CN110961119B - 一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法 - Google Patents

一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法 Download PDF

Info

Publication number
CN110961119B
CN110961119B CN201911355315.7A CN201911355315A CN110961119B CN 110961119 B CN110961119 B CN 110961119B CN 201911355315 A CN201911355315 A CN 201911355315A CN 110961119 B CN110961119 B CN 110961119B
Authority
CN
China
Prior art keywords
znfe
zno
powder
photocatalyst
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911355315.7A
Other languages
English (en)
Other versions
CN110961119A (zh
Inventor
刘振兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Institute of Technology
Original Assignee
Shaanxi Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Institute of Technology filed Critical Shaanxi Institute of Technology
Priority to CN201911355315.7A priority Critical patent/CN110961119B/zh
Publication of CN110961119A publication Critical patent/CN110961119A/zh
Application granted granted Critical
Publication of CN110961119B publication Critical patent/CN110961119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法,具体包括如下步骤:步骤1,制备ZnO‑ZnFe2O4粉体;步骤2,配置AgNO3溶液,根据AgNO3溶液与步骤1制备的ZnO‑ZnFe2O4粉体制备Ag2O‑ZnO‑ZnFe2O4粉体光催化剂。本发明通过将Ag2O,ZnO和ZnFe2O4三种物质进行有效复合,光催化剂粉体粒径大小为0.5μm‑1000μm,且具有磁性,易于与污水进行有效分离回收,使该催化剂在治理污水处理方面具有实际应用价值。

Description

一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法
技术领域
本发明属于环境保护技术领域,涉及一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法。
背景技术
光催化剂被称为绿色催化剂,对污水中的污染物的处理具有能耗低、无二次污染、深度氧化等优点而备受重视。其中光催化剂的成分决定光催化效率和多次可循环使用的实用性的关键。传统光催化剂的粒径小,在水流的冲击作用下,不利于其与降解液得到有效的分离,容易造成二次污染,限制了其广泛的应用。ZnFe2O4禁带宽度为1.9eV,在可见光照射下便可使光生电子-空穴对进行有效的分离,而且具有别的光催化材料所不具有的性能—磁性能,在外加电场存在的情况下,使其和污水可以进行有效的分离。然而纯相的ZnFe2O4光生电子-空穴对的复合效率很高,严重的限制了在光催化领域的应用。研究表明,采用别的半导体光催化剂与ZnFe2O4进行复合得到的复合光催化剂较ZnFe2O4的催化性能有显著提高。
发明内容
本发明的目的是提供一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法,通过该方法制得的催化剂粉体粒径大小为0.5μm-1000μm,该催化剂具有磁性,易于与污水进行有效分离。
本发明所采用的技术方案是,一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法,具体包括如下步骤:
步骤1,制备ZnO-ZnFe2O4粉体;
步骤2,配置AgNO3溶液,根据AgNO3溶液与步骤1制备的ZnO-ZnFe2O4粉体制备Ag2O-ZnO-ZnFe2O4粉体光催化剂。
本发明的特点还在于,
步骤1的具体过程为:配制包含有锌离子和铁离子的混合溶液A,在50~100℃下,对混合溶液A进行搅拌干燥,随后在马弗炉里进行煅烧,以0.5-3℃/min升温速率升至300-1100℃,保温1-5h,随后自然冷却,得到ZnO-ZnFe2O4的块状物质,研磨后,得ZnO-ZnFe2O4粉体。
步骤1中,混合溶液A中锌离子和铁离子的摩尔比为1:0.1-1。
步骤1中,混合溶液A中的锌离子和铁离子从锌盐和铁盐中获得。
铁盐和锌盐为氯化盐、硝酸盐、有机盐中的至少一种。
步骤2的具体过程为:
在黑暗条件下配置100mL浓度为0.1-1g/L的AgNO3溶液,将步骤1得到的ZnO-ZnFe2O4粉体加入到AgNO3溶液中,在磁力搅拌的条件下加入浓度为0.01-1mol/L的NaOH溶液1-10mL,随后洗涤,真空干燥,得到Ag2O-ZnO-ZnFe2O4粉体光催化剂。
步骤2中,ZnO-ZnFe2O4粉体的质量和AgNO3溶液的体积比为100:1g/L。
本发明的有益效果是,本发明提供的一种Ag和ZnO复合磁性可分离光催化剂,通过将Ag2O,ZnO和ZnFe2O4三种物质进行有效复合,光催化剂粉体粒径大小为0.5μm-1000μm,且具有磁性,易于与污水进行有效分离回收,使该催化剂在治理污水处理方面具有实际应用价值。
附图说明
图1是本发明一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法实施例1中制得的Ag2O-ZnO-ZnFe2O4粉体的X射线衍射图谱;
图2是本发明一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法实施例1中制得的Ag2O-ZnO-ZnFe2O4粉体光催化剂在可见光照射下降解罗丹明B的曲线。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法,具体包括如下步骤:
步骤1,制备ZnO-ZnFe2O4粉体;
步骤1的具体过程为:配制包含有锌离子和铁离子的混合溶液A,在50~100℃下,对混合溶液A进行搅拌干燥,随后在马弗炉里进行煅烧,以0.5-3℃/min升温速率升至300-1100℃,保温1-5h,随后自然冷却,得到ZnO-ZnFe2O4的块状物质,研磨后,得ZnO-ZnFe2O4粉体。
步骤1中,混合溶液A中锌离子和铁离子的摩尔比为1:0.1-1。
混合溶液A中锌离子和铁离子浓度分别为1-2mol/L和0.1-2mol/L
步骤1中,混合溶液A中的锌离子和铁离子从锌盐和铁盐中获得。
铁盐和锌盐为氯化盐、硝酸盐、有机盐中的至少一种。
步骤2,配置AgNO3溶液,根据AgNO3溶液与步骤1制备的ZnO-ZnFe2O4粉体制备Ag2O-ZnO-ZnFe2O4粉体光催化剂。
步骤2的具体过程为:
在黑暗条件下配置100mL浓度为0.1-1g/L的AgNO3溶液,将步骤1得到的ZnO-ZnFe2O4粉体加入到AgNO3溶液中,在磁力搅拌的条件下加入浓度为0.01-1mol/L的NaOH溶液1-10mL,随后洗涤,真空干燥,得到Ag2O-ZnO-ZnFe2O4粉体光催化剂。
步骤2中,ZnO-ZnFe2O4粉体的质量和AgNO3溶液的体积比为100:1g/L。
实施例1
步骤1,配置浓度为1.5mol/L氯化锌和1mol/L氯化铁的混合溶液,然后在100℃条件下,搅拌12h进行干燥,随后在马弗炉里进行煅烧,以1℃/min升温速率至700℃,保温3h,随后自然冷却,再将块状物质研磨,得到ZnO-ZnFe2O4粉体;
步骤2,在黑暗条件下配置100mL浓度为0.1g/L的AgNO3溶液,将步骤2得到的10gZnO-ZnFe2O4粉体加入到AgNO3溶液中,在磁力搅拌的条件下加入浓度为0.01mol/L的NaOH溶液1mL,随后洗涤,真空干燥,得到Ag2O-ZnO-ZnFe2O4粉体光催化剂。
图1是实施例1中制得的Ag2O-ZnO-ZnFe2O4粉体的X射线衍射图谱;
图2是实施例1中制得的Ag2O-ZnO-ZnFe2O4粉体光催化剂在可见光照射下降解罗丹明B的曲线。
实施例2
步骤1,配置浓度为1mol/L硝酸锌和0.1mol/L硝酸铁的混合溶液,然后在50℃条件下,搅拌12h进行干燥,随后在马弗炉里进行煅烧,以0.5℃/min升温速率至300℃,保温1h,随后自然冷却,再将块状物质研磨,得到ZnO-ZnFe2O4粉体;
步骤2,在黑暗条件下配置100mL浓度为1g/L的AgNO3溶液,将步骤2得到的10gZnO-ZnFe2O4粉体加入到上述溶液中,在磁力搅拌的条件下加入浓度为0.05mol/L的NaOH溶液5mL,随后洗涤,真空干燥,得到Ag2O-ZnO-ZnFe2O4粉体光催化剂。
实施例3
步骤1,配置浓度为2mol/L醋酸锌和2mol/L醋酸铁的混合溶液,然后在80℃条件下,搅拌12h进行干燥,随后在马弗炉里进行煅烧,以3℃/min升温速率至1100℃,保温5h,随后自然冷却,再将块状物质研磨,得到ZnO-ZnFe2O4粉体;
步骤2,在黑暗条件下配置100mL浓度为0.5g/L的AgNO3溶液,将步骤2得到的10gZnO-ZnFe2O4粉体加入到AgNO3溶液中,在磁力搅拌的条件下加入浓度为1mol/L的NaOH溶液10mL,随后洗涤,真空干燥,得到Ag2O-ZnO-ZnFe2O4粉体光催化剂。
实施例4
步骤1,配置浓度为2mol/L氯化锌和1mol/L硝酸铁的混合溶液,然后在100℃条件下,搅拌12h进行干燥,随后在马弗炉里进行煅烧,以0.5℃/min升温速率至1100℃,保温1h,随后自然冷却,再将块状物质研磨,得到ZnO-ZnFe2O4粉体;
步骤2,在黑暗条件下配置100mL浓度为0.1g/L的AgNO3溶液,将步骤2得到的10gZnO-ZnFe2O4粉体加入到AgNO3溶液中,在磁力搅拌的条件下加入浓度为1mol/L的NaOH溶液1mL,随后洗涤,真空干燥,得到Ag2O-ZnO-ZnFe2O4粉体光催化剂。

Claims (3)

1.一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法,其特征在于:具体包括如下步骤:
步骤1,制备ZnO-ZnFe2O4粉体;
所述步骤1的具体过程为:配制包含有锌离子和铁离子的混合溶液A,在50~100℃下,对混合溶液A进行搅拌干燥,随后在马弗炉里进行煅烧,以0.5-3℃/min升温速率升至300-1100℃,保温1-5h,随后自然冷却,得到ZnO-ZnFe2O4的块状物质,研磨后,得ZnO-ZnFe2O4粉体;
所述步骤1中,混合溶液A中锌离子和铁离子的摩尔比为1:0.1-1;
步骤2,配置AgNO3溶液,根据AgNO3溶液与步骤1制备的ZnO-ZnFe2O4粉体制备Ag2O-ZnO-ZnFe2O4粉体光催化剂;
所述步骤2的具体过程为:
在黑暗条件下配置100mL浓度为0.1-1g/L的AgNO3溶液,将步骤1得到的ZnO-ZnFe2O4粉体加入到AgNO3溶液中,在磁力搅拌的条件下加入浓度为0.01-1mol/L的NaOH溶液1-10mL,随后洗涤,真空干燥,得到Ag2O-ZnO-ZnFe2O4粉体光催化剂;
所述步骤2中,ZnO-ZnFe2O4粉体的质量和AgNO3溶液的体积比为100:1g/L。
2.根据权利要求1所述的一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法,其特征在于:所述步骤1中,混合溶液A中的锌离子和铁离子从锌盐和铁盐中获得。
3.根据权利要求2所述的一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法,其特征在于:所述铁盐和锌盐为氯化盐、硝酸盐、有机盐中的至少一种。
CN201911355315.7A 2019-12-25 2019-12-25 一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法 Active CN110961119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911355315.7A CN110961119B (zh) 2019-12-25 2019-12-25 一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911355315.7A CN110961119B (zh) 2019-12-25 2019-12-25 一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110961119A CN110961119A (zh) 2020-04-07
CN110961119B true CN110961119B (zh) 2023-04-21

Family

ID=70036409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911355315.7A Active CN110961119B (zh) 2019-12-25 2019-12-25 一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110961119B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148098B (zh) * 2014-07-10 2016-08-17 陕西科技大学 一种磷酸银修饰磁性分离空心复合光催化剂及其制备方法
CN105233831A (zh) * 2015-10-30 2016-01-13 江苏大学 一种磁性ZnO@ZnFe2O4复合光催化剂及其制备方法和应用
TWI549750B (zh) * 2015-11-20 2016-09-21 國立清華大學 複合光觸媒、其製造方法、包含複合光觸媒的套組、及殺菌用光觸媒
CN106345479A (zh) * 2016-07-27 2017-01-25 武汉轻工大学 多孔纳米管状或纳米纤维状ZnO/ZnFe2O4复合光催化剂及其静电纺丝一步制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.C.Sneed等主编.无机化学大纲.《无机化学大纲》.1963,144-145. *

Also Published As

Publication number Publication date
CN110961119A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
CN104128184B (zh) 一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂及其制备方法
CN102580742B (zh) 一种活性炭负载氧化亚铜光催化剂及其制备方法
CN105056981B (zh) 高效去除难降解有机污染物的复合光催化剂g‑C3N4‑铁酸铋的制备及其应用
Zhong et al. Efficient degradation of organic pollutants by activated peroxymonosulfate over TiO2@ C decorated Mg–Fe layered double oxides: Degradation pathways and mechanism
CN105056963B (zh) 一种三氧化二铁掺杂氧化铈纳米棒复合材料的制备方法
CN105772051B (zh) 一种Bi2O2CO3-BiFeO3复合光催化剂及其制备方法
CN109529872B (zh) 非晶态纳米二氧化钛可见光催化剂复合物及其制备方法
CN111874988A (zh) 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法
CN103861578A (zh) 一种稀土掺杂纳米TiO2光触媒乳液
CN104148098B (zh) 一种磷酸银修饰磁性分离空心复合光催化剂及其制备方法
CN104801308A (zh) 一种NiFe2O4/TiO2/海泡石复合光催化剂及其制备方法
WO2023108950A1 (zh) 一种Z型α-Fe2O3/ZnIn2S4复合光催化剂的制备方法和应用
CN106975509B (zh) 一种氮、铁共掺杂钒酸铋可见光催化剂的制备方法及应用
CN105772045A (zh) 一种BiPO4-ZnFe2O4复合光催化剂及其制备方法
CN105170144A (zh) 锆、银共掺杂的纳米二氧化钛可见光光催化剂
CN110961119B (zh) 一种氧化银和氧化锌复合磁性可分离光催化剂的制备方法
CN110694650B (zh) 一种Bi负载的Bi4NbO8Cl复合可见光催化剂的制备方法
CN111001419A (zh) 一种银修饰磁性可分离光催化剂的制备方法
CN104607174A (zh) 一种钙掺杂β-Bi2O3光催化剂及其制备方法与应用
CN111495412A (zh) 一种铁基非晶合金/g-C3N4复合光催化剂及其制备方法和应用
CN108745405B (zh) 氮化碳/氮掺中空介孔碳/三氧化二铋三元z型光催化剂及其制备方法
CN103007951B (zh) 一种处理水面上石油类污染物的光催化剂的制备方法
CN104971754A (zh) 一种负载型高岭土/Bi2O2CO3-BiPO4复合光催化剂及其制备方法
CN108855059A (zh) 一种粉煤灰漂珠负载氧化银复合光催化剂及其制备方法
CN101880093B (zh) 高频超脉冲三维半导体电极水处理反应器技术

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant