CN111087247A - 抑制陶瓷材料晶粒长大的方法及其应用 - Google Patents

抑制陶瓷材料晶粒长大的方法及其应用 Download PDF

Info

Publication number
CN111087247A
CN111087247A CN202010003947.3A CN202010003947A CN111087247A CN 111087247 A CN111087247 A CN 111087247A CN 202010003947 A CN202010003947 A CN 202010003947A CN 111087247 A CN111087247 A CN 111087247A
Authority
CN
China
Prior art keywords
ceramic material
powder
nanopowder
mixed powder
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010003947.3A
Other languages
English (en)
Other versions
CN111087247B (zh
Inventor
杨志宾
史明亮
葛奔
靳现林
雷泽
雷启龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology Beijing CUMTB
Shenhua New Energy Co Ltd
Original Assignee
China University of Mining and Technology Beijing CUMTB
Shenhua New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology Beijing CUMTB, Shenhua New Energy Co Ltd filed Critical China University of Mining and Technology Beijing CUMTB
Priority to CN202010003947.3A priority Critical patent/CN111087247B/zh
Publication of CN111087247A publication Critical patent/CN111087247A/zh
Application granted granted Critical
Publication of CN111087247B publication Critical patent/CN111087247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种抑制陶瓷材料晶粒长大的方法及其应用。本发明提供的抑制陶瓷材料晶粒长大的方法包括将1)陶瓷材料的纳米粉体与微米粉体混合,得到混合粉体;2)将所述混合粉体制备成坯体;3)将所述坯体煅烧,得到所述陶瓷材料。采用本发明的方法制备的陶瓷材料有利于烧结致密化,抑制晶粒长大,同时提高材料的性能和强度。

Description

抑制陶瓷材料晶粒长大的方法及其应用
技术领域
本发明涉及一种抑制陶瓷材料晶粒长大的方法及其应用。
背景技术
能源和环境是全人类在21世纪中面临的重大课题。近年来,混合电导钙钛矿以及萤石矿陶瓷材料引起了化学、材料及物理等领域的科研工作者的广泛关注。其中混合电导钙钛矿陶瓷材料可以用作透氧膜材料和固体氧化物燃料电池的电极、连接体材料,萤石矿陶瓷材料可以应用于固体氧化物燃料电池的电解质材料,二者均具有很好的发展前景。
这两类材料应用时均需要在保证致密度基础上要有均匀的小晶粒。高温下,粉体的致密化与材料性能和工艺过程等因素有关,如粉体反应活性、纯度、形态、坯体密度、温度、时间、气氛等。但是如果采用纳米粉体则成本很高,不适宜工业化。如果采用固相合成方法制备的微米粉体再通过高能球磨,同样增加成本。直接采用微米粉体高温烧结后很难制备小晶粒的致密瓷体。已知的是有人采用加入助烧剂降低烧结温度,也有人加入其它种类的抑制剂抑制晶粒长大,但这两种方法都有可能由于其它种类粉体的加入影响性能。
发明内容
针对上述情况,本发明提出了一种制备微晶粒致密陶瓷材料的方法。这种方法可以通过采用加入少量同种纳米粉体材料抑制陶瓷晶粒长大,并保证材料的致密度。
在第一方面,本发明提供了一种抑制陶瓷材料晶粒长大的方法,其包括以下步骤:
1)将陶瓷材料的纳米粉体与微米粉体混合,得到混合粉体;
2)将所述混合粉体制备成坯体;
3)将所述坯体煅烧,得到所述陶瓷材料。
根据本发明的一些实施方式,所述纳米粉体与微米粉体来自于同种陶瓷材料。
根据本发明的一些实施方式,所述纳米粉体的粒径为1-100nm,例如5nm、15nm、25nm、35nm、45nm、55nm、65nm、75nm、85nm、95nm。
根据本发明的优选实施方式,所述纳米粉体的粒径为1-50nm。
根据本发明的优选实施方式,所述纳米粉体的粒径为2-20nm。
根据本发明的一些实施方式,所述微米粉体的粒径为0.1-100μm,例如1μm、5μm、15μm、25μm、35μm、45μm、55μm、65μm、75μm、85μm、95μm。
根据本发明的优选实施方式,所述微米粉体的粒径为0.1-50μm。
根据本发明的优选实施方式,所述微米粉体的粒径为1-20μm。
根据本发明的一些实施方式,所述纳米粉体占混合粉体总量的0.1wt%-99.9wt%,例如0.5wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%、10wt%、20wt%、30wt%、40wt%、50wt%、60wt%、70wt%、80wt%、90wt%。
根据本发明的优选实施方式,所述纳米粉体占混合粉体总量的0.1wt%-50wt%。
根据本发明的优选实施方式,所述纳米粉体占混合粉体总量的0.1wt%-5wt%。
根据本发明的一些实施方式,步骤1)中,通过球磨法将陶瓷材料的纳米粉体与微米粉体混合。
根据本发明的一些实施方式,步骤1)中,所述混合的时间为10-30h。
根据本发明的优选实施方式,步骤1)中,所述混合的时间为20-30h。
根据本发明的一些实施方式,步骤2)中,所述混合粉体通过选自压制、流延和挤出中的任意一种方式制备成坯体。
根据本发明的一些实施方式,所述煅烧的温度为500-1600℃。
根据本发明的优选实施方式,所述煅烧的温度为1000-1350℃。
根据本发明的一些实施方式,所述煅烧的时间为2-10h。
根据本发明的一些实施方式,所述陶瓷材料的化学组成为A′1-xA″xB′1-yB″yO3-δ,其中,A′和A″不同,各自独立地选自镧系元素,B′和B″不同,各自独立地选自第三周期、第四周期、第五周期元素,0≤x≤1,0≤y≤1。
根据本发明的优选实施方式,A′和A″不同,各自独立地选自La、Pr、Sr、Gd、Yb、Ce和Sm。
根据本发明的优选实施方式,B′和B″不同,各自独立地选自Y、Zr、Sc、Ga和Mg。
根据本发明的一些实施方式,所述陶瓷材料选自3-20mol%Y2O3稳定的ZrO2、3-20mol%Sc2O3稳定的ZrO2(SSZ)、GdxCe1-xO2-δ(GDC)、SmxCe1-xO2-δ(SDC)、YxCe1-xO2-δ(YDC)、LaxCe1-xO2-δ(LDC)、La1-xSrxGa1-yMgyO3-δ(LSGM)和Ba1-z(Ce0.7Zr0.1Y0.2-wYbw)O3-δ(BZCYYb)中的至少一种,其中0<x<1,0<y<1,0≤w≤0.2,0≤z≤0.2。
在第二方面,本发明提供了一种根据第一方面所述的方法得到的陶瓷材料。
根据本发明的一些实施方式,所述陶瓷材料的晶粒的粒径为0.1-10μm。
根据本发明的优选实施方式,所述陶瓷材料的晶粒的粒径为0.3-1μm。
在第三方面,本发明提供了一种根据第一方面所述的方法得到的陶瓷材料或根据第二方面所述的陶瓷材料在透氧膜材料或燃料电池中电解质和连接体材料中的应用。
根据本发明的一些实施方式,所述燃料电池为固体氧化物燃料电池。
本发明提供了一种通过采用加入少量同种纳米粉体材料抑制陶瓷晶粒长大的方法。根据本发明的一组实施例,对比了直接采用微米级粉体制备钙钛矿陶瓷材料与采用加入同种少量纳米级粉体在同样烧结制度下制备的钙钛矿陶瓷材料微观结构图。结果显示,其中加入同种少量纳米粉体烧结后,晶粒明显减小。采用此种方法制备的陶瓷材料有利于烧结致密化,抑制晶粒长大,同时提高材料的性能和强度。
附图说明
图1为根据实施例1制备的陶瓷材料的微观结构图。
图2为根据对比例1制备的陶瓷材料的微观结构图。
具体实施方式
下面结合实施例,进一步说明本发明。
实施例1
加入5wt%纳米La0.7Ca0.3Cr0.95Zn0.05O3-δ(LCCZ)粉体(粒径为2-20nm)与95wt%微米级LCCZ粉体(粒径为1-20μm)采用行星球磨机混合球磨24小时,取出烘干,然后采用压机在200MPa压力下干压后,在马弗炉中1300℃烧结5h,制备得到陶瓷材料。所得陶瓷材料的晶粒粒径平均为0.3-1μm,其微观结构图如图1所示。
对比例1
同样条件下,采用微米级La0.7Ca0.3Cr0.95Zn0.05O3-δ(LCCZ)粉体(粒径为1-20μm)干压后、1300℃烧结5h制备的陶瓷材料。所得陶瓷材料的晶粒粒径平均为0.5-10μm,其微观结构图如图2所示。
根据图1和图2所示,对比直接采用微米级粉体制备钙钛矿陶瓷材料与采用加入同种少量纳米级粉体在同样烧结制度下制备的钙钛矿陶瓷材料微观结构图,结果显示,在其中加入同种少量纳米粉体烧结后,晶粒明显减小。
应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。

Claims (10)

1.一种抑制陶瓷材料晶粒长大的方法,其包括以下步骤:
1)将陶瓷材料的纳米粉体与微米粉体混合,得到混合粉体;
2)将所述混合粉体制备成坯体;
3)将所述坯体煅烧,得到所述陶瓷材料。
2.根据权利要求1所述的方法,其特征在于,所述纳米粉体与微米粉体来自于同种陶瓷材料。
3.根据权利要求1或2所述的方法,其特征在于,所述纳米粉体的粒径为1-100nm,优选为1-50nm,更优选为2-20nm;和/或所述微米粉体的粒径为0.1-100μm,优选为0.1-50μm,更优选为1-20μm。
4.根据权利要求1-3中任一项所述的方法,其特征在于,所述纳米粉体占混合粉体总量的0.1wt%-99.9wt%,优选为0.1-50wt%,更优选为0.1wt%-5wt%。
5.根据权利要求1-4中任一项所述的方法,其特征在于,步骤1)中,通过球磨法将陶瓷材料的纳米粉体与微米粉体混合,优选地,所述混合的时间为10-30h,更优选为20-30h;和/或
步骤2)中,通过选自压制、流延和挤出中的任意一种方式将所述混合粉体制备成坯体。
6.根据权利要求1-5中任一项所述的方法,其特征在于,所述煅烧的温度为500-1600℃,优选为1000-1350℃;时间为2-10小时。
7.根据权利要求1-6中任一项所述的方法,其特征在于,所述陶瓷材料的化学组成为A′1-xA″xB′1-yB″yO3-δ,其中,A′和A″不同,各自独立地选自镧系元素,优选选自La、Pr、Sr、Gd、Yb、Ce和Sm;B′和B″不同,各自独立地选自第三周期、第四周期、第五周期元素,优选选自Y、Zr、Sc、Ga和Mg;其中0≤x≤1,0≤y≤1。
8.根据权利要求1-7中任一项所述的方法,其特征在于,所述陶瓷材料选自3-20mol%Y2O3稳定的ZrO2、3-20mol%Sc2O3稳定的ZrO2、GdxCe1-xO2-δ、SmxCe1-xO2-δ、YxCe1-xO2-δ、LaxCe1- xO2-δ、La1-xSrxGa1-yMgyO3-δ和Ba1-z(Ce0.7Zr0.1Y0.2-wYbw)O3-δ中的至少一种,其中0<x<1,0<y<1,0≤w≤0.2,0≤z≤0.2。
9.一种根据权利要求1-8中任一项所述的方法得到的陶瓷材料,其特征在于,所述陶瓷材料的晶粒的粒径为0.1-10μm,优选为0.3-1μm。
10.一种根据权利要求1-8中任一项所述的方法得到的陶瓷材料或根据权利要求9所述的陶瓷材料在透氧膜材料或燃料电池中电解质和连接体材料中的应用。
CN202010003947.3A 2020-01-03 2020-01-03 抑制陶瓷材料晶粒长大的方法及其应用 Active CN111087247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010003947.3A CN111087247B (zh) 2020-01-03 2020-01-03 抑制陶瓷材料晶粒长大的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010003947.3A CN111087247B (zh) 2020-01-03 2020-01-03 抑制陶瓷材料晶粒长大的方法及其应用

Publications (2)

Publication Number Publication Date
CN111087247A true CN111087247A (zh) 2020-05-01
CN111087247B CN111087247B (zh) 2022-12-09

Family

ID=70399567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010003947.3A Active CN111087247B (zh) 2020-01-03 2020-01-03 抑制陶瓷材料晶粒长大的方法及其应用

Country Status (1)

Country Link
CN (1) CN111087247B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113955796A (zh) * 2021-12-03 2022-01-21 中材人工晶体研究院有限公司 一种驰豫铁电单晶生长用原料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101172857A (zh) * 2006-11-01 2008-05-07 北京理工大学 一种纳米-微米双尺度晶粒复合pzt压电陶瓷的制备方法
CN101279840A (zh) * 2008-05-13 2008-10-08 山东大学 一种氧化铝-碳化钨钛纳米复合陶瓷材料的制备方法
CN105036751A (zh) * 2015-09-06 2015-11-11 哈尔滨工业大学 一种采用微纳米粒径级配制备陶瓷的方法
CN105669205A (zh) * 2014-11-17 2016-06-15 中国科学院上海硅酸盐研究所 以颗粒级配粉体为原料制备致密固相烧结碳化硅的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101172857A (zh) * 2006-11-01 2008-05-07 北京理工大学 一种纳米-微米双尺度晶粒复合pzt压电陶瓷的制备方法
CN101279840A (zh) * 2008-05-13 2008-10-08 山东大学 一种氧化铝-碳化钨钛纳米复合陶瓷材料的制备方法
CN105669205A (zh) * 2014-11-17 2016-06-15 中国科学院上海硅酸盐研究所 以颗粒级配粉体为原料制备致密固相烧结碳化硅的方法
CN105036751A (zh) * 2015-09-06 2015-11-11 哈尔滨工业大学 一种采用微纳米粒径级配制备陶瓷的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113955796A (zh) * 2021-12-03 2022-01-21 中材人工晶体研究院有限公司 一种驰豫铁电单晶生长用原料的制备方法
CN113955796B (zh) * 2021-12-03 2024-01-19 中材人工晶体研究院有限公司 一种驰豫铁电单晶生长用原料的制备方法

Also Published As

Publication number Publication date
CN111087247B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
EP2521209B1 (en) Composite ceramic material and a production method therefor
JP5583582B2 (ja) 細長い粒子を含む粉末および固体酸化物燃料電池の電極を製造するためのその使用
JP2007529852A5 (zh)
JP2007529852A (ja) サーメット電解質を用いたアノード支持固体酸化物燃料電池
AU2006280812A1 (en) Nickel oxide powder material for solid oxide fuel cell, production process thereof, raw material composition for use in the same, and anode material using the nickel oxide powder material
AU2008207640A1 (en) Composite electrodes
EP2377192A2 (en) Reduction-oxidation-tolerant electrodes for solid oxide fuel cells
KR20090023254A (ko) 중합된 무기-유기 전구체 용액
Murphy et al. Tape casting of lanthanum chromite
JP2018190730A (ja) プロトン伝導性酸化物燃料電池の製造方法
JP2015504588A (ja) 固体酸化物燃料電池品および形成方法
KR101307560B1 (ko) 스핀 코팅 공정과 저온 소결에 의한 중저온형 고체 산화물 연료전지 구조 및 그 제조공정
JP5031187B2 (ja) 固体酸化物形燃料電池用燃料極および固体酸化物形燃料電池
CN111087247A (zh) 抑制陶瓷材料晶粒长大的方法及其应用
JP2007200664A (ja) 固体電解質型燃料電池の製造方法
KR101872475B1 (ko) 전해질용 소결체의 제조방법 및 이를 이용한 연료전지용 전해질
JP2003208902A (ja) 固体電解質型燃料電池
JP3729194B2 (ja) 固体酸化物形燃料電池
JP4889166B2 (ja) 低温焼結性固体電解質材料、電解質電極接合体及びこれを用いた固体酸化物形燃料電池
JP2003217597A (ja) 固体電解質型燃料電池
JP2006040822A (ja) 多孔質混合伝導体およびその製造方法および固体酸化物形燃料電池の空気極材料
JP4192733B2 (ja) 固体酸化物形燃料電池
JP3254456B2 (ja) 固体電解質型燃料電池の製造方法
JP2734768B2 (ja) 固体電解質型燃料電池の製造方法
JP2004303713A (ja) 固体酸化物形燃料電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant