CN111068682A - 一种生物质基碳材料负载单原子铜催化剂及其制备方法和用途 - Google Patents

一种生物质基碳材料负载单原子铜催化剂及其制备方法和用途 Download PDF

Info

Publication number
CN111068682A
CN111068682A CN201911371223.8A CN201911371223A CN111068682A CN 111068682 A CN111068682 A CN 111068682A CN 201911371223 A CN201911371223 A CN 201911371223A CN 111068682 A CN111068682 A CN 111068682A
Authority
CN
China
Prior art keywords
biomass
carbon material
based carbon
catalyst
copper catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911371223.8A
Other languages
English (en)
Other versions
CN111068682B (zh
Inventor
杨勇
任鹏
宋涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Original Assignee
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Institute of Bioenergy and Bioprocess Technology of CAS filed Critical Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority to CN201911371223.8A priority Critical patent/CN111068682B/zh
Publication of CN111068682A publication Critical patent/CN111068682A/zh
Application granted granted Critical
Publication of CN111068682B publication Critical patent/CN111068682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/269Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of only halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • C07C29/34Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/127Preparation from compounds containing pyridine rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/08Hydrogen atoms or radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J1/00Normal steroids containing carbon, hydrogen, halogen or oxygen, not substituted in position 17 beta by a carbon atom, e.g. estrane, androstane
    • C07J1/0051Estrane derivatives
    • C07J1/0081Substituted in position 17 alfa and 17 beta
    • C07J1/0088Substituted in position 17 alfa and 17 beta the substituent in position 17 alfa being an unsaturated hydrocarbon group
    • C07J1/0096Alkynyl derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种生物质基碳材料负载单原子铜催化剂及其制备方法,以及一种采用该催化剂氧化偶联合成1,3‑二炔类化合物的方法。所述该催化剂组成为:金属单原子铜的含量为0.01wt%~3wt%,碳基载体含量为70wt%~90wt%,杂原子含量为5wt%~20wt%。根据本发明的生物质基载体负载单原子铜催化剂制备方法简单,条件温和,成本低廉,无需常见的后续酸洗过程。使用廉价金属盐与自掺杂的杂原子N协同配位,避免高温热解过程中金属的聚集,实现金属原子的单分散。金属单原子含量高,分散均匀,物化结构稳定。此催化剂在氧化偶联反应中能以空气为氧化剂,无碱,无配体条件下达到高的转化率和优异的底物普适性,实现了芳基‑芳基,芳基‑烷基和烷基‑烷基不同取代的底物之间的氧化交叉偶联反应。

Description

一种生物质基碳材料负载单原子铜催化剂及其制备方法和 用途
技术领域
本发明属于催化有机合成领域,具体涉及一种利用生物质基氮掺杂碳材料负载金属铜单原子的催化剂,及其制备方法,和该催化剂在催化氧化偶联合成1,3-二炔类化合物用途。
背景技术
1,3-二炔类化合物大量存在于自然界中,己经成功地从植物、真菌、细菌、昆虫和海洋生物中被提取出来。1,3-二炔结构具有刚性的结构单元和独特的电子性质,是一类重要的结构单元和子结构,广泛应用于有机合成、医药生产和材料开发等领域。它是一种重要的有机合成中间体,可用于线性共轭乙炔低聚物、包含杂环化合物和烯烃的大分子化合物的合成。1,3-二炔类化合物具有卓越的生物活性和药用价值,常用于抗真菌、抗艾滋病、抗菌和抗癌药物中。1,3-二炔类化合物作为一种普遍存在的结构基序,可用于聚合物、液晶、有机发光导电材料、功能高分子材料、超分子材料的合成。因此,近年来这类反应越来越受到人们的重视。
多年来,人们对1,3-二炔类化合物的合成做出了相当大的贡献。最常采用的策略是1869年首次报道的铜催化末端炔(Glaser-Hay反应)氧化偶联生成1,3-二炔,钯和铜盐作为催化剂,其主要缺点是对不对称1,3-二炔类化合物的化学选择性差,导致大量副产物的产生。在合成1,3-二炔类化合物的过程中,另一个里程碑式的贡献是基于Cadiot-Chodkiewicz反应,然而,其需要多步反应序列和预功能化的不稳定前体,如1-卤代炔烃。近十年来,一些改进的Glaser-Hay反应方法方面取得了大的进展,获得了良好的官能团耐受性和良好的选择性,但仍旧需要配体或者胺碱的存在,常用的有Et3N、吡啶、TMEDA、KOH、K2CO3、Na2CO3等。考虑到在反应中添加碱会加快反应器腐蚀,并可能会造成环境污染。而且需要昂贵的传统氧化剂的加入。因此开发一种在温和条件下无碱无配体参与且空气就可作为氧化剂的反应存在一定的理论和实际意义。
单原子催化剂金属原子利用率最高,催化活性位点几何结构均一,能够很好地鉴定催化活性中心,并且具有不饱和的配位环境。这些特性赋予了单原子催化剂优越的催化性能,使其成为催化领域的研究热点。它架起了均相催化和多相催化之间的桥梁,催化活性媲美均相催化剂,但又可回收利用。然而单原子由于其比表面能大,容易迁移团聚,使得其在合成上存在诸多挑战。设计制备具有高活性、高选择性和高稳定性的新型单原子催化剂,逐渐引起了研究者广泛的关注。
杂原子掺杂碳材料由于其独特的性质,如大比表面积,高孔隙率,良好的电子传导性,以及热稳定性和机械稳定性,可作为单原子催化剂的良好载体。现已被广泛用于催化,吸附,药物控制释放等方面。从绿色和可持续的角度来看,廉价和环境友好型生物质的杂原子掺杂碳材料最近引起了相当大的关注,因为生物质是天然可再生的,丰富的,廉价的并且其所含的氨基酸或多肽富含碳,氧和氮。适当的条件下,自掺杂的N可以掺入碳骨架中作为金属物种的理想锚定位点,进而稳定单原子金属以防止其迁移团聚。在此,我们设想将生物质用一种环保简便的方式制成一种功能化的碳载体,并与微量铜结合,制备成可回收的单原子铜催化剂用于末端炔烃氧化偶联反应。综上所述,开发一种简单、高效、无碱无配体参与的、可回收的单原子铜催化体系催化末端炔自偶联反应具有一定的实际意义。
发明内容
本发明旨在提供一种生物质基碳材料负载单原子铜催化剂,并且还提供了该催化剂的制备方法,该方法利用含量丰富的廉价金属为原料,能够实现金属单原子催化剂的成功制备,操作工艺简单。所制备的铜金属单原子在载体上能够稳定存在。本发明还提供了该催化剂在氧化偶联制备1,3-二炔类化合物的应用,可在无碱无配体,并且仅以空气作为氧化剂的条件下催化反应,催化活性高,产物选择性高,容易回收,能够满足工业生产应用的需求。
根据本发明的一个方面,本发明的一个目的在于提供一种生物质基碳材料负载单原子铜催化剂,该催化剂由单原子铜和含有氮自掺杂的由生物质基碳材料载体构成。
所述生物质基碳材料负载单原子铜催化剂组成为:金属单原子铜的含量为0.01wt%~3wt%,碳基载体含量为70wt%~90wt%,杂原子含量为5wt%~20wt%,比表面积为50~500m2/g。
优选地,所述生物质基碳材料负载单原子铜催化剂组成为:金属单原子铜的含量为0.03wt%~2wt%,碳基载体含量为85wt%~90wt%,杂原子含量为5wt%~15wt%。
优选地,所述生物质基碳材料负载单原子铜催化剂组成为:金属单原子铜的含量为0.05wt%~1.5wt%,碳基载体含量为85wt%~90wt%,杂原子含量为5wt%~15wt%。
优选地,所述杂原子自掺杂选自N、O、P和S中的一种或多种,更优选为N和O。
根据本发明的另一个方面,本发明的另一个目的在于提供一种所述生物质基碳材料负载金属单原子铜催化剂的制备方法,包括如下步骤:
(1)以富含蛋白质的生物质为原料,清洗干净并粉碎,在烘箱中加热至干燥,将干燥后所得固体研成粉末,待用。
(2)取步骤(1)的粉末加入水中,搅拌均匀后移到水热反应釜中,100-250度反应3-10个小时后经过滤洗涤几次,后完全干燥后得到褐色固体,后研磨至颗粒均匀的水热碳。
(3)将步骤(2)所得1重量份的水热碳分散于溶有含0.0192重量份的Cu(NO3)2.3H2O的水溶液中,在烧杯中搅拌,温度30-90℃,时间1-24h,后将该反应液置于100℃下干燥,最后研磨成粉末。
(4)将步骤(3)所得粉末在惰性气体的氛围中进行煅烧;煅烧温度为300~1500℃,保温时间为0.5~100小时,煅烧后降至室温,即得到生物质基碳材料负载金属单原子铜催化剂。
优选地,步骤1)中所述富含蛋白的生物质为白薯叶、榆钱、竹笋、大豆、蒲公英叶、黄花苗叶、黄麻叶、莲藕、芦笋、白花菜、菠菜、西兰花或竹荪。
优选地,步骤4)中所述惰性气体为氮气或氩气。
根据本发明的另一个方面,本发明的另一个目的在于提供一种采用所述催化剂催化氧化偶联合成1,3-二炔类化合物的方法,所述方法包括以下步骤:
将炔类反应物
Figure BDA0002339693330000041
Figure BDA0002339693330000042
加入反应器中,然后加入根据本发明制备的催化剂,然后加入乙腈和水的混合溶剂,将反应釜密闭后在100℃下进行反应,反应18小时后,冷却至室温,过滤反应液除去催化剂等杂质,硅胶柱层析即得产物1,3-二炔类化合物
Figure BDA0002339693330000043
其中,取代基R1和R2可以相同或不同,各自独立地选自苯基、取代的苯基、含有选自N、O和S的杂原子的五元或六元芳香杂环基,C1至C4烷基、羟基取代的C1至C4烷基、C5至C6环烷基、羟基取代的C5至C6环烷基和苯基取代的C1至C4氧基烷基,
其中所述取代的苯基中苯基上的取代基选自羟基、氨基、C1至C4烷基、C1至C4烷氧基、三氟甲基、F、Cl、Br或甲酯基。
优选地,取代基R1和R2各自独立地选自以下化合物中:
Figure BDA0002339693330000051
有益效果
(1)本发明的生物质基载体负载单原子铜催化剂制备方法简单,无需常见的后续酸洗过程。条件温和、成本低廉,有利于大规模生产和工业化应用。使用廉价金属盐与自掺杂的杂原子N协同配位的策略,避免高温热解过程中金属的聚集,实现金属原子的单分散落位。金属单原子含量高,单原子分散均匀,物化结构稳定。自掺杂的杂原子N除了可以作为铜单原子的锚定配位位点以外,它又可作为催化剂的碱性位点,参与反应,促进该有机转化反应。
(2)本专利采用廉价的金属铜单原子催化剂催化末端炔烃氧化偶联反应从而制备不同取代的1,3-二炔类化合物。能够在以空气为氧化剂,无碱,无配体参与的催化条件下达到高的转化率和优异的底物普适性:供电子、吸电子、卤素、杂环、高位阻和脂肪族甚至天然产物取代的炔类化合物均能实现高效的氧化偶联反应,且在炔烃的氧化交叉偶联反应中表现出优异的选择性,实现了芳基-芳基,芳基-烷基和很具有挑战性的烷基-烷基的氧化交叉偶联。
附图说明
图1是实施例1中制备的生物质基碳材料负载金属单原子催化剂的像差校正的高角度环形暗场透射电子显微镜(AC HAADF-STEM)图像和高分辨透射电镜(HR-TEM)图像。
图2和图3为实施例1、2、3中制备的生物质基碳材料负载金属单原子催化剂BET测试结果。
图4为本发明实施例1、2、3、4中制备的生物质基碳材料负载金属单原子催化剂XRD测试结果图。
图5为本发明实施例1中制备的生物质基碳材料负载金属单原子催化剂(Cu/CN-800)和实施例4中制备的生物质基碳材料负载金属单原子催化剂(Cu/AC-800)的Cu 2p XPS光谱图。
图6是实施例1中制备的生物质基碳材料负载金属单原子催化剂Cu/CN-800和参考样品的铜K边缘X射线吸收近边缘结构(XANES)光谱。
图7是实施例1中制备的生物质基碳材料负载金属单原子催化剂Cu/CN-800和参考样品的的FT-k3加权的扩展X射线吸收精细结构(EXAFS)光谱。
图8为实施例1中制备的生物质基碳材料负载金属单原子催化剂循环效果柱状图。
具体实施方式
以下,将详细地描述本发明。在进行描述之前,应当理解的是,在本说明书和所附的权利要求书中使用的术语不应解释为限制于一般含义和字典含义,而应当在允许发明人适当定义术语以进行最佳解释的原则的基础上,根据与本发明的技术方面相应的含义和概念进行解释。因此,这里提出的描述仅仅是出于举例说明目的的优选实例,并非意图限制本发明的范围,从而应当理解的是,在不偏离本发明的精神和范围的情况下,可以由其获得其他等价方式或改进方式。
本发明以氮自掺杂生物质基碳作为载体负载单原子铜催化剂,该催化剂由金属单原子铜的含量为0.05wt%~3.0wt%,碳基载体含量为85wt%~90wt%,杂原子含量为5wt%~15wt%。优选地,所述生物质基碳材料负载单原子铜催化剂组成为:金属单原子铜的含量为0.05wt%~2.5wt%,碳基载体含量为85wt%~90wt%,杂原子含量为5wt%~15wt%。所述催化剂可用于端基炔烃氧化偶联反应制备1,3-二炔类化合物,反应条件温和,无需加入碱或配体,且只以密封反应管中的空气中的氧气为氧化剂,不需要常规的氧化剂。
优选地,所述杂原子自掺杂选自N、O、P和S中的一种或多种,更优选为N和O。经ICP元素分析可知杂原子自掺杂主要为N和O,杂原子是生物质本身所含,没有另外添加。
本发明利用缺陷锚定和配位设计相结合的策略成功合成了单原子铜催化剂。首先衍生至生物质的水热碳在合适的煅烧温度(700-900℃)和煅烧时间(2h)下成功的在典型的石墨碳层形成高度多孔的结构和大量的缺陷,这些缺陷的存在能够改变周围的电子结构和配位环境,导致出现空位和不饱和的配位位点作为“陷阱”,以此来锚定金属原子。且形成的缺陷中心均匀分布,从而使单个铜原子均匀稳定地分布在载体表面。其次水热碳中丰富的N自掺杂,在煅烧过程中成功的镶嵌到碳层里面,尤其是缺陷边缘处和石墨碳层边缘处的N原子会作为配位位点吸附和稳定金属前驱体或金属铜原子,且与金属铜原子形成稳定的支持物,防止其迁移和凝聚,从而得到单原子铜催化剂。类似的配位位点常常是与金属原子存在较强相互作用的原子或基团如N、O、S、-C≡C-等。本专利催化剂的配位位点是生物质中自掺杂的N。此外,合适的铜负载量是能否形成稳定的单原子催化剂的关键,铜负载量超过N配位位点的承载量,就会形成明显的铜纳米颗粒。且煅烧温度过高,煅烧时间过长,也会引起Cu原子的迁移团聚,从而得到负载型的铜纳米颗粒催化剂。所以本专利是在经过调整了各项制备参数后,如煅烧温度,煅烧时间,铜的负载量范围等,选取了合适的制备条件下合成的单原子铜催化剂。
根据本发明的所述催化剂的所有原料为可再生资源,分布广泛,绿色环保,简单易得,资源丰富,价格低廉,且催化剂可循环使用不失活,对空气、水和热都很稳定。根据本发明的负载型单原子催化剂,端基炔烃类化合物氧化自偶联反应制备1,3-二炔类化合物转化率大于99%,选择性高达99%。端基炔烃类化合物氧化交叉偶联反应制备1,3-二炔类化合物转化率大于90%,选择性可达60%~90%。
以下实施例仅是作为本发明的实施方案的例子列举,并不对本发明构成任何限制,本领域技术人员可以理解在不偏离本发明的实质和构思的范围内的修改均落入本发明的保护范围。除非特别说明,以下实施例中使用的试剂和仪器均为市售可得产品。
表征所用仪器:
1)透射电子显微镜:型号为H-7650,生产厂家为Hitachi日立公司
2)元素分析仪:型号为Vario-EL-cube,生产厂家为德Elementary公司
3)物理吸附仪:型号为ASAP2020,生产厂家为美国micrometritics公司
4)核磁共振波谱仪:型号为DRX-400生产厂家为美国德国Bruker公司
5)X射线吸收光谱仪(XAS):北京同步辐射中心(BSRF)的1W1B光束线上进行。
6)X射线光电子能谱(XPS)数据收集在配备了单色铝Ka线源的ESCALAB 250Xi(Thermo Scientific,UK)仪器上。所有得到的结合能都是基于284.8eV的C1s峰校准的。
实施例1:生物质基碳材料负载单原子铜催化剂的制备
将1kg清洗干净的竹笋切成碎片,在烘箱中70℃加热至干燥,将干燥后所得固体研成粉末,待用;取4g粉末加入40mL水中,搅拌混合均匀后移到水热反应釜中,于180℃反应5.5小时,反应后经过滤、过滤后产物经水洗涤,干燥得到褐色固体,将所得固体真空干燥24小时、研磨至颗粒均匀得水热碳。之后将上述得到褐色固体水热碳0.5g分散于溶有0.0096gCu(NO3)2.3H2O的15mL水中,60℃下搅拌2h,将该反应液置于100℃下干燥12h,之后将得到的干燥固体放于管式炉中在氮气气体氛围中煅烧,并在800℃下保温2小时,待管式炉降到室温后将样品拿出,即得到生物质基碳载体金属铜单原子负载催化剂,表示为Cu/CN-800,其比表面积为150.5m2/g,由BET分析可见该催化剂具有介孔、微孔等分级结构的孔组成。(参见图2和图3)。
实施例2:
除了在700℃下保温2小时以外,按照实施例1相同的方式制备生物质基碳载体金属铜单原子负载催化剂,表示为Cu/CN-700。
实施例3:
除了在900℃下保温2小时以外,按照实施例1相同的方式制备生物质基碳载体金属铜单原子负载催化剂,表示为Cu/CN-900。
实验例4:
为了进行比较,使用商业活性炭作为载体来取代本专利所制水热碳,按照实施例1相同的后续程序制备活性炭载体负载金属铜催化剂,保证相同的铜的负载量和煅烧温度,将所得催化剂表示为Cu/AC-800。下表1中ICP-AES可看出Cu/AC-800和Cu/CN-800具有近乎相同的铜负载。
表1
Figure BDA0002339693330000101
a通过ICP-AES确定。b用BET多点法测定比表面积。c在P/Po=0.99时,根据单点吸附总孔体积(小于187.2160nm宽度)测定孔容。
高分辨透射电镜(图1)结果表明,Cu/CN-800在典型的石墨碳层上具有高度多孔的结构和大量的缺陷,且未观察到任何Cu的聚集。像差校正的高角度环形暗场透射电子显微镜(AC HAADF-STEM)图像(图1)中显示出高密度的一个个单个亮点,表明铜物种原子分散在了载体上。
将上述制备获得生物质基碳载体金属铜单原子负载催化剂和商业活性碳负载铜催化剂进行X射线衍射分析,所得的X射线衍射图谱如图4所示,从图4中可以看出,800度温度下煅烧的Cu催化剂没有形成明显的铜纳米颗粒峰,形成了单原子状态存在的催化剂,该结果与图1中球差电镜的结果保持一致。而900℃下煅烧所得催化剂有较小的峰存在,形成了少量的铜纳米颗粒。而700度煅烧的铜催化剂因为煅烧温度不足,没有任何金属晶粒的形成。而Cu/AC-800由于没有杂原子N的存在,煅烧过程中缺失了N的配位锚定作用,形成了较大的铜纳米颗粒。Cu 2p XPS光谱(图5)显示Cu/CN-800的金属价态主要为Cu+(Cu-N2),而Cu/AC-800主要以Cu0(铜纳米颗粒)形式存在,该结果与XRD结果一致。为了进一步阐明Cu/CN-800的局部配位结构,以Cu箔,Cu2O,CuO和铜酞菁(CuPc)为参考进行了X射线吸收精细结构(XAFS)测量。Cu/CN-800的近边缘特征位于这些铜箔和CuO之间(图6),表明Cuδ+的电子结构(0<δ<2)。R空间中经傅立叶变换的k3加权X射线吸收精细结构(FT-EXAFS)光谱(图7)在
Figure BDA0002339693330000111
处出现一个峰,该峰可归因于Cu-N配位的反向散射并且没有检测到典型的Cu-Cu
Figure BDA0002339693330000112
配位峰,从而证实了在Cu/CN-800催化剂中唯一存在孤立的单原子Cu。因此,结合XRD,AC HAADF-STEM和XAFS结果,可以得出结论,Cu单原子分散在Cu/CN-800上。
实施例5:
利用实施例1中制备的生物质基碳载体金属铜单原子负载催化剂催化端基炔烃氧化自偶联制备对称1,3-二炔类化合物的方法。其步骤是:0.2mmol苯乙炔,30mg所述负载型催化剂、2mL乙腈和水的混合溶剂(v/v=1:1),密闭后在100℃下进行反应,反应18小时后,冷却至室温,过滤反应液,硅胶柱层析即得1,4-二苯基丁-1,3-二炔化合物。(核磁数据如下)
1,4-二苯基丁-1,3-二炔:1H NMR(400MHz,Chloroform-d)δ7.66–7.48(m,4H),7.35(q,J=7.2,6.5Hz,6H).13C NMR(101MHz,CDCl3)δ132.52,129.23,128.46,121.81,81.58,73.94.
实施例6:
利用实施例4中制备的活性炭载体负载金属铜催化剂Cu/AC-800催化端基炔烃氧化自偶联制备对称1,3-二炔类化合物。操作和步骤与实施例5相同,所得1,4-二苯基丁-1,3-二炔化合物的产率仅为18%。Cu/AC-800在相同的Cu负载量下,其催化活性显著低于实施例5中Cu/CN-800的催化活性(98%)。这充分证明了原子分散的Cu由于其最大的原子利用率,起到了提高反应效率的关键作用。
与实施例5操作和步骤相同,改变不同取代的端基炔烃类化合物(即底物)的种类,得到的对称1,3-二炔类化合物(产物)、转化率60~90%不等、产率60~90%不等,这说明根据本发明的方法制备的生物质基碳载体金属铜单原子负载催化剂具有良好的底物普适性:供电子、吸电子、卤素、杂环、高位阻和脂肪族甚至天然产物取代的炔类化合物均能进行有效的氧化自偶联反应。具体如表2所示:
表2
Figure BDA0002339693330000121
Figure BDA0002339693330000131
实施例20:
利用实施例1中制备的生物质基碳载体金属铜单原子负载催化剂催化端基炔烃类化合物氧化交叉偶联制备不对称1,3-二炔类化合物的方法。其步骤是:在反应管中加入0.13mmol 4-甲氧基苯乙炔、0.26mmol 4-乙基苯乙炔、70mg所述负载型催化剂、2mL乙腈和水的混合溶剂(v/v=1:1),密闭后在100℃下进行反应,反应18小时后,冷却至室温,过滤反应液,硅胶柱层析即得1-乙基-4-[4-(4-甲氧基苯基)-1,3-丁二炔-1-基]苯化合物;(核磁数据如下)
1-乙基-4-[4-(4-甲氧基苯基)-1,3-丁二炔-1-基]苯:1H NMR(600MHz,Chloroform-d)δ7.65–7.28(m,4H),7.17(d,J=8.0Hz,2H),6.98–6.73(m,2H),3.82(s,3H),2.66(q,J=7.6Hz,2H),1.24(t,J=7.6Hz,3H).13C NMR(151MHz,Chloroform-d)δ160.32,145.69,134.10,132.48,128.04,119.12,114.17,113.87,81.49,73.56,55.36,28.95,15.29.
与实施例20操作和步骤相同,两种底物的摩尔比例也保持1:2的比例,改变不同取代的苄醇类化合物(即底物)的种类,得到的不对称1,3-二炔类化合物(产物)、转化率均>80%、产率56~85%不等,这说明根据本发明的方法制备的生物质基碳载体金属铜单原子负载催化剂具有良好的底物普适性:供电子、吸电子、卤素、杂环、高位阻和脂肪族甚至天然产物取代的炔类化合物均能任意搭配交叉偶联,实现了芳基-芳基,芳基-烷基和很具有挑战性的烷基-烷基的氧化交叉偶联。具体如表3所示:
表3
Figure BDA0002339693330000141
Figure BDA0002339693330000151
实施例34:苯乙炔氧化自偶联制备1,3-二炔化合物催化剂循环:
以苯乙炔的氧化自偶联作为模板反应进行催化剂循环实验,其步骤是:
在反应管中加入0.2mmol苯乙炔、30mg所述负载型催化剂、2mL乙腈和水的混合溶剂(v/v=1:1),密闭后在100℃下进行反应,反应18小时后,冷却至室温,过滤反应液对反应液进行气相色谱分析。将反应液离心(10000rpm,15min),将上清液移除,随后加入5mL乙醇、离心移除上清液,以上操作重复3次,所得固体在真空干燥箱内40℃下干燥12h,以备下一轮催化剂循环使用,由循环实验可见催化剂在重复使用5次后仍然能保持高活性和稳定性(循环效果如图8所示)。

Claims (10)

1.一种生物质基碳材料负载单原子铜催化剂,该催化剂由单原子铜和氮自掺杂的生物质基碳材料载体构成,
所述生物质基碳材料负载单原子铜催化剂组成为:金属单原子铜的含量为0.01wt%~3wt%,碳基载体含量为70wt%~90wt%,杂原子含量为5wt%~20wt%,比表面积为50~500m2/g。
2.根据权利要求1所述的生物质基碳材料负载单原子铜催化剂,其特征在于,所述生物质基碳材料负载单原子铜催化剂组成为:金属单原子铜的含量为0.03wt%~2wt%,碳基载体含量为85wt%~90wt%,杂原子含量为5wt%~15wt%。
3.根据权利要求1所述的生物质基碳材料负载单原子铜催化剂,其特征在于,所述生物质基碳材料负载单原子铜催化剂组成为:金属单原子铜的含量为0.05wt%~1.5wt%,碳基载体含量为85wt%~90wt%,杂原子含量为5wt%~15wt%。
4.根据权利要求1至3中任意一项所述的生物质基碳材料负载单原子铜催化剂,其特征在于,所述杂原子自掺杂选自N、O、P和S中的一种或多种,更优选为N和O。
5.一种根据权利要求1至4中任意一项所述的生物质基碳材料负载金属单原子铜催化剂的制备方法,包括如下步骤:
(1)以富含蛋白质的生物质为原料,清洗干净并粉碎,在烘箱中加热至干燥,将干燥后所得固体研成粉末,待用;
(2)取步骤(1)的粉末加入水中,搅拌均匀后移到水热反应釜中,100-250度反应3-10个小时后经过滤洗涤几次,后完全干燥后得到褐色固体,后研磨至颗粒均匀的水热碳;
(3)将步骤(2)所得1重量份的水热碳分散于溶有含0.0192重量份的Cu(NO3)2.3H2O的水溶液中,在烧杯中搅拌,温度30-90℃,时间1-24h,后将该反应液置于100℃下干燥,最后研磨成粉末;
(4)将步骤(3)所得粉末在惰性气体的氛围中进行煅烧;煅烧温度为300~1500℃,保温时间为0.5~100小时,煅烧后降至室温,即得到生物质基碳材料负载金属单原子铜催化剂。
6.根据权利要求5所述的生物质基碳材料负载金属单原子铜催化剂的制备方法,其特征在于,步骤1)中所述富含蛋白的生物质为白薯叶、榆钱、竹笋、大豆、蒲公英叶、黄花苗叶、黄麻叶、莲藕、芦笋、白花菜、菠菜、西兰花或竹荪。
7.根据权利要求5所述的生物质基碳材料负载金属单原子铜催化剂的制备方法,其特征在于,步骤4)中所述惰性气体为氮气或氩气。
8.一种氧化偶联合成1,3-二炔类化合物的方法,所述方法包括以下步骤:
将炔类反应物
Figure FDA0002339693320000021
加入反应器中,然后加入根据权利要求1至4中任意一项所述的生物质基碳材料负载金属单原子铜催化剂,然后加入乙腈和水的混合溶剂,将反应釜密闭后在100℃下进行反应,反应18小时后,冷却至室温,过滤反应液除去催化剂等杂质,硅胶柱层析即得产物1,3-二炔类化合物
Figure FDA0002339693320000022
9.根据权利要求8所述的氧化偶联合成1,3-二炔类化合物的方法,其特征在于,所述取代基R1和R2相同或不同,各自独立地选自苯基、取代的苯基、含有选自N、O和S的杂原子的五元或六元芳香杂环基,C1至C4烷基、羟基取代的C1至C4烷基、C5至C6环烷基、羟基取代的C5至C6环烷基和苯基取代的C1至C4氧基烷基,
其中所述取代的苯基中苯基上的取代基选自羟基、氨基、C1至C4烷基、C1至C4烷氧基、三氟甲基、F、Cl、Br或甲酯基。
10.根据权利要求9所述的氧化偶联合成1,3-二炔类化合物的方法,其特征在于,所述取代基R1和R2各自独立地为选自以下化合物中的一种:
Figure FDA0002339693320000031
CN201911371223.8A 2019-12-27 2019-12-27 一种生物质基碳材料负载单原子铜催化剂及其制备方法和用途 Active CN111068682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911371223.8A CN111068682B (zh) 2019-12-27 2019-12-27 一种生物质基碳材料负载单原子铜催化剂及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911371223.8A CN111068682B (zh) 2019-12-27 2019-12-27 一种生物质基碳材料负载单原子铜催化剂及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN111068682A true CN111068682A (zh) 2020-04-28
CN111068682B CN111068682B (zh) 2022-08-12

Family

ID=70318225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911371223.8A Active CN111068682B (zh) 2019-12-27 2019-12-27 一种生物质基碳材料负载单原子铜催化剂及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN111068682B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111974435A (zh) * 2020-08-26 2020-11-24 太原理工大学 一种高稳定性的Cu/N掺杂碳纳米片催化剂的制备方法及应用
CN112159336A (zh) * 2020-09-16 2021-01-01 上海应用技术大学 一种高纯度的芳炔取代的腈类化合物的制备方法
CN112517037A (zh) * 2020-12-09 2021-03-19 扬州大学 以南瓜为前驱体的铜-氮-碳催化剂及其制备方法和应用
CN112536036A (zh) * 2020-11-13 2021-03-23 中国科学院南京土壤研究所 一种碳基金属单原子复合材料及其制备方法与应用
CN112604708A (zh) * 2021-01-15 2021-04-06 荆楚理工学院 一种分子筛基单原子催化剂及其制备方法
CN112916009A (zh) * 2021-01-25 2021-06-08 合肥工业大学 一种生物质衍生多孔碳限域单原子金属复合材料的制备方法
CN113068714A (zh) * 2021-04-01 2021-07-06 联科华技术有限公司 一种可替代传统农用铜制剂的单原子铜制剂及其制备方法
CN113198463A (zh) * 2021-04-14 2021-08-03 云南大学 一种碳材料表面负载金属单原子的方法
CN113289623A (zh) * 2021-05-20 2021-08-24 武汉大学 一种铜单原子催化剂及其制备方法和应用
CN114367295A (zh) * 2020-10-15 2022-04-19 中国科学院大连化学物理研究所 单分散碳载非贵金属材料作为乙苯无氧脱氢催化剂的应用
CN114456127A (zh) * 2021-12-27 2022-05-10 郑州大学 一种利用环己烯氧化制备环氧环己烷的方法
CN114618468A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 一种生物基碳负载催化剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105001028A (zh) * 2015-05-21 2015-10-28 湖南大学 一种不对称共轭二炔烃类化合物的合成方法
CN106601490A (zh) * 2016-06-21 2017-04-26 中国科学院青岛生物能源与过程研究所 一种生物质基含氮多孔碳的制备方法及由该方法制备的多孔碳及其用途
CN108339543A (zh) * 2018-02-12 2018-07-31 中国科学院化学研究所 一种具有高负载量的单原子催化剂及其制备方法
CN108963276A (zh) * 2018-06-27 2018-12-07 中国科学技术大学 用于催化氧还原的非贵金属催化剂及其制备方法
CN109390597A (zh) * 2018-10-22 2019-02-26 北京海得利兹新技术有限公司 一种高载量金属单原子质子交换膜燃料电池催化材料及其制备方法
CN109731597A (zh) * 2018-04-23 2019-05-10 中国科学院青岛生物能源与过程研究所 一种氮掺杂生物质基碳材料负载催化剂及其制备和应用
CN110201702A (zh) * 2019-06-14 2019-09-06 北京大学深圳研究生院 碳载单原子金属含氮复合物氧还原催化剂制备方法及所得催化剂
US20190344250A1 (en) * 2018-05-09 2019-11-14 Tianjin University Of Technology Preparation method for nitrogen-doped carbon-loaded metal monatomic catalyst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105001028A (zh) * 2015-05-21 2015-10-28 湖南大学 一种不对称共轭二炔烃类化合物的合成方法
CN106601490A (zh) * 2016-06-21 2017-04-26 中国科学院青岛生物能源与过程研究所 一种生物质基含氮多孔碳的制备方法及由该方法制备的多孔碳及其用途
CN108339543A (zh) * 2018-02-12 2018-07-31 中国科学院化学研究所 一种具有高负载量的单原子催化剂及其制备方法
CN109731597A (zh) * 2018-04-23 2019-05-10 中国科学院青岛生物能源与过程研究所 一种氮掺杂生物质基碳材料负载催化剂及其制备和应用
US20190344250A1 (en) * 2018-05-09 2019-11-14 Tianjin University Of Technology Preparation method for nitrogen-doped carbon-loaded metal monatomic catalyst
CN108963276A (zh) * 2018-06-27 2018-12-07 中国科学技术大学 用于催化氧还原的非贵金属催化剂及其制备方法
CN109390597A (zh) * 2018-10-22 2019-02-26 北京海得利兹新技术有限公司 一种高载量金属单原子质子交换膜燃料电池催化材料及其制备方法
CN110201702A (zh) * 2019-06-14 2019-09-06 北京大学深圳研究生院 碳载单原子金属含氮复合物氧还原催化剂制备方法及所得催化剂

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
TAO SONG等: "Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes", 《GREEN CHEM.》 *
TAO SONG等: "Highly Dispersed Single-Phase Ni2P Nanoparticles on N,P-Codoped Porous Carbon for Efficient Synthesis of N-Heterocycles", 《ACS SUSTAINABLE CHEM. ENG.》 *
YANAN DUAN等: "Hydrogenation of Functionalized Nitroarenes Catalyzed by Single-Phase Pyrite FeS2 Nanoparticles on N,S-Codoped Porous Carbon", 《CHEMSUSCHEM》 *
YONGYANG等: "Molecular dynamics simulations of single crystal copper nanocubes under triaxial tensile loading", 《COMPUTATIONAL MATERIALS SCIENCE》 *
ZHIMING MA等: "Synergistic catalysis on Fe–Nx sites and Fe nanoparticles for efficient synthesis of quinolines and quinazolinones via oxidative coupling of amines and aldehydes", 《CHEM. SCI.》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111974435B (zh) * 2020-08-26 2022-04-15 太原理工大学 一种高稳定性的Cu/N掺杂碳纳米片催化剂的制备方法及应用
CN111974435A (zh) * 2020-08-26 2020-11-24 太原理工大学 一种高稳定性的Cu/N掺杂碳纳米片催化剂的制备方法及应用
CN112159336A (zh) * 2020-09-16 2021-01-01 上海应用技术大学 一种高纯度的芳炔取代的腈类化合物的制备方法
CN112159336B (zh) * 2020-09-16 2022-12-16 上海应用技术大学 一种高纯度的芳炔取代的腈类化合物的制备方法
CN114367295B (zh) * 2020-10-15 2023-04-18 中国科学院大连化学物理研究所 单分散碳载非贵金属材料作为乙苯无氧脱氢催化剂的应用
CN114367295A (zh) * 2020-10-15 2022-04-19 中国科学院大连化学物理研究所 单分散碳载非贵金属材料作为乙苯无氧脱氢催化剂的应用
CN112536036A (zh) * 2020-11-13 2021-03-23 中国科学院南京土壤研究所 一种碳基金属单原子复合材料及其制备方法与应用
CN112517037A (zh) * 2020-12-09 2021-03-19 扬州大学 以南瓜为前驱体的铜-氮-碳催化剂及其制备方法和应用
CN114618468A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 一种生物基碳负载催化剂及其制备方法
CN112604708A (zh) * 2021-01-15 2021-04-06 荆楚理工学院 一种分子筛基单原子催化剂及其制备方法
CN112916009A (zh) * 2021-01-25 2021-06-08 合肥工业大学 一种生物质衍生多孔碳限域单原子金属复合材料的制备方法
CN113068714A (zh) * 2021-04-01 2021-07-06 联科华技术有限公司 一种可替代传统农用铜制剂的单原子铜制剂及其制备方法
CN113198463A (zh) * 2021-04-14 2021-08-03 云南大学 一种碳材料表面负载金属单原子的方法
CN113289623A (zh) * 2021-05-20 2021-08-24 武汉大学 一种铜单原子催化剂及其制备方法和应用
CN114456127A (zh) * 2021-12-27 2022-05-10 郑州大学 一种利用环己烯氧化制备环氧环己烷的方法
CN114456127B (zh) * 2021-12-27 2024-01-26 郑州大学 一种利用环己烯氧化制备环氧环己烷的方法

Also Published As

Publication number Publication date
CN111068682B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN111068682B (zh) 一种生物质基碳材料负载单原子铜催化剂及其制备方法和用途
Głowniak et al. Advances in microwave synthesis of nanoporous materials
Xu et al. PANI/FeUiO-66 nanohybrids with enhanced visible-light promoted photocatalytic activity for the selectively aerobic oxidation of aromatic alcohols
Guo et al. P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production
JP5426776B2 (ja) メソ多孔性炭素上に担持されたタングステンカーバイド触媒、その調製及び適用
Zhou et al. Etherification of glycerol with isobutene on sulfonated graphene: reaction and separation
Hu et al. N, S co-doped hierarchically porous carbon materials for efficient metal-free catalysis
Han et al. Carbon‐supported molybdenum carbide catalysts for the conversion of vegetable oils
de Vlieger et al. Carbon nanotubes: A promising catalyst support material for supercritical water gasification of biomass waste
CN114588910B (zh) 一种用于木质素解聚的Ni-Zn负载型催化剂的制备方法和应用
Sun et al. Rationally Designed Double‐Shell Dodecahedral Microreactors with Efficient Photoelectron Transfer: N‐Doped‐C‐Encapsulated Ultrafine In2O3 Nanoparticles
CN104752074B (zh) 一种氧化钼/碳小球复合材料的制备方法
Chen et al. Biomass‐Derived N‐doped Carbon Materials with Silica‐Supported Ultrasmall ZnO Nanoparticles: Robust Catalysts for the Green Synthesis of Benzimidazoles
Longobardo et al. Tailored amorphization of graphitic carbon nitride triggers superior photocatalytic C–C coupling towards the synthesis of perfluoroalkyl derivatives
Jiang et al. Metal–organic frameworks derived magnetic Fe3O4/C for catalytic transfer hydrogenation of furfural to furfuryl alcohol
CN114554819A (zh) 基于铁基金属有机框架材料的电磁吸波剂及其制备方法
Hou et al. Activated carbon aerogel supported copper catalysts for the hydrogenation of methyl acetate to ethanol: effect of KOH activation
Zhang et al. Bicontinuous mesoporous Co, N co-doped carbon catalysts with high catalytic performance for ethylbenzene oxidation
Fazaeli et al. Production of biodiesel through transesterification of soybean oil using ZIF-8@ GO doped with sodium and potassium catalyst
Li et al. Epoxidation of styrene using carbon nanotubes-supported cobalt catalysts
Lu et al. Hierarchical Pores‐Confined Ultrasmall Cu Nanoparticles for Efficient Oxidation of 5‐Hydroxymethylfurfural
Lu et al. Solvent-free oxidative cleavage of epoxy fatty acid methyl esters by a “release and capture” catalytic system
CN109046442B (zh) 多级孔分子筛负载铂铁双金属催化剂及其制备和应用
CN109174153B (zh) 氮掺杂碳材料催化剂及其在催化5-羟甲基糠醛氧化制备2,5-二甲酰基呋喃中的应用
Sun et al. Selective synthesis of 1, 3-propanediol from glycidol over a carbon film encapsulated Co catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant