN110956185B (zh) | 2019-11-21 | 2023-04-18 | 大连理工大学人工智能大连研究院 | 一种图像显著目标的检测方法 |
CN111307162B (zh) | 2019-11-25 | 2020-09-25 | 奥特酷智能科技(南京)有限公司 | 用于自动驾驶场景的多传感器融合定位方法 |
DE102019008316A1 (de) | 2019-11-29 | 2020-08-13 | Daimler Ag | Verfahren zur Objekterkennung und Abstandsbestimmung |
CN111126453B (zh) | 2019-12-05 | 2022-05-03 | 重庆邮电大学 | 基于注意力机制和切割填充的细粒度图像分类方法及系统 |
CN110688992B (zh) | 2019-12-09 | 2020-08-04 | 中智行科技有限公司 | 交通信号识别方法、装置、车辆导航设备和无人驾驶车辆 |
CN111027549A (zh) | 2019-12-10 | 2020-04-17 | 北京服装学院 | 一种针对女上装关键点识别方法 |
CN111027575B (zh) | 2019-12-13 | 2022-06-17 | 广西师范大学 | 一种自注意对抗学习的半监督语义分割方法 |
US10902551B1 (en) | 2019-12-17 | 2021-01-26 | X Development Llc | True positive transplant |
US11536574B2 (en) | 2019-12-27 | 2022-12-27 | Intel Corporation | System and method for acceleration-based vector field maps |
US10796355B1 (en) | 2019-12-27 | 2020-10-06 | Capital One Services, Llc | Personalized car recommendations based on customer web traffic |
US10732261B1 (en) | 2019-12-31 | 2020-08-04 | Aurora Innovation, Inc. | Generating data using radar observation model based on machine learning |
CN111062973B (zh) | 2019-12-31 | 2021-01-01 | 西安电子科技大学 | 基于目标特征敏感性和深度学习的车辆跟踪方法 |
CN111047225B (zh) | 2020-01-10 | 2021-03-23 | 惠州光弘科技股份有限公司 | 一种基于边缘侧模型处理的smt表面组装组件焊点的质量评定方法 |
US11341170B2 (en) | 2020-01-10 | 2022-05-24 | Hearst Magazine Media, Inc. | Automated extraction, inference and normalization of structured attributes for product data |
CN111275618B (zh) | 2020-01-12 | 2023-09-29 | 杭州电子科技大学 | 一种基于双支感知的深度图超分辨率重建网络构建方法 |
CN111275080B (zh) | 2020-01-14 | 2021-01-08 | 腾讯科技(深圳)有限公司 | 基于人工智能的图像分类模型训练方法、分类方法及装置 |
US10845943B1 (en) | 2020-02-14 | 2020-11-24 | Carmax Business Services, Llc | Systems and methods for generating a 360-degree viewing experience |
CN111275129B (zh) | 2020-02-17 | 2024-08-20 | 平安科技(深圳)有限公司 | 一种图像数据的增广策略选取方法及系统 |
CN111461110B (zh) | 2020-03-02 | 2023-04-28 | 华南理工大学 | 一种基于多尺度图像和加权融合损失的小目标检测方法 |
CN111598095B (zh) | 2020-03-09 | 2023-04-07 | 浙江工业大学 | 一种基于深度学习的城市道路场景语义分割方法 |
CN111444821B (zh) | 2020-03-24 | 2022-03-25 | 西北工业大学 | 一种城市道路标志自动识别方法 |
US11455793B2 (en) | 2020-03-25 | 2022-09-27 | Intel Corporation | Robust object detection and classification using static-based cameras and events-based cameras |
US11597393B2 (en) | 2020-03-26 | 2023-03-07 | Intel Corporation | Systems, methods, and devices for driving control |
US11586854B2 (en) | 2020-03-26 | 2023-02-21 | Intel Corporation | Devices and methods for accurately identifying objects in a vehicle's environment |
US11568655B2 (en) | 2020-03-26 | 2023-01-31 | Intel Corporation | Methods and devices for triggering vehicular actions based on passenger actions |
US11886968B2 (en) | 2020-03-27 | 2024-01-30 | Intel Corporation | Methods and devices for detecting objects and calculating a time to contact in autonomous driving systems |
CN111445420B (zh) | 2020-04-09 | 2023-06-06 | 北京爱芯科技有限公司 | 卷积神经网络的图像运算方法、装置和电子设备 |
CN111461053B (zh) | 2020-04-13 | 2023-05-23 | 安徽大学 | 基于迁移学习的多个生育期小麦倒伏区域识别系统 |
CN111461052B (zh) | 2020-04-13 | 2023-05-23 | 安徽大学 | 基于迁移学习的多个生育期小麦倒伏区域识别方法 |
CN111539514B (zh) | 2020-04-16 | 2023-06-06 | 北京百度网讯科技有限公司 | 用于生成神经网络的结构的方法和装置 |
CN111428943B (zh) | 2020-04-23 | 2021-08-03 | 福瑞泰克智能系统有限公司 | 障碍物车辆轨迹预测的方法、设备和计算机设备 |
KR102189262B1 (ko) | 2020-04-29 | 2020-12-11 | 주식회사 글로벌브릿지 | 엣지 컴퓨팅을 이용한 교통 정보 수집 장치 및 방법 |
CN111565318A (zh) | 2020-05-06 | 2020-08-21 | 中国科学院重庆绿色智能技术研究院 | 一种基于稀疏样本的视频压缩方法 |
CN111582216B (zh) | 2020-05-15 | 2023-08-04 | 安徽师范大学 | 一种无人驾驶车载交通信号灯识别系统及方法 |
CN111693972B (zh) | 2020-05-29 | 2022-11-15 | 东南大学 | 一种基于双目序列图像的车辆位置与速度估计方法 |
CN111783545A (zh) | 2020-06-02 | 2020-10-16 | 山西潞安环保能源开发股份有限公司五阳煤矿 | 一种基于生成对抗网络的煤矿无人机图像增强方法 |
CN111767801B (zh) | 2020-06-03 | 2023-06-16 | 中国地质大学(武汉) | 一种基于深度学习的遥感影像水域自动提取方法及系统 |
CN111814623A (zh) | 2020-06-29 | 2020-10-23 | 浙江工业大学 | 一种基于深度神经网络的车辆车道偏离视觉检测方法 |
CN111860499B (zh) | 2020-07-01 | 2022-07-12 | 电子科技大学 | 一种基于特征分组的双线性卷积神经网络的汽车品牌识别方法 |
CN111783971B (zh) | 2020-07-02 | 2024-04-09 | 上海赛昉科技有限公司 | 一种用于深度神经网络的可高度灵活配置的数据后处理器 |
CN111882579B (zh) | 2020-07-03 | 2024-08-09 | 湖南爱米家智能科技有限公司 | 基于深度学习和目标跟踪的大输液异物检测方法、系统、介质及设备 |
CN111899227A (zh) | 2020-07-06 | 2020-11-06 | 北京交通大学 | 基于无人机作业的铁路扣件缺陷自动采集辨识方法 |
CN111768002B (zh) | 2020-07-10 | 2021-06-22 | 南开大学 | 一种基于弹性有效位的深度神经网络量化方法 |
CN111814902A (zh) | 2020-07-21 | 2020-10-23 | 南方电网数字电网研究院有限公司 | 目标检测模型训练方法、目标识别方法、装置和介质 |
CN111898507B (zh) | 2020-07-22 | 2022-06-03 | 武汉大学 | 一种预测无标签遥感影像地表覆盖类别的深度学习方法 |
CN111898523A (zh) | 2020-07-29 | 2020-11-06 | 电子科技大学 | 一种基于迁移学习的遥感图像特种车辆目标检测方法 |
CN111897639B (zh) | 2020-07-29 | 2022-12-27 | 平安科技(深圳)有限公司 | 图像增广方法、装置、计算机设备及存储介质 |
CN111899245B (zh) | 2020-07-30 | 2021-03-09 | 推想医疗科技股份有限公司 | 图像分割、模型的训练方法及装置,电子设备及存储介质 |
CN111881856B (zh) | 2020-07-31 | 2023-01-31 | 蚂蚁胜信(上海)信息技术有限公司 | 基于图像的车辆定损方法和装置 |
CN112101175B (zh) | 2020-09-09 | 2024-05-10 | 沈阳帝信人工智能产业研究院有限公司 | 基于局部图像的高速公路车辆检测及多属性特征提取方法 |
CN112115953B (zh) | 2020-09-18 | 2023-07-11 | 南京工业大学 | 一种基于rgb-d相机结合平面检测与随机抽样一致算法的优化orb算法 |
CN112232497A (zh) | 2020-10-12 | 2021-01-15 | 苏州浪潮智能科技有限公司 | 一种编译ai芯片的方法、系统、设备及介质 |
CN112329552B (zh) | 2020-10-16 | 2023-07-14 | 爱驰汽车(上海)有限公司 | 基于汽车的障碍物检测方法及装置 |
CN112348783B (zh) | 2020-10-27 | 2022-08-05 | 基建通(三亚)国际科技有限公司 | 基于图像的人物识别方法、装置及计算机可读存储介质 |
CN112183739B (zh) | 2020-11-02 | 2022-10-04 | 中国科学技术大学 | 基于忆阻器的低功耗脉冲卷积神经网络的硬件架构 |
CN112308799A (zh) | 2020-11-05 | 2021-02-02 | 山东交通学院 | 基于多传感器海上道路复杂环境能见度优化屏幕显示方法 |
CN112288658B (zh) | 2020-11-23 | 2023-11-28 | 杭州师范大学 | 一种基于多残差联合学习的水下图像增强方法 |
-
2017
- 2017-09-20 US US15/710,433 patent/US10671349B2/en active Active
-
2018
- 2018-07-19 KR KR1020227000842A patent/KR102452757B1/ko active IP Right Grant
- 2018-07-19 WO PCT/US2018/042959 patent/WO2019023046A1/en unknown
- 2018-07-19 KR KR1020227034432A patent/KR102557589B1/ko active IP Right Grant
- 2018-07-19 KR KR1020207004841A patent/KR102353241B1/ko active Application Filing
- 2018-07-19 KR KR1020237024159A patent/KR20230113408A/ko not_active Application Discontinuation
- 2018-07-19 CA CA3070972A patent/CA3070972C/en active Active
- 2018-07-19 CN CN201880058445.1A patent/CN111095241B/zh active Active
- 2018-07-19 EP EP23186914.0A patent/EP4258182A3/en active Pending
- 2018-07-19 EP EP18839417.5A patent/EP3659051B1/en active Active
- 2018-07-19 MX MX2020000952A patent/MX2020000952A/es unknown
- 2018-07-19 CN CN202311150134.7A patent/CN117171480A/zh active Pending
- 2018-07-19 JP JP2020503780A patent/JP7009609B2/ja active Active
-
2020
- 2020-01-24 MX MX2023010407A patent/MX2023010407A/es unknown
- 2020-05-29 US US16/887,784 patent/US11403069B2/en active Active
-
2022
- 2022-01-11 JP JP2022002202A patent/JP7374236B2/ja active Active
- 2022-07-29 US US17/816,234 patent/US11698773B2/en active Active
-
2023
- 2023-05-31 US US18/326,864 patent/US20230305808A1/en active Pending
- 2023-10-23 JP JP2023181667A patent/JP2023179768A/ja active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5014235A (en) * | 1987-12-15 | 1991-05-07 | Steven G. Morton | Convolution memory |
EP0586025A2 (en) * | 1992-07-06 | 1994-03-09 | Robinson, Mark R. | Reliable noninvasive measurement of blood gases |
WO1994010638A1 (en) * | 1992-11-05 | 1994-05-11 | The Commonwealth Of Australia | Scalable dimensionless array |
US5717947A (en) * | 1993-03-31 | 1998-02-10 | Motorola, Inc. | Data processing system and method thereof |
US6061521A (en) * | 1996-12-02 | 2000-05-09 | Compaq Computer Corp. | Computer having multimedia operations executable as two distinct sets of operations within a single instruction cycle |
US5918062A (en) * | 1997-10-23 | 1999-06-29 | Advanced Micro Devices, Inc. | Microprocessor including an efficient implemention of an accumulate instruction |
US20040091135A1 (en) * | 2002-11-07 | 2004-05-13 | Bourg Wilfred M. | Method for on-line machine vision measurement, monitoring and control of product features during on-line manufacturing processes |
US20120017066A1 (en) * | 2003-07-24 | 2012-01-19 | Martin Vorbach | Low latency massive parallel data processing device |
US20110239032A1 (en) * | 2008-12-04 | 2011-09-29 | Canon Kabushiki Kaisha | Convolution operation circuit and object recognition apparatus |
CN102771176A (zh) * | 2010-02-23 | 2012-11-07 | 捷讯研究有限公司 | 使用运动信息在无线通信网络中进行机会通信调度的方法和装置 |
CA2769788A1 (en) * | 2011-03-23 | 2012-09-23 | Trusted Positioning Inc. | Methods of attitude and misalignment estimation for constraint free portable navigation |
US20170060811A1 (en) * | 2015-04-28 | 2017-03-02 | Intel Corporation | Matrix operands for linear algebra operations |
US20160342891A1 (en) * | 2015-05-21 | 2016-11-24 | Google Inc. | Neural Network Processor |
US20160351195A1 (en) * | 2015-05-27 | 2016-12-01 | Intel Corporation | Gaussian mixture model accelerator with direct memory access engines corresponding to individual data streams |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112966729A (zh) * | 2021-02-26 | 2021-06-15 | 成都商汤科技有限公司 | 一种数据处理方法、装置、计算机设备及存储介质 |
CN112966729B (zh) * | 2021-02-26 | 2023-01-31 | 成都商汤科技有限公司 | 一种数据处理方法、装置、计算机设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3659051A1 (en) | 2020-06-03 |
MX2020000952A (es) | 2020-07-22 |
WO2019023046A1 (en) | 2019-01-31 |
MX2023010407A (es) | 2023-09-18 |
KR20220140028A (ko) | 2022-10-17 |
US10671349B2 (en) | 2020-06-02 |
US20210048984A1 (en) | 2021-02-18 |
KR102353241B1 (ko) | 2022-01-19 |
JP7374236B2 (ja) | 2023-11-06 |
CA3070972C (en) | 2023-09-12 |
CN117171480A (zh) | 2023-12-05 |
JP2020528621A (ja) | 2020-09-24 |
EP4258182A2 (en) | 2023-10-11 |
KR20200027011A (ko) | 2020-03-11 |
JP2022064892A (ja) | 2022-04-26 |
US11698773B2 (en) | 2023-07-11 |
JP7009609B2 (ja) | 2022-01-25 |
US20190026078A1 (en) | 2019-01-24 |
KR20220007709A (ko) | 2022-01-18 |
EP3659051B1 (en) | 2023-08-30 |
EP4258182A3 (en) | 2024-01-03 |
US11403069B2 (en) | 2022-08-02 |
JP2023179768A (ja) | 2023-12-19 |
EP3659051A4 (en) | 2021-04-14 |
KR102557589B1 (ko) | 2023-07-20 |
CA3070972A1 (en) | 2019-01-31 |
US20230305808A1 (en) | 2023-09-28 |
US20220365753A1 (en) | 2022-11-17 |
KR102452757B1 (ko) | 2022-10-11 |
KR20230113408A (ko) | 2023-07-28 |
CN111095241B (zh) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111095241B (zh) | 加速数学引擎 | |
CN111465924B (zh) | 用于将矩阵输入转换为矩阵处理器的向量化输入的系统和方法 | |
CN103092562B (zh) | 控制移位分组数据的位校正的装置 | |
CN103294446B (zh) | 一种定点乘累加器 | |
EP3093757B1 (en) | Multi-dimensional sliding window operation for a vector processor | |
KR20200081044A (ko) | 뉴럴 네트워크의 컨볼루션 연산을 처리하는 방법 및 장치 | |
Managuli et al. | Mapping of two-dimensional convolution on very long instruction word media processors for real-time performance | |
EP1936492A1 (en) | SIMD processor with reduction unit | |
US9569218B2 (en) | Decomposing operations in more than one dimension into one dimensional point operations | |
WO2013100926A1 (en) | Memory cell array with dedicated nanoprocessors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: Texas, USA Applicant after: TESLA, Inc. Address before: California, USA Applicant before: TESLA, Inc. |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |