CN111041421B - 一种形状记忆合金径向梯度薄膜及其制备方法 - Google Patents

一种形状记忆合金径向梯度薄膜及其制备方法 Download PDF

Info

Publication number
CN111041421B
CN111041421B CN201911395862.8A CN201911395862A CN111041421B CN 111041421 B CN111041421 B CN 111041421B CN 201911395862 A CN201911395862 A CN 201911395862A CN 111041421 B CN111041421 B CN 111041421B
Authority
CN
China
Prior art keywords
film
shape memory
memory alloy
pmma
radial gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911395862.8A
Other languages
English (en)
Other versions
CN111041421A (zh
Inventor
王振龙
王振
张甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201911395862.8A priority Critical patent/CN111041421B/zh
Publication of CN111041421A publication Critical patent/CN111041421A/zh
Application granted granted Critical
Publication of CN111041421B publication Critical patent/CN111041421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • C23C14/588Removal of material by mechanical treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种形状记忆合金径向梯度薄膜及其制备方法,属于功能梯度形状记忆合金薄膜领域。本发明要解决狭小空间中需要薄膜具备微小型、高致密性的技术问题。本发明方法:一、Si片依次用去离子水、丙酮、无水乙醇超声清洗;二、通过光刻技术将设计的图形转移到步骤一处理后的Si片上,保证Si片凹槽深度是薄膜单层厚度的奇数倍;三、采用双靶溅射的方式,在惰性气体保护下将Ti和Ni交替溅射到步骤二处理后的Si基片上,磨平;四、然后旋涂PMMA,再置于HF溶液中去除Si片,将突出部分磨平;五、然后置于丙酮溶液中去除PMMA;六、重结晶退火。本发明应用于生物医疗、航空航天等领域,传统记忆合金一般会实现单方向的弯曲,径向梯度薄膜可以实现多方向的弯曲。

Description

一种形状记忆合金径向梯度薄膜及其制备方法
技术领域
本发明属于功能梯度形状记忆合金薄膜领域;具体涉及一种形状记忆合金径向梯度薄膜及其制备方法。
背景技术
功能梯度材料是一种由两相或多相材料组成的结构和性能在材料厚度或长度方向连续或准连续变化的非均质复合材料,它具有许多普通复合材料不具备的优异性能,如消除应力集中、减小残余应力、增强连接强度、减小裂纹驱动力等。形状记忆合金是一种新型智能材料,由于其独特的形状记忆性能和伪弹性,已广泛应用于军事、航空航天、医疗、生物等领域。功能梯度形状记忆合金是一种兼备功能梯度材料特性和形状记忆合金特性的新型功能材料。将形状记忆合金与不同的材料复合,可得到具有不同优异性能的功能梯度-形状记忆合金材料。如NiTi-TiC功能梯度形状记忆合金,NiTi形状记忆合金可以降低最大应力,适应大变形的需要,并能有效地吸收能量,缓解冲击碰撞导致的材料破坏。TiC具有耐磨损、强度高等特性。两种材料复合而成的材料一侧具有形状记忆合金良好的相变特性,另一侧具有TiC的抵抗磨损的特性,而且两种材料成分梯度变化,完美结合,消除了应力集中带来的材料破坏;但是在某些空间狭小的环境,需要材料同时具备微小性、高精度并可产生复杂形变时,这种形状记忆合金梯度薄膜的制备就有些困难。
现有制备形状记忆合金薄膜的方法有真空蒸发法,但由于Ti和Ni的蒸气压不同,导致蒸发速率不同。在最初阶段,Ni的蒸发速率比Ti高,形成富Ni的薄膜,随着沉积过程进行,在熔化的源中Ni含量减少,Ti的蒸发速率开始高于Ni,形成富Ti的薄膜,采用这种方法制备的TiNi薄膜在深度分布上不均匀,有一个从富Ni到富Ti的过程。研究者还发展了许多其它制备形状记忆合金薄膜的方法,如离子束增强沉积的方法、激光熔融方法等。但这些方法均无法同时满足微小型、高致密性、高速性的特点。
发明内容
本发明旨在提供微小空间用形状记忆合金梯度薄膜及其制备问题;本发明将磁控溅射法溅射形状记忆合金与基底形貌设计结合制备形状记忆合金径向梯度薄膜,使产品呈现不同“图案”,本发明解决了狭小空间中需要薄膜具备微小型、高致密性的问题,本发明实现批量快速生产。
为解决上述技术问题,本发明中一种形状记忆合金径向梯度薄膜沿水平方向由依次一体化多个薄膜组件的连接结构;其中,同一薄膜组件沿垂直方向是由Ti薄膜层和Ni薄膜层相互交替叠加而形成的,相邻的薄膜组件的同一水平面Ti薄膜层和Ni薄膜层交替出现,Ti薄膜层和Ni薄膜层的厚度相同且均具备形状记忆效应;具体是通过下述步骤实现的:
步骤一、Si片依次用去离子水、丙酮、无水乙醇超声清洗;
步骤二、通过光刻技术将设计的图形转移到步骤一处理后的Si片上,之后进行湿刻,保证Si片凹槽深度是薄膜单层厚度的奇数倍;
步骤三、采用双靶溅射的方式,在惰性气体保护下将Ti和Ni交替溅射到步骤二处理后的Si基片上,磨平;
步骤四、然后旋涂PMMA,再置于HF溶液中去除Si片,将突出部分磨平;
步骤五、然后置于丙酮溶液中去除PMMA;
步骤六、重结晶退火;得到形状记忆合金径向梯度薄膜。
进一步限定,采用TiNi薄膜层替换Ti薄膜层,同时用Cu薄膜层或者Al薄膜层替换Ni薄膜层。
进一步限定,步骤一超声清洗时间均为5min~10min。
进一步限定,步骤三惰性气体为氩气或者氮气。
进一步限定,步骤三中Ti靶的溅射功率为150W~220W,保护气的气压为5Pa~10Pa,镀膜速率为50nm/min~100nm/min。
进一步限定,步骤三中Ni靶的溅射功率为150W~220W,保护气的气压为5Pa~10Pa,镀膜速率为50nm/min~100nm/min。
进一步限定,步骤三中交替溅射过程中Ti薄膜层的厚度为1μm~5μm。
进一步限定,步骤四中HF溶液的质量浓度为35%~45%。
进一步限定,步骤六中退火温度为500℃~700℃,升、降温速率为10℃/min~15℃/min,保温时间为1h~3h。
磨平用砂纸或者抛光机进行处理。
基底形貌的设计是对双靶磁控溅射方法技术的延伸,通过对溅射基底表面形貌的设计,双靶交替溅射完成之后,通过去除表面多余材料最终实现薄膜材料的径向梯度分布,进而得到形状记忆合金径向梯度薄膜,并呈现不同材料“图案”。
本发明呈径向梯度这样的结构,两种材料成分梯度变化,完美结合,消除了应力集中带来的材料破坏,本发明满足微小型、高致密性、高速性的特点。
本发明使用磁控溅射法,成膜速度快、薄膜致密性好,适合于大批量生产;
本发明利用光刻技术制作基底图案,图案可以很巧妙地通过掩膜和曝光灵活设计,最终可以得到不同弯曲方向的薄膜。
本发明产品应用于本发明应用于生物医疗、航空航天等领域。
附图说明
图1是步骤二光刻技术流程示意图;
图2是凹槽局部示意图;
图3是步骤三至五流程示意图;
图4是溅射态薄膜的XRD图像;
图5是退火态薄膜的XRD图像。
具体实施方式
实施例1:本实施例中一种形状记忆合金径向梯度薄膜沿水平方向由依次一体化5个薄膜组件的连接结构;其中,同一薄膜组件沿垂直方向是由Ti薄膜层和Ni薄膜层相互交替叠加而形成的,相邻的薄膜组件的同一水平面Ti薄膜层和Ni薄膜层交替出现,Ti薄膜层和Ni薄膜层的厚度相同且均具备形状记忆效应;具体是通过下述步骤实现的:
步骤一、Si片依次用去离子水、丙酮、无水乙醇超声清洗,超声清洗时间均为10min,去除Si片表面杂质;
步骤二、通过光刻技术将设计的图形转移到步骤一处理后的Si片上,如图1所示,具体是:在步骤一处理Si片表面涂满型号为10R5A和S1818光刻胶,前烘,曝光,通过光化学反应,将光刻板上的图形转移到光刻胶上,再用KOH溶液进行湿刻,在50℃下以1μm/min的速率进行刻蚀,直至Si片上凹槽深度为5μm,最后显影去除光刻胶;其中KOH溶液是由50gKOH和100ml H2O配置的,按现有工艺参数进行操作即可。
步骤三、采用双靶溅射的方式,溅射靶材为Ti、Ni,在氩气保护下交替溅射到步骤二处理后的Si基片上,溅射功率为220W,氩气气压为5pa,镀膜速率为50nm/min,Ti、Ni每层交替溅射1μm/层,溅射总厚度为20μm,一共耗时400min,然后将突出部分磨平,去除10μm;
步骤四、然后旋涂PMMA,再置于质量浓度为40%HF溶液中去除Si片,将突出部分磨平去除10μm;
步骤五、然后置于丙酮溶液中去除PMMA;
步骤六、重结晶退火:以15℃/min升温至500℃,保温进行1h,再以15℃/min降温至室温;得到形状记忆合金径向梯度薄膜。
凹槽局部示意图如图2所示,由于湿刻原理基于硅单质的晶体取向,(100)晶面的反应速率快,而(111)晶面反应速率最低,因此硅腐蚀所形成的凹坑的角度也就是硅单质中两个晶面的夹角。
溅射态薄膜的XRD图像见图4,由图4可以看出溅射态薄膜已经形成有记忆效应的TiNi合金;由于磁控溅射镀膜机在溅射过程中腔内温度可以达到100℃左右,所以出现了部分晶相。
退火态薄膜的XRD图像参见图5,由图5可知,退火后的薄膜已经发生了重结晶。

Claims (7)

1.一种形状记忆合金径向梯度薄膜,其特征在于所述薄膜沿水平方向由一体化多个薄膜组件依次连接而成;其中,同一薄膜组件沿垂直方向是由Ti薄膜层和Ni薄膜层相互交替叠加而形成的,相邻的薄膜组件的同一水平面Ti薄膜层和Ni薄膜层交替出现,Ti薄膜层和Ni薄膜层的厚度相同且均具备形状记忆效应;
所述形状记忆合金径向梯度薄膜制备方法是通过下述步骤实现的:
步骤一、Si片依次用去离子水、丙酮、无水乙醇超声清洗;
步骤二、通过光刻技术将设计的图形转移到步骤一处理后的Si片上,之后进行湿刻,保证Si片凹槽深度是薄膜单层厚度的奇数倍;
步骤三、采用双靶溅射的方式,在惰性气体保护下将Ti和Ni交替溅射到步骤二处理后的Si基片上,将突出部分磨平;
步骤四、然后旋涂PMMA,再置于HF溶液中去除Si片,将突出部分磨平;
步骤五、然后置于丙酮溶液中去除PMMA;
步骤六、重结晶退火;得到形状记忆合金径向梯度薄膜;
步骤三中Ti靶的溅射功率为150W~220W,保护气的气压为5Pa~10Pa,镀膜速率为50nm/min~100nm/min;
步骤三中Ni靶的溅射功率为150W~220W,保护气的气压为5Pa~10Pa,镀膜速率为50nm/min~100nm/min。
2.如权利要求1所述的一种形状记忆合金径向梯度薄膜的制备方法,其特征在于所述制备方法是通过下述步骤实现的:
步骤一、Si片依次用去离子水、丙酮、无水乙醇超声清洗;
步骤二、通过光刻技术将设计的图形转移到步骤一处理后的Si片上,之后进行湿刻,保证Si片凹槽深度是薄膜单层厚度的奇数倍;
步骤三、采用双靶溅射的方式,在惰性气体保护下将Ti和Ni交替溅射到步骤二处理后的Si基片上,将突出部分磨平;
步骤四、然后旋涂PMMA,再置于HF溶液中去除Si片,将突出部分磨平;
步骤五、然后置于丙酮溶液中去除PMMA;
步骤六、重结晶退火;得到形状记忆合金径向梯度薄膜。
3.根据权利要求2所述制备方法,其特征在于步骤一超声清洗时间均为5min~10min。
4.根据权利要求2所述制备方法,其特征在于步骤三惰性气体为氩气。
5.根据权利要求2所述制备方法,其特征在于步骤三中交替溅射过程中Ti薄膜层的厚度为1μm~5μm。
6.根据权利要求2所述制备方法,其特征在于步骤四中HF溶液的质量浓度为35%~45%;步骤五中丙酮溶液的质量浓度为85%~95%,丙酮溶液是由丙酮和水配置的。
7.根据权利要求2所述制备方法,其特征在于步骤六中退火温度为500℃~700℃,升、降温速率为10℃/min~15℃/min,保温时间为1h~3h。
CN201911395862.8A 2019-12-30 2019-12-30 一种形状记忆合金径向梯度薄膜及其制备方法 Active CN111041421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911395862.8A CN111041421B (zh) 2019-12-30 2019-12-30 一种形状记忆合金径向梯度薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911395862.8A CN111041421B (zh) 2019-12-30 2019-12-30 一种形状记忆合金径向梯度薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111041421A CN111041421A (zh) 2020-04-21
CN111041421B true CN111041421B (zh) 2022-04-22

Family

ID=70241806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911395862.8A Active CN111041421B (zh) 2019-12-30 2019-12-30 一种形状记忆合金径向梯度薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111041421B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071577A1 (en) * 2006-06-05 2009-03-19 Tae-Hyun Nam Process for making ti-ni based functionally graded alloys and ti-ni based functionally graded alloys produced thereby
CN101969095A (zh) * 2010-08-26 2011-02-09 中山大学 准一维纳米结构热电材料、器件及其制备方法
CN103014414A (zh) * 2013-01-04 2013-04-03 哈尔滨工程大学 含有梯度分布成分的TiNi基形状记忆合金及其制备方法
CN103424980A (zh) * 2012-05-16 2013-12-04 信越化学工业株式会社 光掩模坯料、光掩模的制造方法以及相移掩模的制造方法
CN104726826A (zh) * 2015-03-27 2015-06-24 南通南京大学材料工程技术研究院 一种超高硬度Ti-Ni形状记忆合金薄膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166940A (ja) * 1986-12-27 1988-07-11 Nippon Seisen Kk Ni−Ti系機能材料及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071577A1 (en) * 2006-06-05 2009-03-19 Tae-Hyun Nam Process for making ti-ni based functionally graded alloys and ti-ni based functionally graded alloys produced thereby
CN101969095A (zh) * 2010-08-26 2011-02-09 中山大学 准一维纳米结构热电材料、器件及其制备方法
CN103424980A (zh) * 2012-05-16 2013-12-04 信越化学工业株式会社 光掩模坯料、光掩模的制造方法以及相移掩模的制造方法
CN103014414A (zh) * 2013-01-04 2013-04-03 哈尔滨工程大学 含有梯度分布成分的TiNi基形状记忆合金及其制备方法
CN104726826A (zh) * 2015-03-27 2015-06-24 南通南京大学材料工程技术研究院 一种超高硬度Ti-Ni形状记忆合金薄膜的制备方法

Also Published As

Publication number Publication date
CN111041421A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
JP5952272B2 (ja) モリブデンを含有したターゲット
US7892367B2 (en) Tantalum sputtering target
TW201116642A (en) Method of manufacturing sputtering target and sputtering target
JP2007530789A (ja) テクスチャ化結晶粒粉末冶金タンタルスパッタリングターゲット
JP6353262B2 (ja) 多層グラフェンの製造方法
WO2006137225A1 (ja) ガラス成形用金型及びその製造方法
JP5897767B2 (ja) スパッタリングターゲット/バッキングプレート組立体
JP2005528525A (ja) 高純度強磁性スパッタターゲット
CN111041421B (zh) 一种形状记忆合金径向梯度薄膜及其制备方法
CN100468081C (zh) 光学元件
TWI360470B (en) Antisticking mold and manufacturing method thereof
WO2006087873A1 (ja) フレキシブル銅基板用バリア膜及びバリア膜形成用スパッタリングターゲット
JP4650113B2 (ja) 積層構造体、ドナー基板、および積層構造体の製造方法
CN116865704A (zh) 一种声表面波滤波器结构及制备方法
WO2008072664A1 (ja) ガラス成形用金型の製造方法
US20230075685A1 (en) Method for manufacturing a film on a flexible sheet
KR101180372B1 (ko) 마이크로 부품 및 금형의 제조방법
JP2004084059A (ja) 微細パターンを有するメッキ用型、微細金属構造体、微細加工用型、微細パターンを有するメッキ用型の製造方法、および微細金属構造体の製造方法
JP2017043538A (ja) グラフェン膜、複合体、及びそれらの製造方法
KR102463013B1 (ko) 임프린팅용 롤 몰드의 제조방법 및 임프린팅용 롤 몰드
US20110120626A1 (en) Method of producing ultra fine surfacing bulk substrate
TWI570061B (zh) Graphene manufacturing method
JPH11221829A (ja) 薄膜形成用基板及び微小構造体の製造方法
CN115341183B (zh) 一种高精度石英基板镀膜及其生产工艺
TWI299325B (en) Mold and method for making the mold

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant