CN110694650B - 一种Bi负载的Bi4NbO8Cl复合可见光催化剂的制备方法 - Google Patents

一种Bi负载的Bi4NbO8Cl复合可见光催化剂的制备方法 Download PDF

Info

Publication number
CN110694650B
CN110694650B CN201911104788.XA CN201911104788A CN110694650B CN 110694650 B CN110694650 B CN 110694650B CN 201911104788 A CN201911104788 A CN 201911104788A CN 110694650 B CN110694650 B CN 110694650B
Authority
CN
China
Prior art keywords
nbo
loaded
visible light
preparation
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911104788.XA
Other languages
English (en)
Other versions
CN110694650A (zh
Inventor
石良
吴锡录
杜芳林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201911104788.XA priority Critical patent/CN110694650B/zh
Publication of CN110694650A publication Critical patent/CN110694650A/zh
Application granted granted Critical
Publication of CN110694650B publication Critical patent/CN110694650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种Bi负载Bi4NbO8Cl复合可见光催化剂的制备方法,属于纳米材料的制备领域。本发明使用NaCl/KCl混合熔盐法制备的Bi4NbO8Cl片状结构为原料,采用乙二醇溶剂热法成功原位制备了零维Bi颗粒负载的Bi4NbO8Br二维结构;由于乙二醇的还原性,二维Bi4NbO8Br同时富含大量氧空位,零维铋金属作为电子陷阱和氧空位的协同作用,提高了Bi负载Bi4NbO8Cl复合可见光催化剂降解罗丹明B的性能。

Description

一种Bi负载的Bi4NbO8Cl复合可见光催化剂的制备方法
技术领域:
本发明涉及Bi负载Bi4NbO8Cl复合可见光催化剂的制备方法,具体地说,利用熔盐法制备Bi4NbO8Cl 片层结构为前驱体,以乙二醇为还原剂,采用原位生长法,通过控制不同的溶剂热反应温度和时间,一步制备出具有优良光催化性能的复合可见光催化剂,本技术属于光催化材料制备领域。
背景技术:
随着世界人口、工业和经济的快速增长,水环境污染已经成为一个严重的问题。近几十年来,光催化技术已被用作一种经济有效且环保的氧化过程,以去除有害的环境污染物,而传统的半导体催化剂如TiO2、 ZnO等,只能对紫外光进行响应,而紫外光只占太阳光的4%-6%,因此,开发一种新型的可见光响应的光催化剂成为一个具有挑战性的课题。
近年来的研究发现,很多铋基氧化物(BiVO4、Bi2WO6、BiOX等)具有较高的光催化性能,因其具有合适的禁带宽度、较高的电子迁移率和较大的可见光吸收系数。其中,Bi4NbO8Cl作为一种新型的铋基氯氧化物受到了广泛的关注,其属于Aurivilius-Sillén结构,是由[Bi2O2]2+层、[NbO4]3-层和[Cl]-层组成,这种独特的层状分子结构有利于光生载流子的分离,从而提高催化剂的光催化性能。由于Bi4NbO8Cl在价带和导带都具有很强的Bi 6s轨道和O 2p轨道杂化,这种特性可以缩小带隙,提供可见光吸收和较高的光稳定性。引入氧空位缺陷或沉积非贵金属可提高光催化性能,一方面,氧空位可以扩大光的响应范围,捕获电子或空穴,降低复合速率,提供催化过程中的活性位点,另一方面,金属铋可以作为贵金属的理想替代品,它具有有效质量低、电子捕获性能优异、高活性载流子、价格低廉、易获得等优点。
关于Bi4NbO8Cl的改性报道中,多数使用贵金属沉积或者半导体复合方式提高Bi4NbO8Cl的催化性能。到目前为止,还没有关于铋金属代替贵金属沉积到Bi4NbO8Cl纳米片上,同时在Bi4NbO8Cl中引入氧空位的相关报道。因此,我们设计了一种Bi原位负载Bi4NbO8Cl复合光催化材料的制备方法,不仅保持 Bi4NbO8Cl的原有二维形貌,形成的零维铋金属和氧空位的协同作用,提高了光催化效率。
发明内容:
本发明采用乙二醇热法,制备出一种性能优异的Bi负载Bi4NbO8Cl复合可见光催化剂。
本发明是通过如下技术方案实现的:
一种Bi负载Bi4NbO8Cl复合可见光催化剂的制备方法,按以下步骤进行:
(1)室温下,分别称取一定量的NaCl和KCl,放入玛瑙研钵中;再依次称取一定量的BiOCl、Nb2O5、 Bi2O3,相继加入到玛瑙研钵中;将上述混合物于玛瑙研钵中研磨15min,直至无明显颗粒感;将上述混合物转移到刚玉坩埚中,在马弗炉中煅烧,并保持升温速率;将煅烧后的产物取出,不经研磨使用300mL 的80℃热水分5次洗涤,期间注意超声;用0.1M的AgNO3检验残余Cl-浓度;将上述产物在60℃烘箱中干燥12h,并研磨,获得Bi4NbO8Cl粉体。
(2)室温下,分别称取预先制备的一定量的Bi4NbO8Cl粉体,放入装有80mL乙二醇的烧杯中,磁力充分搅拌,取出上述混合物中磁子,将悬浮液转移到100mL聚四氟乙烯内衬高压釜中,于鼓风干燥箱中 160℃反应不同时长,反应结束后,过滤收集沉淀,用去离子水和乙醇洗涤几次,以去除残留的杂质。最后,在空气中60℃干燥24h,得到Bi负载Bi4NbO8Cl样品。
优选的,步骤(1)中所述的NaCl和KCl的物质的量比为1:1,BiOCl、Nb2O5、Bi2O3的物质的量比为2:1:3,并且其与混合熔盐NaCl/KCl的质量比为82.1:100。
优选的,步骤(1)中所述的煅烧温度为600-800℃,煅烧时间为0.5-5h,升温速率为2-5℃/min。
优选的,步骤(2)中所述的Bi4NbO8Cl粉体量为0.5mmol(546mg)。
优选的,步骤(2)中所述的溶剂热反应温度为120-180℃,时间2-48h。
与现有技术相比,本发明的有益效果:
本发明中使用熔盐法制备的Bi4NbO8Cl片状结构为前驱体,采用乙二醇热法,成功制备出Bi负载 Bi4NbO8Cl纳米复合物,并保持了Bi4NbO8Cl的二维形貌;使用乙二醇为还原剂,在高温条件下,同时形成了铋金属和氧空位,通过氧空位和铋金属的协同作用,提高催化剂的性能。本发明以Bi4NbO8Cl可见光响应的催化剂为基础,通过不断的调节溶剂热反应温度和时间,得到了0D/2D复合结构Bi负载富氧空位的Bi4NbO8Cl可见光催化剂,并用于光催化降解污染物的领域,取得了良好的效果,当溶剂热反应温度为 160℃,反应时间为10h时,光催化性能最优。
附图说明
图1为本发明制备的不同溶剂热时间的Bi负载Bi4NbO8Cl复合材料的XRD图。
图2为实施例1制备的样品的SEM图。
图3为实施例1制备的样品的ESR图。
图4为本发明制备的溶剂热时间的Bi负载Bi4NbO8Cl复合材料对于罗丹明B的降解曲线图。
具体实施方式:
实施例1:
室温下,分别称取292mg的NaCl和372mg的KCl,放入玛瑙研钵中;再依次称取130mg的BiOCl、 66mg的Nb2O5和349mg的Bi2O3,相继加入到玛瑙研钵中;将上述混合物于玛瑙研钵中研磨15min,直至无明显颗粒感;将上述混合物转移到刚玉坩埚中,在马弗炉中750℃煅烧60min,并保持升温速率为 3℃/min;将煅烧后的产物取出,不经研磨使用300mL的80℃热水分5次洗涤,期间注意超声;用0.1M 的AgNO3检验残余Cl-浓度;将上述产物在60℃烘箱中干燥12h,并研磨,获得Bi4NbO8Cl粉体。
分别称取预先制备的546mg的Bi4NbO8Cl粉体,放入装有80mL乙二醇的烧杯中,磁力充分搅拌,取出上述混合物中磁子,将悬浮液转移到100mL聚四氟乙烯内衬高压釜中,于鼓风干燥箱中160℃反应 10h,反应结束后,过滤收集沉淀,用去离子水和乙醇洗涤几次,以去除残留的杂质。最后,在空气中60℃干燥24h,得到Bi负载Bi4NbO8Cl样品。
实施例2:
室温下,分别称取292mg的NaCl和372mg的KCl,放入玛瑙研钵中;再依次称取130mg的BiOCl、 66mg的Nb2O5和349mg的Bi2O3,相继加入到玛瑙研钵中;将上述混合物于玛瑙研钵中研磨15min,直至无明显颗粒感;将上述混合物转移到刚玉坩埚中,在马弗炉中750℃煅烧60min,并保持升温速率为 3℃/min;将煅烧后的产物取出,不经研磨使用300mL的80℃热水分5次洗涤,期间注意超声;用0.1M 的AgNO3检验残余Cl-浓度;将上述产物在60℃烘箱中干燥12h,并研磨,获得Bi4NbO8Cl粉体。
分别称取预先制备的546mg的Bi4NbO8Cl粉体,放入装有80mL乙二醇的烧杯中,磁力充分搅拌,取出上述混合物中磁子,将悬浮液转移到100mL聚四氟乙烯内衬高压釜中,于鼓风干燥箱中180℃反应10h,反应结束后,过滤收集沉淀,用去离子水和乙醇洗涤几次,以去除残留的杂质。最后,在空气中60℃干燥24h,得到Bi负载Bi4NbO8Cl样品。
实施例3:
室温下,分别称取292mg的NaCl和372mg的KCl,放入玛瑙研钵中;再依次称取130mg的BiOCl、 66mg的Nb2O5和349mg的Bi2O3,相继加入到玛瑙研钵中;将上述混合物于玛瑙研钵中研磨15min,直至无明显颗粒感;将上述混合物转移到刚玉坩埚中,在马弗炉中750℃煅烧60min,并保持升温速率为 3℃/min;将煅烧后的产物取出,不经研磨使用300mL的80℃热水分5次洗涤,期间注意超声;用0.1M 的AgNO3检验残余Cl-浓度;将上述产物在60℃烘箱中干燥12h,并研磨,获得Bi4NbO8Cl粉体。
分别称取预先制备的546mg的Bi4NbO8Cl粉体,放入装有80mL乙二醇的烧杯中,磁力充分搅拌,取出上述混合物中磁子,将悬浮液转移到100mL聚四氟乙烯内衬高压釜中,于鼓风干燥箱中160℃反应 48h,反应结束后,过滤收集沉淀,用去离子水和乙醇洗涤几次,以去除残留的杂质。最后,在空气中60℃干燥24h,得到Bi负载Bi4NbO8Cl样品。

Claims (3)

1.一种Bi负载Bi4NbO8Cl复合可见光催化剂的制备方法,其特征在于,所述的复合光催化剂中Bi以零维金属颗粒的形式负载于二维的Bi4NbO8Cl片状结构上;该复合光催化剂的制备过程按以下步骤进行:
(1)室温下,分别称取292mg的NaCl和372mg的KCl,放入玛瑙研钵中;再依次称取的130mg的BiOCl、66mg的Nb2O5、349mg的Bi2O3,相继加入到玛瑙研钵中;将上述混合物于玛瑙研钵中研磨15min,直至无明显颗粒感;将上述混合物转移到刚玉坩埚中,在马弗炉中750℃煅烧,并保持升温速率为3℃/min,保温60min;将煅烧后的产物取出,不经研磨使用300mL的80℃热水分5次洗涤产物,期间注意超声;用0.1M的AgNO3检验残余Cl-浓度;将上述产物在60℃烘箱中干燥12h,并研磨,获得Bi4NbO8Cl粉体;
(2)室温下,分别称取546mg预先制备的Bi4NbO8Cl粉体,放入装有80mL乙二醇的烧杯中,磁力充分搅拌,取出上述混合物中磁子,将悬浮液转移到100mL聚四氟乙烯内衬高压釜中,于鼓风干燥箱中加热并反应一段时间,反应结束后,过滤收集沉淀,用去离子水和乙醇洗涤几次,以去除残留的杂质;最后,在空气中60℃干燥24h,得到Bi负载的Bi4NbO8Cl样品。
2.根据权利要求1所述一种Bi负载Bi4NbO8Cl复合可见光催化剂的制备方法,其特征在于,所述的Bi负载Bi4NbO8Cl复合可见光催化剂含有大量的氧空位。
3.根据权利要求1所述的一种Bi负载Bi4NbO8Cl复合可见光催化剂的制备方法,其特征在于,步骤(2)中所述的溶剂热温度为120-180℃,反应时间为2-48h。
CN201911104788.XA 2019-11-13 2019-11-13 一种Bi负载的Bi4NbO8Cl复合可见光催化剂的制备方法 Active CN110694650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911104788.XA CN110694650B (zh) 2019-11-13 2019-11-13 一种Bi负载的Bi4NbO8Cl复合可见光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911104788.XA CN110694650B (zh) 2019-11-13 2019-11-13 一种Bi负载的Bi4NbO8Cl复合可见光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110694650A CN110694650A (zh) 2020-01-17
CN110694650B true CN110694650B (zh) 2022-09-27

Family

ID=69205272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911104788.XA Active CN110694650B (zh) 2019-11-13 2019-11-13 一种Bi负载的Bi4NbO8Cl复合可见光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110694650B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112642447B (zh) * 2020-10-22 2023-07-21 青岛科技大学 一种近红外光响应的Ag2S-Bi4NbO8Cl复合光催化剂的制备方法
CN114014360B (zh) * 2021-11-05 2023-05-16 扬州大学 一种Sillen-Aurivillius层状结构材料Bi4SbO8Cl及合成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227505A (zh) * 2019-06-26 2019-09-13 青岛耀创高新科技有限公司 一种原位合成Bi4NbO8Cl/BiOCl/Nb2O5光催化剂的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227505A (zh) * 2019-06-26 2019-09-13 青岛耀创高新科技有限公司 一种原位合成Bi4NbO8Cl/BiOCl/Nb2O5光催化剂的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Flux Synthesis of Layered Oxyhalide Bi4NbO8Cl Photocatalyst for Efficient Z Scheme Water Splitting Under Visible Light";Kanta Ogawa etal;《Applied Materials & Interfaces》;20180827;第5642-5650页 *
Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres;Hong Wang etal;《Applied Catalysis B:Environmental》;20171129;第218-227页 *

Also Published As

Publication number Publication date
CN110694650A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
CN104627960B (zh) 一种改性赤泥催化甲烷裂解制氢的方法
Yu et al. Novel rugby-ball-like Zn3 (PO4) 2@ C3N4 photocatalyst with highly enhanced visible-light photocatalytic performance
Chen et al. Magnetic recyclable lanthanum-nitrogen co-doped titania/strontium ferrite/diatomite heterojunction composite for enhanced visible-light-driven photocatalytic activity and recyclability
AU2020100758A4 (en) Oxygen-vacancy-rich z-mechanism bi2o3@ceo2 photocatalyst, and preparation method and use thereof
WO2016146070A1 (zh) 一种用于光催化的铋-氧化钛纳米线材料及制备方法
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
Zhang et al. Synthesis of BiOCl/TiO2 heterostructure composites and their enhanced photocatalytic activity
CN108097261B (zh) 一种高效稳定的铁锰复合氧化物催化剂及其制备方法与应用
CN107837816B (zh) Fe2O3/g-C3N4复合体系及制备方法和应用
CN107185547B (zh) 一种C/Fe-FeVO4复合光催化剂及其制备方法和应用
CN112090438B (zh) BiOCl/g-C3N4/CeO2三相光催化材料的合成方法
CN110694650B (zh) 一种Bi负载的Bi4NbO8Cl复合可见光催化剂的制备方法
Wu The fabrication of magnetic recyclable nitrogen modified titanium dioxide/strontium ferrite/diatomite heterojunction nanocomposite for enhanced visible-light-driven photodegradation of tetracycline
CN108786808B (zh) 一种Ag/BiO2-x/Bi2O3/Bi2O2.75复合光催化剂及制备方法和应用
Cheng et al. Controllable design of bismuth oxyiodides by in-situ self-template phase transformation and heterostructure construction for photocatalytic removal of gas-phase mercury
Tian et al. BiOBr@ UiO-66 photocatalysts with abundant activated sites for the enhanced photodegradation of rhodamine b under visible light irradiation
Sun et al. Crystallinity and photocatalytic properties of BiVO4/halloysite nanotubes hybrid catalysts for sunlight-driven decomposition of dyes from aqueous solution
Hou et al. Fabrication and photocatalytic activity of floating type Ag3PO4/ZnFe2O4/FACs photocatalyst
Wei et al. A stable and efficient La-doped MIL-53 (Al)/ZnO photocatalyst for sulfamethazine degradation
WANG et al. Effect of F, V and Mn co-doping on the catalytic performance of TiO2-pillared bentonite in the photocatalytic denitration
CN106082298B (zh) 一种铈铋复合氧化物纳米棒材料的制备方法
CN109569625B (zh) 一种制备负载型金属镍基催化剂的方法
CN113578313B (zh) 一种锰掺杂软铋矿光催化剂及其制备方法和在同步降解六价铬和有机污染物中的应用
CN107552059B (zh) 一种铁掺杂铈基固溶体烟气脱硝催化剂的制备方法
Pouretedal et al. Preparation, characterization and catalytic activity of tin dioxide and zero-valent tin nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant