CN111048471B - n沟道和p沟道增强型GaN器件集成结构的制备方法 - Google Patents

n沟道和p沟道增强型GaN器件集成结构的制备方法 Download PDF

Info

Publication number
CN111048471B
CN111048471B CN201911236980.4A CN201911236980A CN111048471B CN 111048471 B CN111048471 B CN 111048471B CN 201911236980 A CN201911236980 A CN 201911236980A CN 111048471 B CN111048471 B CN 111048471B
Authority
CN
China
Prior art keywords
layer
channel
photoresist
etching
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911236980.4A
Other languages
English (en)
Other versions
CN111048471A (zh
Inventor
周建军
孔岑
郁鑫鑫
孔月婵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201911236980.4A priority Critical patent/CN111048471B/zh
Publication of CN111048471A publication Critical patent/CN111048471A/zh
Application granted granted Critical
Publication of CN111048471B publication Critical patent/CN111048471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0883Combination of depletion and enhancement field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种n沟道和p沟道增强型GaN器件集成结构的制备方法,包括:洁净衬底上进行高阻缓冲层、n沟道层、势垒层、p沟道层、插入层、p沟阈值调制层、p沟栅流抑制层的制作;n沟阈值调制层和n沟栅流抑制层再生长掩模的制作;n沟阈值调制层和n沟栅流抑制层制作;p沟器件欧姆接触金属的制作;n沟器件欧姆接触金属的制作;器件隔离区域制作;表面钝化层制作;n沟道器件和p沟道器件栅接触的制作;n沟道器件和p沟道器件欧姆接触压块的制作。本发明基于JFET GaN器件结构和能带理论,实现n沟道和p沟道增强型GaN器件的集成,可有效降低GaN数字集成电路功耗,结构及工艺兼容性高,器件阈值电压均匀性高、稳定性高。

Description

n沟道和p沟道增强型GaN器件集成结构的制备方法
技术领域
本发明属于半导体器件制备技术领域,特别是一种n沟道和p沟道增强型GaN器件集成结构的制备方法。
背景技术
GaN基宽禁带半导体材料具有高临界击穿场强、高载流子漂移速度以及抗辐照等优异的物理和化学特性,是研制高性能微波器件和电力电子开关器件的优选材料。虽然GaN微波器件和电力电子器件展现了优异的器件特性,单在使用中需要配合Si CMOS逻辑控制电路来使用。由于两种器件无法实现单片集成,通常采用封装的方式采用金丝键合等方式进行电学连接,并封装在一起进行实用。采用这种方法会在两种材料之间引入高的寄生电感等特性,从而无法发挥出GaN器件的性能优势。
为了解决这一问题,国内外众多研究机构已经开展了GaN逻辑电路的相关研究。主要采用n沟道的增强型器件和n沟道耗尽型器件来实现反向器,与非门等GaN逻辑单元,并取得了一定的进展。然而,随着研究的深入,采用n沟道增强型器件和n沟道耗尽型器件形成的逻辑单元功耗无法降低的问题逐渐显现。为此国外HRL等机构已开展p沟道GaN器件的研制。目前国外主要采用p掺杂GaN/非故意掺杂GaN/非故意掺杂AlGaN的结构来实现p沟道GaN器件。采用该结构一般形成的是耗尽型p沟道GaN器件,为了实现增强型p沟道GaN器件,目前主要采用的方法是采用MIS结构,在栅的区域进行GaN层的刻蚀,通过这种方法来降低栅下p沟道载流子浓度,从而实现p沟道的增强型GaN器件,如谢菲尔大学的Narayanan(J.Phys.D:Appl.Phys.51(2018)163001:28-29)和HRL的Rongming Chu(J.Phys.D:Appl.Phys.51(2018)163001:32-33)都介绍了采用该方法实现n沟道和p沟道增强型GaN器件集成的方法。但由于GaN基材料是化合物半导体,在GaN基材料上很难实现低界面态密度的MIS结构。高的界面态密度将导致GaN MIS结构器件出现阈值电压漂移以及可靠性问题。
发明内容
本发明的目的在于提供一种n沟道和p沟道增强型GaN器件集成结构的制备方法,针对采用MIS结构实现n沟道和p沟道增强型GaN器件集成中存在界面态密度高,容易导致器件阈值电压漂移和可靠性降低的问题,通过采用JFET器件结构来实现n沟道和p沟道增强型GaN器件,基于选择再生长等技术实现新结构n沟道和p沟道增强型GaN器件集成。
实现本发明目的的技术解决方案为:一种n沟道和p沟道增强型GaN器件集成结构的制备方法,包括以下步骤:
步骤1:在洁净的衬底上依次外延生长高阻缓冲层、n沟道层、势垒层、p沟道层、p型插入层、p沟阈值调制层和p沟栅流抑制层;
步骤2:在样品表面生长刻蚀掩模层,通过光刻、显影工艺,利用光刻胶定义刻蚀区域,然后刻蚀无光刻胶保护区域的刻蚀掩模层,通过有机清洗剂去除光刻胶,以剩余刻蚀掩模层为掩模依次刻蚀无掩模区域的p沟栅流抑制层、p沟阈值调制层和p型插入层;
步骤3:在样品表面淀积刻蚀掩模层,通过光刻、显影工艺,利用光刻胶定义刻蚀区域,然后刻蚀无光刻胶保护区域的刻蚀掩模层,通过有机清洗剂去除光刻胶,以剩余刻蚀掩模层为掩模刻蚀无掩模区域p沟道层;
步骤4:利用湿法腐蚀的方法,去除刻蚀掩模层和,在样品表面淀积选择再生长掩模层,通过光刻、显影工艺,利用光刻胶定义选择再生长窗口区域,然后刻蚀无光刻胶保护区域的刻蚀再生长掩模层,通过有机清洗剂去除光刻胶;
步骤5:利用氧等离子体进行表面处理,然后通过酸性和碱性溶液对表面进行表面清洁,然后在样品表面依次外延生长n沟阈值调制层和n沟栅流抑制层;
步骤6:利用氢氟酸缓冲溶液在超声下去除选择再生长掩模层及其上的n沟阈值调制层和n沟栅流抑制层;
步骤7:在样品表面旋涂光刻胶掩模,通过光刻、显影工艺,利用光刻胶定义刻蚀区域,然后刻蚀无光刻胶保护区域的n沟栅流抑制层;
步骤8:在样品表面淀积p沟器件欧姆接触金属层,然后利用正胶剥离的方法去除光刻胶掩模以外的p沟器件欧姆接触金属层(15);
步骤9:通过光刻、显影工艺,利用光刻胶定义n沟道器件欧姆接触区域,淀积n沟道器件欧姆接触层,然后利用正胶剥离的方法去除光刻胶定义n沟道器件欧姆接触区域以外的n沟道器件欧姆接触层,在惰性气体的保护下进行合金处理;
步骤10:通过光刻、显影工艺,利用光刻胶定义器件隔离区域,利用离子注入技术在势垒层、n沟道层和部分高阻缓冲层中注入高能粒子形成隔离层;
步骤11:利用有机溶剂在超声下去除离子注入时的光刻胶,利用氮等离子体进行表面处理,随后在样品表面淀积表面钝化层;
步骤12:通过光刻、显影工艺,利用光刻胶定义n沟道器件和p沟道器件栅接触区域,刻蚀无光刻胶保护区域的表面钝化层,然后淀积栅金属接触层,然后利用正胶剥离的方法去除光刻胶定义n沟道器件和p沟道器件栅接触区域以外的栅金属接触层,在惰性气体的保护下进行低温处理;
步骤13:通过光刻、显影工艺,利用光刻胶定义n沟道器件和p沟道器件欧姆接触压块区域,刻蚀无光刻胶保护区域的表面钝化层,通过有机清洗剂去除光刻胶。
本发明与现有技术相比,其显著优点为:(1)本发明可有效降低GaN数字集成电路功耗;(2)结构及工艺兼容性高,可实现GaN功率开关、GaN微波功率器件以及GaN逻辑电路的全集成;(3)器件阈值电压均匀性高、稳定性高;(4)集成器件抗辐照性能高;(5)增强型器件阈值控制工艺窗口宽,工艺实现难度低。
附图说明
图1为n沟道和p沟道增强型GaN器件集成结构的示意图。
图2(a)~图2(m)为n沟道和p沟道增强型GaN器件集成结构的制备流程图,其中:
图2(a)为洁净衬底上进行高阻缓冲层、n沟道层、势垒层、p沟道层、插入层、p沟阈值调制层、p沟栅流抑制层制作的示意图。
图2(b)为刻蚀无掩模区域p沟栅流抑制层、p沟阈值调制层和p型插入层的示意图。
图2(c)为刻蚀无掩模区域p沟道层的示意图。
图2(d)为刻蚀无光刻胶保护区域的刻蚀再生长掩模层示意图。
图2(e)为n沟阈值调制层和n沟栅流抑制层再生长掩模制作示意图。
图2(f)为利用氢氟酸缓冲溶液在超声下去除选择再生长掩模层及其上的n沟阈值调制层和n沟栅流抑制层的示意图。
图2(g)为刻蚀无光刻胶保护区域的GaN n沟栅流抑制层的示意图。
图2(h)为p沟器件欧姆接触金属的制作示意图。
图2(i)为n沟器件欧姆接触金属的制作示意图。
图2(j)为器件隔离区域的制作示意图。
图2(k)为表面钝化层的制作示意图。
图2(l)为n沟道器件和p沟道器件栅接触的制作示意图。
图2(m)为n沟道器件和p沟道器件欧姆接触压块的制作示意图。
具体实施方式
本发明针对GaN E/D集成技术功耗高以及MIS结构集成n沟道和p沟道GaN增强型器件界面态密度高,导致阈值电压漂移严重以及可靠性差的问题,基于JFET GaN器件结构和能带理论,设计了新型材料结构和制备方法来实现n沟道和p沟道增强型GaN器件的集成,开发了不依赖MIS结构的一种n沟道和p沟道增强型GaN器件集成结构的制备方法。
如图1所示,一种n沟道和p沟道增强型GaN器件集成结构的制备方法,包括以下步骤:
步骤1:在洁净的衬底1上利用MOCVD或MBE依次外延生长高阻缓冲层2、n沟道层3、势垒层4、p沟道层5、p型插入层6、p沟阈值调制层7和p沟栅流抑制层8;
步骤2:在样品表面生长刻蚀掩模层9,通过光刻、显影工艺,利用光刻胶定义刻蚀区域,然后刻蚀无光刻胶保护区域的刻蚀掩模层9,通过有机清洗剂去除光刻胶,以剩余刻蚀掩模层9为掩模依次刻蚀无掩模区域的p沟栅流抑制层8、p沟阈值调制层7和p型插入层6;
步骤3:在样品表面淀积刻蚀掩模层10,通过光刻、显影工艺,利用光刻胶定义刻蚀区域,然后刻蚀无光刻胶保护区域的刻蚀掩模层10,通过有机清洗剂去除光刻胶,以剩余刻蚀掩模层10为掩模刻蚀无掩模区域p沟道层5;
步骤4:利用湿法腐蚀的方法,去除刻蚀掩模层9和10,在样品表面淀积选择再生长掩模层11,通过光刻、显影工艺,利用光刻胶定义选择再生长窗口区域,然后刻蚀无光刻胶保护区域的刻蚀再生长掩模层11,通过有机清洗剂去除光刻胶;
步骤5:利用氧等离子体进行表面处理,然后通过酸性和碱性溶液对表面进行表面清洁,然后在样品表面依次外延生长n沟阈值调制层12和n沟栅流抑制层13;
步骤6:利用氢氟酸缓冲溶液在超声下去除选择再生长掩模层11及其上的n沟阈值调制层12和n沟栅流抑制层13;
步骤7:在样品表面旋涂光刻胶掩模14,通过光刻、显影工艺,利用光刻胶定义刻蚀区域,然后刻蚀无光刻胶保护区域的n沟栅流抑制层13;
步骤8:在样品表面淀积p沟器件欧姆接触金属层15,然后利用正胶剥离的方法去除光刻胶掩模14以外的p沟器件欧姆接触金属层15;
步骤9:通过光刻、显影工艺,利用光刻胶定义n沟道器件欧姆接触区域,淀积n沟道器件欧姆接触层16,然后利用正胶剥离的方法去除光刻胶定义n沟道器件欧姆接触区域以外的n沟道器件欧姆接触层16,在惰性气体的保护下进行合金处理;
步骤10:通过光刻、显影工艺,利用光刻胶定义器件隔离区域,利用离子注入技术在势垒层4、n沟道层3和部分高阻缓冲层2中注入高能粒子形成隔离层17;
步骤11:利用有机溶剂在超声下去除离子注入时的光刻胶,利用氮等离子体进行表面处理,随后在样品表面淀积表面钝化层18;
步骤12:通过光刻、显影工艺,利用光刻胶定义n沟道器件和p沟道器件栅接触区域,刻蚀无光刻胶保护区域的表面钝化层18,然后淀积栅金属接触层19,然后利用正胶剥离的方法去除光刻胶定义n沟道器件和p沟道器件栅接触区域以外的栅金属接触层19,在惰性气体的保护下进行低温处理;
步骤13:通过光刻、显影工艺,利用光刻胶定义n沟道器件和p沟道器件欧姆接触压块区域,刻蚀无光刻胶保护区域的表面钝化层18,通过有机清洗剂去除光刻胶。
进一步的,在步骤1、2、3和10中,所述洁净的衬底1为导电或半绝缘的硅、碳化硅、蓝宝石、氮化铝、氮化镓、氧化锌或金刚石;所述高阻缓冲层2为铁、碳或镁掺杂的GaN与AlGaN、AlN组合的多层结构;所述n沟道层3为非故意掺杂的GaN和InGaN的单层或多层组合结构,厚度大于10nm;所述势垒层4为非故意掺杂的AlGaN和InAlGaN的单层或多层组合结构,势垒层禁带宽度高于沟道层,厚度小于30nm;所述p沟道层5为p型轻掺杂的GaN和InGaN的单层或多层组合结构,掺杂浓度低于5E18cm-3,厚度大于10nm;所述p型插入层6为p型轻掺杂的AlGaN或InAlGaN,掺杂浓度低于1E18cm-3,厚度小于10nm;所述p沟阈值调制层7为n型掺杂的GaN和InGaN的单层或多层组合结构,掺杂浓度高于1E19cm-3,厚度大于30nm;所述p沟栅流抑制层8为非故意掺杂GaN和InGaN的单层或多层组合结构,厚度小于50nm。
进一步的,在步骤2和步骤3中,所述刻蚀掩模层9和刻蚀掩模层10为采用热蒸发、溅射或化学气相沉积的Si3N4、SiO2、Al2O3或Al的单层或多层结构,可采用氟基等离子体刻蚀或氢氟酸进行刻蚀。
进一步的,在步骤2、3和7中所述p沟栅流抑制层8、p沟阈值调制层7、p型插入层6、p沟道层5和n沟栅流抑制层13的刻蚀采用氯和氧混合等离子体进行刻蚀,刻蚀功率低于20W。
进一步的,在步骤4中,所述再生长掩模层11为SiO2介质,介质厚度大于再生长材料的2倍。
进一步的,在步骤5中,所述氧等离子体功率大于100W;所述酸性溶液为不含氢氟酸的强酸性溶液;所述碱性溶液为不含金属离子的碱性溶液;在步骤5、6和7所述n沟阈值调制层12和n沟栅流抑制层13为GaN和InGaN的单层或多层组合结构,其中n沟阈值调制层12需要进行p型高掺杂,掺杂浓度高于1E19cm-3,厚度大于50nm,n沟栅流抑制层13非故意掺杂,厚度小于50nm。
进一步的,在步骤8中,所述p沟器件欧姆接触金属层15为Ni、Pt、Au等具有高功函数的金属和Al等具有高电导率金属组成的多层结构,其中具有高功函数的金属和半导体材料直接接触。
进一步的,在步骤9中,所述n沟道器件欧姆接触层16,为Ti、Al、TiN、TaN等具有低功函数的金属和Al、Au等具有高电导率金属组成的多层结构,具有低功函数的金属与半导体材料直接接触,合金在氮气或氩气等惰性气体中开展,处理温度在500度到800度之间。
进一步的,在步骤10中,所述高能粒子为硼、镁等无法形成n型掺杂的元素形成的粒子,注入能量高于30KeV,注入计量高于1E14cm-2
进一步的,在步骤11中,所述氮等离子体处理功率低于10W;在步骤11到13中,所述表面钝化层18为Si3N4或AlN介质,介质生长时间和氮等离子体处理间隔小于30min。
进一步的,在步骤12中,所述栅金属接触层19为TiN、W、Ni等难容性金属作为第一层的多层结构,第一层金属厚度低于100nm;所述低温处理温度在200到400度之间。
下面结合实施例和附图对本发明的制备方法进行详细说明。
实施例
一种n沟道和p沟道增强型GaN器件集成结构的制备方法,具体步骤如下:
(1)在洁净的导电Si衬底1上利用MOCVD依次外延生长碳掺杂的50nm AlN/500nmAlGaN/500nm GaN高阻缓冲层2,300nm非故意掺杂GaN n沟道层3、15nm AlGaN势垒层4、100nm掺杂浓度2E17cm-3的镁掺杂GaN p沟道层5、3nm掺杂浓度1E17cm-3的镁掺杂AlGaN p型插入层6、50nm掺杂浓度3E19cm-3的硅掺杂InGaN p沟阈值调制层7和30nm非意掺杂GaN p沟栅流抑制层8,如图2(a)所示;
(2)利用PECVD在样品表面生长200nm Si3N4刻蚀掩模层9,通过常规光刻、显影工艺,利用光刻胶定义刻蚀区域,然后利用ICP刻蚀设备,采用六氟化硫刻蚀气体刻蚀无光刻胶保护区域的Si3N4刻蚀掩模层9,通过丙酮、乙醇和去离子水去除光刻胶,以剩余Si3N4刻蚀掩模层9为掩模,利用ICP刻蚀设备,采用氯和氧刻蚀气体,刻蚀功率5W,依次刻蚀无掩模区域p沟栅流抑制层8、p沟阈值调制层7和p型插入层6,如图2(b)所示;
(3)利用PECVD在样品表面淀积100nm SiO2刻蚀掩模层10,通过常规光刻、显影工艺,利用光刻胶定义刻蚀区域,然后利用ICP刻蚀设备,采用六氟化硫刻蚀气体刻蚀无光刻胶保护区域的SiO2刻蚀掩模层10,通过丙酮、乙醇和去离子水去除光刻胶,以剩余SiO2刻蚀掩模层10为掩模,利用ICP刻蚀设备,采用氯刻蚀气体,刻蚀功率5W,刻蚀无掩模区域p沟道层5,如图2(c)所示;
(4)利用氢氟酸和水的混合溶液(体积比1:10)去除Si3N4刻蚀掩模层9和SiO2刻蚀掩模层10,利用PECVD在样品表面淀积300nm SiO2选择再生长掩模层11,通过常规光刻、显影工艺,利用光刻胶定义选择再生长窗口区域,然后利用ICP刻蚀设备,采用六氟化硫刻蚀气体刻蚀无光刻胶保护区域的SiO2刻蚀再生长掩模层11,通过丙酮、乙醇和去离子水去除光刻胶,如图2(d)所示;
(5)利用200W氧等离子体表面处理10分钟,然后用盐酸溶液(浓盐酸(37%)和水体积比1:1)浸泡1分钟,氨水浸泡1分钟,用去离子水冲洗干净吹干,然后利用MOCVD在样品表面依次外延生长100nm掺杂浓度3E19cm-3的镁掺杂GaN n沟阈值调制层12和20nm非故意掺杂GaN n沟栅流抑制层13,如图2(e)所示;
(6)利用氢氟酸缓冲溶液在超声下去除选择SiO2再生长掩模层11及其上的GaN n沟阈值调制层12和GaN n沟栅流抑制层13,如图2(f)所示;
(7)在样品表面旋涂光刻胶掩模14,通过常规光刻、显影工艺,利用光刻胶定义刻蚀区域,然后利用ICP刻蚀设备,采用氯刻蚀气体,刻蚀功率2W,刻蚀无光刻胶保护区域的GaN n沟栅流抑制层13,如图2(g)所示;
(8)利用电子束蒸发台在样品表面淀积30nm Ni/200nm Au p沟器件欧姆接触金属层15,然后利用正胶剥离的方法去除光刻胶掩模14以外的Ni/Au p沟器件欧姆接触金属层15,如图2(h)所示;
(9)通过常规光刻、显影工艺,利用光刻胶定义n沟道器件欧姆接触区域,利用热蒸发等方法淀积20nm Ti/150nm Al/10nm Ti n沟道器件欧姆接触层16,然后利用正胶剥离的方法去除光刻胶定义n沟道器件欧姆接触区域以外的n沟道器件欧姆接触层16,利用热处理设备,在氮气下600度处理1分钟,如图2(i)所示;
(10)通过常规光刻、显影工艺,利用光刻胶定义器件隔离区域,在50KeV下注入4E14cm-2的硼离子到势垒层4、n沟道层3和部分高阻缓冲层2中形成隔离层17,如图2(j)所示;
(11)利用有丙酮和乙醇分别在超声下去除离子注入时的光刻胶,利用RIE设备,在5W的氮等离子体下表面处理1分钟,随后利用PECVD在样品表面淀积300nm Si3N4表面钝化层18,如图2(k)所示;
(12)通过常规光刻、显影工艺,利用光刻胶定义n沟道器件和p沟道器件栅接触区域,利用ICP设备,采用六氟化硫气体刻蚀无光刻胶保护区域的Si3N4表面钝化层18,然后利用磁控溅射台,溅射30nm TiN/100nm Al栅金属接触层19,利用正胶剥离的方法去除光刻胶定义n沟道器件和p沟道器件栅接触区域以外的栅金属接触层19,在氮气保护下300度处理10分钟,如图2(l)所示;
(13)通过常规光刻、显影工艺,利用光刻胶定义n沟道器件和p沟道器件欧姆接触压块区域,利用ICP设备,采用六氟化硫气体刻蚀无光刻胶保护区域的表面钝化层18,通过丙酮和乙醇去除光刻胶,如图2(m)所示。
本发明针对采用MIS结构实现n沟道和p沟道增强型GaN器件集成中存在界面态密度高,容易导致器件阈值电压漂移和可靠性降低的问题,通过采用JFET器件结构来实现n沟道和p沟道增强型GaN器件,基于选择再生长等技术实现了新结构n沟道和p沟道增强型GaN器件集成的方法,具有器件阈值电压均匀性高、稳定性高、与现有GaN微波器件和电力电子器件集成兼容性高的特点,可应用于n沟道和p沟道增强型GaN器件以及逻辑集成电路的研制生产中。

Claims (10)

1.一种n沟道和p沟道增强型GaN器件集成结构的制备方法,其特征在于,包括以下步骤:
步骤1:在洁净的衬底(1)上依次外延生长高阻缓冲层(2)、n沟道层(3)、势垒层(4)、p沟道层(5)、p型插入层(6)、p沟阈值调制层(7)和p沟栅流抑制层(8);
步骤2:在样品表面生长第一刻蚀掩模层(9),通过光刻、显影工艺,利用光刻胶定义刻蚀区域,然后刻蚀无光刻胶保护区域的第一刻蚀掩模层(9),通过有机清洗剂去除光刻胶,以剩余第一刻蚀掩模层(9)为掩模依次刻蚀无掩模区域的p沟栅流抑制层(8)、p沟阈值调制层(7)和p型插入层(6);
步骤3:在样品表面淀积第二刻蚀掩模层(10),通过光刻、显影工艺,利用光刻胶定义刻蚀区域,然后刻蚀无光刻胶保护区域的第二刻蚀掩模层(10),通过有机清洗剂去除光刻胶,以剩余第二刻蚀掩模层(10)为掩模刻蚀无掩模区域p沟道层(5);
步骤4:利用湿法腐蚀的方法,去除第一刻蚀掩模层(9)和第二刻蚀掩模层(10),在样品表面淀积选择再生长掩模层(11),通过光刻、显影工艺,利用光刻胶定义选择再生长窗口区域,然后刻蚀无光刻胶保护区域的刻蚀再生长掩模层(11),通过有机清洗剂去除光刻胶;
步骤5:利用氧等离子体进行表面处理,然后通过酸性和碱性溶液对表面进行表面清洁,然后在样品表面依次外延生长n沟阈值调制层(12)和n沟栅流抑制层(13);
步骤6:利用氢氟酸缓冲溶液在超声下去除选择再生长掩模层(11)及其上的n沟阈值调制层(12)和n沟栅流抑制层(13);
步骤7:在样品表面旋涂光刻胶掩模(14),通过光刻、显影工艺,利用光刻胶定义刻蚀区域,然后刻蚀无光刻胶保护区域的n沟栅流抑制层(13);
步骤8:在样品表面淀积p沟器件欧姆接触金属层(15),然后利用正胶剥离的方法去除光刻胶掩模(14)以外的p沟器件欧姆接触金属层(15);
步骤9:通过光刻、显影工艺,利用光刻胶定义n沟道器件欧姆接触区域,淀积n沟道器件欧姆接触层(16),然后利用正胶剥离的方法去除光刻胶定义n沟道器件欧姆接触区域以外的n沟道器件欧姆接触层(16),在惰性气体的保护下进行合金处理;
步骤10:通过光刻、显影工艺,利用光刻胶定义器件隔离区域,利用离子注入技术在势垒层(4)、n沟道层(3)和部分高阻缓冲层(2)中注入高能粒子形成隔离层(17);
步骤11:利用有机溶剂在超声下去除离子注入时的光刻胶,利用氮等离子体进行表面处理,随后在样品表面淀积表面钝化层(18);
步骤12:通过光刻、显影工艺,利用光刻胶定义n沟道器件和p沟道器件栅接触区域,刻蚀无光刻胶保护区域的表面钝化层(18),然后淀积栅金属接触层(19),然后利用正胶剥离的方法去除光刻胶定义n沟道器件和p沟道器件栅接触区域以外的栅金属接触层(19),在惰性气体的保护下进行低温处理;
步骤13:通过光刻、显影工艺,利用光刻胶定义n沟道器件和p沟道器件欧姆接触压块区域,刻蚀无光刻胶保护区域的表面钝化层(18),通过有机清洗剂去除光刻胶。
2.根据权利要求1所述的n沟道和p沟道增强型GaN器件集成结构的制备方法,其特征在于,在步骤1、2、3和10中,所述洁净的衬底(1)为导电或半绝缘的硅、碳化硅、蓝宝石、氮化铝、氮化镓、氧化锌或金刚石;所述高阻缓冲层(2)为铁、碳或镁掺杂的GaN与AlGaN、AlN组合的多层结构;所述n沟道层(3)为非故意掺杂的GaN和InGaN的单层或多层组合结构,厚度大于10nm;所述势垒层(4)为非故意掺杂的AlGaN和InAlGaN的单层或多层组合结构,势垒层禁带宽度高于沟道层,厚度小于30nm;所述p沟道层(5)为p型轻掺杂的GaN和InGaN的单层或多层组合结构,掺杂浓度低于5E18cm-3,厚度大于10nm;所述p型插入层(6)为p型轻掺杂的AlGaN或InAlGaN,掺杂浓度低于1E18cm-3,厚度小于10nm;所述p沟阈值调制层(7)为n型掺杂的GaN和InGaN的单层或多层组合结构,掺杂浓度高于1E19cm-3,厚度大于30nm;所述p沟栅流抑制层(8)为非故意掺杂GaN和InGaN的单层或多层组合结构,厚度小于50nm。
3.根据权利要求1所述的n沟道和p沟道增强型GaN器件集成结构的制备方法,其特征在于,在步骤2和步骤3中,所述第一刻蚀掩模层(9)和第二刻蚀掩模层(10)为采用热蒸发、溅射或化学气相沉积的Si3N4、SiO2、Al2O3或Al的单层或多层结构,采用氟基等离子体刻蚀或氢氟酸进行刻蚀。
4.根据权利要求1所述的n沟道和p沟道增强型GaN器件集成结构的制备方法,其特征在于,在步骤2、3和7中所述p沟栅流抑制层(8)、p沟阈值调制层(7)、p型插入层(6)、p沟道层(5)和n沟栅流抑制层(13)的刻蚀采用氯和氧混合等离子体进行刻蚀,刻蚀功率低于20W。
5.根据权利要求1所述的n沟道和p沟道增强型GaN器件集成结构的制备方法,其特征在于,在步骤4中,所述再生长掩模层(11)为SiO2介质,介质厚度大于再生长材料的2倍。
6.根据权利要求1所述的n沟道和p沟道增强型GaN器件集成结构的制备方法,其特征在于,在步骤5中,所述氧等离子体功率大于100W;所述酸性溶液为不含氢氟酸的强酸性溶液;所述碱性溶液为不含金属离子的碱性溶液;在步骤5、6和7所述n沟阈值调制层(12)和n沟栅流抑制层(13)为GaN和InGaN的单层或多层组合结构,其中n沟阈值调制层(12)需要进行p型高掺杂,掺杂浓度高于1E19cm-3,厚度大于50nm,n沟栅流抑制层(13)非故意掺杂,厚度小于50nm。
7.根据权利要求1所述的n沟道和p沟道增强型GaN器件集成结构的制备方法,其特征在于,在步骤8中,所述p沟器件欧姆接触金属层(15)为具有高功函数的金属和具有高电导率金属组成的多层结构,其中具有高功函数的金属和半导体材料直接接触;步骤9中,所述n沟道器件欧姆接触层(16)为具有低功函数的金属和具有高电导率金属组成的多层结构,具有低功函数的金属与半导体材料直接接触,合金在惰性气体中开展,处理温度在500度到800度之间。
8.根据权利要求1所述的n沟道和p沟道增强型GaN器件集成结构的制备方法,其特征在于,在步骤10中,所述高能粒子为硼或镁,注入能量高于30KeV,注入计量高于1E14cm-2
9.根据权利要求1所述的n沟道和p沟道增强型GaN器件集成结构的制备方法,其特征在于,在步骤11中,所述氮等离子体处理功率低于10W;在步骤11到13中,所述表面钝化层(18)为Si3N4或AlN介质,介质生长时间和氮等离子体处理间隔小于30min。
10.根据权利要求1所述的n沟道和p沟道增强型GaN器件集成结构的制备方法,其特征在于,在步骤12中,所述栅金属接触层(19)为TiN、W或Ni作为第一层的多层结构,第一层金属厚度低于100nm;所述低温处理温度在200到400度之间。
CN201911236980.4A 2019-12-05 2019-12-05 n沟道和p沟道增强型GaN器件集成结构的制备方法 Active CN111048471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911236980.4A CN111048471B (zh) 2019-12-05 2019-12-05 n沟道和p沟道增强型GaN器件集成结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911236980.4A CN111048471B (zh) 2019-12-05 2019-12-05 n沟道和p沟道增强型GaN器件集成结构的制备方法

Publications (2)

Publication Number Publication Date
CN111048471A CN111048471A (zh) 2020-04-21
CN111048471B true CN111048471B (zh) 2022-08-16

Family

ID=70234755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911236980.4A Active CN111048471B (zh) 2019-12-05 2019-12-05 n沟道和p沟道增强型GaN器件集成结构的制备方法

Country Status (1)

Country Link
CN (1) CN111048471B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627908B (zh) * 2020-05-29 2023-08-29 宁波铼微半导体有限公司 一种GaN基CMOS器件及其制备方法
CN112670340B (zh) * 2020-12-14 2022-12-23 南方科技大学 P型栅hemt器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666359A (zh) * 2017-03-29 2018-10-16 北京大学 一种利用新型势垒层提高GaN增强型沟道迁移率的器件结构及实现方法
CN107393958A (zh) * 2017-04-25 2017-11-24 中国电子科技集团公司第五十五研究所 低导通电阻高阈值电压增强型GaN器件的制备方法
CN107170671A (zh) * 2017-06-22 2017-09-15 广东省半导体产业技术研究院 一种基于离子注入的GaN功率器件及其制造方法
CN107240605A (zh) * 2017-06-23 2017-10-10 北京华进创威电子有限公司 一种GaN MIS沟道HEMT器件及制备方法

Also Published As

Publication number Publication date
CN111048471A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
US9502524B2 (en) Compound semiconductor device having gallium nitride gate structures
CN101252088B (zh) 一种增强型A1GaN/GaN HEMT器件的实现方法
US8653558B2 (en) Semiconductor device and method of making
CN110112215B (zh) 兼具栅介质与刻蚀阻挡功能结构的功率器件及制备方法
CN103137476A (zh) 具有钝化以及栅极电介质多层结构的GaN高压HFET
JP2008227501A (ja) 窒化物ベースのトランジスタのための窒化アルミニウムを含むキャップ層およびその作製方法
WO2009012536A1 (en) Damascene contacts on iii-v cmos devices
CN108649071B (zh) 半导体器件及其制造方法
CN102130160A (zh) 槽形沟道AlGaN/GaN增强型HEMT器件及制作方法
CN108565283A (zh) GaN基T型栅高频器件及其制备方法和应用
TW201407776A (zh) 高電子移動率電晶體及其形成方法
WO2018032601A1 (zh) GaN基增强型HEMT器件的制备方法
JP5546104B2 (ja) GaN系電界効果トランジスタ
CN111048471B (zh) n沟道和p沟道增强型GaN器件集成结构的制备方法
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
CN109950324A (zh) p型阳极的Ⅲ族氮化物二极管器件及其制作方法
JP2004311869A (ja) 窒化物半導体系電界効果トランジスタとその製造方法
JP3630068B2 (ja) 半導体装置の製造方法
CN113555429A (zh) 高击穿电压和低导通电阻的常开hfet器件及其制备方法
CN108346695A (zh) 基于P-GaN HEMT T型栅高频器件结构及其制备方法和应用
CN109742144B (zh) 一种槽栅增强型mishemt器件及其制作方法
CN113628962B (zh) Ⅲ族氮化物增强型hemt器件及其制造方法
CN103681831B (zh) 高电子迁移率晶体管及其制造方法
CN112820774A (zh) 一种GaN器件及其制备方法
KR102574502B1 (ko) 전력 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant