CN111039576A - 一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法 - Google Patents

一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法 Download PDF

Info

Publication number
CN111039576A
CN111039576A CN201911345826.0A CN201911345826A CN111039576A CN 111039576 A CN111039576 A CN 111039576A CN 201911345826 A CN201911345826 A CN 201911345826A CN 111039576 A CN111039576 A CN 111039576A
Authority
CN
China
Prior art keywords
tio
layer
preparation
solution
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911345826.0A
Other languages
English (en)
Inventor
梁晓平
杨志民
魏峰
赵鸿滨
明安杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN201911345826.0A priority Critical patent/CN111039576A/zh
Publication of CN111039576A publication Critical patent/CN111039576A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种用于钙钛矿太阳能电池的二氧化钛纳米花结构介孔层制备方法,所述介孔层为纳米花结构TiO2,通过水热工艺控制,优化纳米花结构TiO2的形貌,通过旋涂工艺控制,优化介孔层的厚度。由于介孔层有利于电子空穴对分离和电子的传输,可提高钙钛矿太阳能电池的能量转换效率。

Description

一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法
技术领域
本发明涉及钙钛矿太阳能电池制备技术领域,具体为一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法。
背景技术
近年来,钙钛矿型太阳能电池受到人们的广泛关注,因为其具有换能效率高、制作简单、成本低等优点,钙钛矿太阳能电池的结构主要包括:透明导电基底、电子传输层、钙钛矿光敏层、空穴传输层和金属电极,结构如图(1)所示。
其中,透明导电基底常见的主要有FTO和ITO两种材料。用于电子传输层的材料主要有氧化钛、氧化锌和C60。钙钛矿层一般为CH3NH3PbI3。空穴传输材料最常用的有Spiro-OMeTAD和P3HT。电子传输层、钙钛矿层和空穴传输层是钙钛矿太阳能电池结构中重要的组成部分,这些材料的差异会导致太阳能电池效率和稳定性的不同。
二氧化钛作为一种n型半导体常作为电子输运层材料,它具有诸多优点,比如:与钙钛矿相匹配的能级结构、大的能带带隙、在紫外和可见光区域大范围的光透过率,以及低廉的制备成本。为了提升改善钙钛矿层的成膜性能,提升电子空穴对的分离和传输的效率,可以将二氧化钛层制备成介孔结构和致密结构复合的结构,其中介孔结构主要起到增加和钙钛矿晶体的接触面积,增加钙钛矿成核位点,提升电子传输效率的作用;致密层由于结构致密可以起到阻挡空穴输运的作用;除了微观结构,二氧化钛层的厚度也影响着电子传输性能。
发明内容
本发明提供一种能够提高介孔层与钙钛矿光敏层的接触面积、提高钙钛矿太阳能电池光电转换效率的用于钙钛矿太阳能电池的二氧化钛介孔层制备方法。
本发明采用以下技术方案:
一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法,其特征在于,所述制备方法包括以下步骤:
(1)使用一步水热法制备纳米花结构TiO2:将四异丙醇钛和氨水溶液配置成第一溶液后再加入氯化钠粉末得到混合物;将混合物充分搅拌后倒入水热反应釜中加热,得到第二溶液,第二溶液中出现纳米花结构TiO2;将冷却后的第二溶液洗涤至pH值接近7;将纳米花结构TiO2进行干燥和煅烧,得到纳米花结构TiO2粉末;
(2)将纳米花结构TiO2粉末与酒精按质量比1:3~1:30配置成悬浊液,将悬浊液充分搅拌后旋涂在TiO2致密层上,旋涂有悬浊液的TiO2致密层经退火后得到TiO2介孔层。
根据上述的制备方法,其特征在于,步骤(1)中四异丙醇钛和氨水溶液的体积比是1:17~3:17。
根据上述的制备方法,其特征在于,步骤(1)混合物中的氯化钠浓度是0.1mol/L~1mol/L。
根据上述的制备方法,其特征在于,步骤(1)中水热反应釜的加热温度是100℃~320℃、加热时间为12h~36h。
根据上述的制备方法,其特征在于,步骤(1)中纳米花结构TiO2的煅烧温度是300℃~500℃、煅烧时间为0.5h~2.5h。
根据上述的制备方法,其特征在于,步骤(2)中悬浊液旋涂在TiO2致密层上的旋涂转速为3000r/min~4500r/min;旋涂有悬浊液的TiO2致密层的退火温度为150℃~300℃、退火时间为0.5h~2.5h。
本发明的有益技术效果:本发明旨在解决纳米花结构TiO2介孔层的制备方法,通过水热工艺控制,优化纳米花结构TiO2的形貌,通过旋涂工艺控制,优化介孔层的厚度,使介孔层有利于电子空穴对分离和电子的传输,提高钙钛矿太阳能电池的光电转换效率。通过水热法制备的纳米花结构TiO2介孔层具有更大的比表面积,与钙钛矿吸光层有更好的接触,从而提高光电转换效率。用旋涂法制备纳米花结构二氧化钛介孔层时,通过改变旋涂速度和时间控制层厚,操作简单易行。
附图说明
图1为钙钛矿太阳能电池的结构示意图。
具体实施方式
一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法,包括以下步骤:(1)使用一步水热法制备纳米花结构TiO2;将四异丙醇钛和氨水溶液配置成第一溶液后再加入氯化钠粉末得到混合物,四异丙醇钛和氨水溶液的体积比是1:17~3:17,混合物中的氯化钠溶液的浓度是0.1mol/L~1mol/L。将混合物充分搅拌后倒入水热反应釜中加热,得到第二溶液,第二溶液中出现纳米花结构TiO2,水热反应釜的加热温度是100℃~320℃、加热时间为12h~36h。将冷却后的第二溶液洗涤至pH值接近7;将制备的纳米花结构TiO2进行干燥和煅烧,得到纳米花结构TiO2粉末;纳米花结构TiO2的煅烧温度是300℃~500℃、煅烧时间为0.5h~2.5h。(2)将纳米花结构TiO2粉末与酒精按质量比1:3~1:30配置成悬浊液,将悬浊液充分搅拌后旋涂在TiO2致密层上,悬浊液旋涂在TiO2致密层上的旋涂转速为3000r/min~4500r/min;旋涂有悬浊液的TiO2致密层经退火后得到TiO2介孔层,旋涂有悬浊液的TiO2致密层的退火温度为150℃~300℃、退火时间为0.5h~2.5h。
实施例1
制备两个FTO/TiO2致密层/TiO2介孔层/CH3NH3PbI3/P3HT/Au太阳能电池,为控制变量,仅纳米花结构TiO2介孔层制备方法不同,其余层原料、制备方法、工艺参数均相同。
样品一采用磁控法制备TiO2致密层。
TiO2致密层制备:以TiO2为靶材,真空度为3×10-4Pa,在1Pa、60W的条件下在FTO基片上沉积TiO2致密层。通入气体总流量20sccm,Ar、O2流量比为9:1。制备的致密层的厚度为25nm。
样品二采用磁控溅射制备TiO2致密层,水热法制备纳米花结构TiO2介孔层。
TiO2致密层制备:制备的TiO2致密层的厚度为25nm,同样品一。
TiO2介孔层制备:将四异丙醇钛和氨水溶液以1.95mL:17mL的比例配置成第一溶液,加入0.275g的氯化钠粉末得到混合物。充分搅拌后倒入水热反应釜中,在烘箱中180℃的条件下加热24h,得到第二溶液。将冷却后的第二溶液离心洗涤至中性。将制备的纳米花结构TiO2干燥24h,并在400℃高温煅烧1h。将纳米花TiO2粉末与酒精按质量比1:10配置成悬浊液,将悬浊液充分搅拌后以4000r/min旋涂在TiO2致密层上,旋涂有悬浊液的TiO2致密层在200℃加热1h后得到TiO2介孔层。制备的TiO2介孔层的厚度为250nm。
完成后用同样工序制备钙钛矿层CH3NH3PbI3、空穴传输层P3HT、电极层Au。然后进行测试,测试结果见表1。
表1不同电子传输层TiO2的钙钛矿太阳能电池主要性能参数
Figure BDA0002333321430000041
样品二采用水热法制备纳米花结构TiO2介孔层制备的钙钛矿太阳能电池的转换效率高于样品一。

Claims (6)

1.一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法,其特征在于,所述制备方法包括以下步骤:
(1)使用一步水热法制备纳米花结构TiO2:将四异丙醇钛和氨水溶液配置成第一溶液后再加入氯化钠粉末得到混合物;将混合物充分搅拌后倒入水热反应釜中加热,得到第二溶液,第二溶液中出现纳米花结构TiO2;将冷却后的第二溶液洗涤至pH值接近7;将纳米花结构TiO2进行干燥和煅烧,得到纳米花结构TiO2粉末;
(2)将纳米花结构TiO2粉末与酒精按质量比1:3~1:30配置成悬浊液,将悬浊液充分搅拌后旋涂在TiO2致密层上,旋涂有悬浊液的TiO2致密层经退火后得到TiO2介孔层。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中四异丙醇钛和氨水溶液的体积比是1:17~3:17。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)混合物中的氯化钠浓度是0.1mol/L~1mol/L。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中水热反应釜的加热温度是100℃~320℃、加热时间为12h~36h。
5.根据权利要求1所述的制备方法,其特征在于,步骤(1)中纳米花结构TiO2的煅烧温度是300℃~500℃、煅烧时间为0.5h~2.5h。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)中悬浊液旋涂在TiO2致密层上的旋涂转速为3000r/min~4500r/min;旋涂有悬浊液的TiO2致密层的退火温度为150℃~300℃、退火时间为0.5h~2.5h。
CN201911345826.0A 2019-12-24 2019-12-24 一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法 Pending CN111039576A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911345826.0A CN111039576A (zh) 2019-12-24 2019-12-24 一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911345826.0A CN111039576A (zh) 2019-12-24 2019-12-24 一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法

Publications (1)

Publication Number Publication Date
CN111039576A true CN111039576A (zh) 2020-04-21

Family

ID=70238891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911345826.0A Pending CN111039576A (zh) 2019-12-24 2019-12-24 一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法

Country Status (1)

Country Link
CN (1) CN111039576A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105016382A (zh) * 2014-04-30 2015-11-04 中国科学院化学研究所 一种纯金红石型二氧化钛纳米棒的制备方法
CN105129849A (zh) * 2015-09-17 2015-12-09 上海大学 花状二氧化钛纳米材料及其无模板制备方法
CN105870336A (zh) * 2016-06-01 2016-08-17 华东师范大学 一种介孔型钙钛矿太阳能电池
CN106910826A (zh) * 2017-02-13 2017-06-30 常州大学 新型介孔结构钙钛矿太阳能电池及其制备方法
CN107919438A (zh) * 2017-11-06 2018-04-17 南京航空航天大学 用于钙钛矿太阳能电池的二氧化钛电子传输层及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105016382A (zh) * 2014-04-30 2015-11-04 中国科学院化学研究所 一种纯金红石型二氧化钛纳米棒的制备方法
CN105129849A (zh) * 2015-09-17 2015-12-09 上海大学 花状二氧化钛纳米材料及其无模板制备方法
CN105870336A (zh) * 2016-06-01 2016-08-17 华东师范大学 一种介孔型钙钛矿太阳能电池
CN106910826A (zh) * 2017-02-13 2017-06-30 常州大学 新型介孔结构钙钛矿太阳能电池及其制备方法
CN107919438A (zh) * 2017-11-06 2018-04-17 南京航空航天大学 用于钙钛矿太阳能电池的二氧化钛电子传输层及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AGATINO DI PAOLA等: "Brookite, the Least Known TiO2 Photocatalyst", 《CATALYSTS》 *
中国环境科学学会编: "《中国环境科学学会学术年会论文集 2011 第4卷》", 30 November 2011, 北京:中国环境科学出版社 *
朱彤珺著: "《静电喷雾法制备太阳能电池》", 30 November 2018, 郑州:黄河水利出版社 *
王玉玲等: "低温溶液旋涂法制备钙钛矿太阳能电池用介孔TiO2及其特征", 《西南科技大学学报》 *

Similar Documents

Publication Publication Date Title
CN107359246B (zh) 一种甲胺铅碘钙钛矿太阳能电池的制作方法
CN105609643B (zh) 一种钙钛矿型太阳能电池及制备方法
US11476432B2 (en) Inverted thick 2D hybrid perovskite solar cell insensitive to film thickness and method for preparing the same
CN108807694B (zh) 一种超低温稳定的平板钙钛矿太阳能电池及其制备方法
CN109728169B (zh) 一种掺杂有功能添加剂的钙钛矿太阳电池及其制备方法
CN109768167B (zh) 无电流迟滞的钙钛矿太阳电池及其制备方法
CN112490363B (zh) 一种基于磁控溅射氧化锌/二氧化锡双电子传输层的钙钛矿太阳能电池制备方法
CN113346025B (zh) 一种高性能钙钛矿室内光伏器件及其制备方法
CN106282926A (zh) 一种室温溅射法制备二氧化钛薄膜的方法
CN104036963A (zh) 全固态有机-无机杂化钙钛矿太阳电池的制备方法
CN115440893B (zh) 基于4-羟基苯乙基卤化铵盐修饰层的锡铅钙钛矿太阳能电池及其制备方法
CN111261783B (zh) 一种新型电子传输层钙钛矿太阳能电池及其制备方法
CN111244220B (zh) 一种全无机p/n异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN108832001B (zh) 一种无铅钙钛矿太阳能电池器件及其制备方法
CN110335947B (zh) 一种pct铁电可调控钙钛矿太阳能电池及其制备方法
CN116847670A (zh) 一种钝化复合空穴传输层的钙钛矿太阳能电池
CN114883503A (zh) 少层TiO2-MXene复合材料及其制备方法和应用
CN114678472A (zh) 一种FAPbI3钙钛矿薄膜及其高效的钙钛矿太阳能电池的方法
CN116669504A (zh) 一种表面平整的CsPbBr3钙钛矿薄膜太阳电池及其制备方法
CN106410034A (zh) 一种具有热致变色性能的钙钛矿太阳能电池及其制备方法
Xiang et al. Mixed-phase Mesoporous TiO 2 Film for High Efficiency Perovskite Solar Cells
CN109935652B (zh) 一种CdTe纳米晶太阳电池及其制备方法
CN110634965B (zh) 一种全无机钙钛矿太阳能电池及其制备方法
CN111039576A (zh) 一种用于钙钛矿太阳能电池的二氧化钛介孔层制备方法
CN107799654A (zh) 一种高效率平面钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200421

RJ01 Rejection of invention patent application after publication