CN110922618B - 一种提高储能密度的绝缘介质的制备方法 - Google Patents

一种提高储能密度的绝缘介质的制备方法 Download PDF

Info

Publication number
CN110922618B
CN110922618B CN201911221771.2A CN201911221771A CN110922618B CN 110922618 B CN110922618 B CN 110922618B CN 201911221771 A CN201911221771 A CN 201911221771A CN 110922618 B CN110922618 B CN 110922618B
Authority
CN
China
Prior art keywords
polythiourea
energy storage
storage density
random copolymer
ptu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911221771.2A
Other languages
English (en)
Other versions
CN110922618A (zh
Inventor
冯阳
杨安琪
李盛涛
杨柳青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201911221771.2A priority Critical patent/CN110922618B/zh
Publication of CN110922618A publication Critical patent/CN110922618A/zh
Priority to US17/037,618 priority patent/US11854718B2/en
Application granted granted Critical
Publication of CN110922618B publication Critical patent/CN110922618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0847Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
    • C08G18/0852Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3234Polyamines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/02Drying; Impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种提高储能密度的绝缘介质的制备方法,将1,4‑苯二异硫氰酸酯溶解于极性溶剂中,然后加入有机二胺,在氮气环境、室温条件下反应3‑6小时,然后加入4,4'‑二氨基二苯醚和均苯四甲酸二酐,在氮气环境、室温条件下反应12‑18小时,得到聚硫脲和聚酰胺酸的无规共聚物溶液;将聚硫脲和聚酰胺酸的无规共聚物溶液铺在铜板上,采用梯度升温,得到聚硫脲和聚酰亚胺无规共聚物。本发明通过改变聚酰亚胺单体在共聚物分子链中的排列方式,从而改变材料介电响应特性和陷阱参数来控制其介电常数和击穿场强,最终控制或者改善材料的储能密度,可以广泛应用于高压储能设备、脉冲功率源、航空航天、混合动力汽车等多个领域。

Description

一种提高储能密度的绝缘介质的制备方法
技术领域
本发明属于高压绝缘材料领域,具体涉及一种提高储能密度的绝缘介质的制备方法。
背景技术
聚合物薄膜储能电容器因其具有较高功率密度和超长的循环使用寿命,能最大效率转化风能、潮汐能等间歇性可再生能源,是脉冲功率技术、电磁炮及激光等高能武器系统无可替代的核心储能器件,在航空航天、混合动力汽车等领域也得到了广泛的应用。然而,由于大多数聚合物的介电常数或者击穿场强较低,限制了其储存电能的能力。长期以来,国内外学者主要通过纳米掺杂来提升薄膜的电介质储能性能,但高体积分数纳米填料的引入却会增大材料的能量损耗。因此,开发具有高储能密度且可靠性良好的聚合物储能电容器,探索提高聚合物介质材料储能密度的方法,对实际工程应用具有十分重要的意义。
目前,国内外学者对储能聚合物材料的研究主要通过增大介电常数或者提高击穿场强来达到提高储能密度的目的。从介电常数角度考虑,在分子主链引入金属元素提高电子位移极化,或在分子主链、侧链引入极性基团提高转向极化,从而增大介电常数;从击穿场强角度考虑,引入强极性基团作为高能电子散射中心,或制备具有交联结构的聚合物,从而提高材料的击穿场强。但单一结构的聚合物难以同时增大介电常数和击穿场强,一种介电性能的提高往往会伴随着另一种介电性能的劣化。
通过制备共聚物,结合两种链段的优势,改变共聚物组成成分及其比例,以达到在保证击穿场强的基础上、提高介电常数的目的,已经吸引越来越多学者的注意。虽然共聚物中链段的排列方式也会对材料的宏观性能产生重要的影响,但是通过改变链段排列方式以改善共聚物介电响应特性、陷阱参数和储能密度的研究领域尚无人涉及。
发明内容
本发明的目的在于提供一种提高储能密度的绝缘介质的制备方法。
为达到上述目的,本发明采用了以下技术方案:
一种提高储能密度的绝缘介质的制备方法,包括以下步骤:
1)1,4-苯二异硫氰酸酯完全溶解于极性溶剂中,然后加入有机二胺,在氮气环境、室温条件下反应3-6小时,得到端胺基聚硫脲前驱体;
2)向步骤1)制备的端胺基聚硫脲前驱体中加入4,4'-二氨基二苯醚和均苯四甲酸二酐,在氮气环境、室温条件下反应12-18小时,得到聚硫脲和聚酰胺酸的无规共聚物溶液;
3)采用流延法,将聚硫脲和聚酰胺酸的无规共聚物溶液铺在铜板上,采用梯度升温,酰胺化成膜,得到聚硫脲和聚酰亚胺无规共聚物。
本发明进一步的改进在于,步骤1)中,1,4-苯二异硫氰酸酯与极性溶剂的比为0.96mmol:1-4mL。
本发明进一步的改进在于,步骤1)中,有机二胺为1,3-环己二胺。
本发明进一步的改进在于,均苯四甲酸二酐与1,4-苯二异硫氰酸酯的总的物质的量与1,3-环己二胺和4,4'-二氨基二苯醚的总的物质的量相同。
本发明进一步的改进在于,步骤1)中,1,4-苯二异硫氰酸酯与1,3-环己二胺的物质的量的比为0.96:1;
步骤2)中,4,4'-二氨基二苯醚与均苯四甲酸二酐的物质的量的比为0.96:1。
本发明进一步的改进在于,步骤1)中,极性溶剂为N,N-二甲基乙酰胺或N,N-二甲基甲酰胺。
本发明进一步的改进在于,步骤3)中,梯度升温具体过程为,在70℃下保温3小时,然后在100℃下保温1小时,在120℃下保温1小时,最后在150℃下保温3小时与现有技术相比,本发明的有益效果体现在:
本发明通过先制备端胺基聚硫脲前驱体,然后向端胺基聚硫脲前驱体中加入4,4'-二氨基二苯醚和均苯四甲酸二酐,反应过程中添加方式的不同能够改变聚硫脲和聚酰亚胺共聚物中链段的排列方式,制备出的PTU-b-PI嵌段共聚物和PTU-r-PI无规共聚物表现出明显不同的介电响应特性和陷阱特性。其中,链段之间的无规连接更有利于促进极性基团在外施电场作用下的转向和共聚物中陷阱能级深度的加深;这些变化有助于同时提高材料的介电常数、击穿场强和储能密度。与PTU-b-PI嵌段共聚物相比,PTU-r-PI无规共聚物的介电常数(20℃、0.1Hz)从4.55增大至6.85,室温条件下的直流击穿场强从350MV/m提高至507MV/m,储能密度从2.47J/cm3提高至7.79J/cm3。本发明提出的方法可以显著的提高绝缘介质材料的储能密度,且工艺难度低、可操作性强及可靠性高,能够广泛运用于高压绝缘材料领域。
进一步的,与1,3-苯二胺相比,1,3-环己二胺的脂环结构具有较强的空间位阻效应,使得分子链之间的距离增大,极性硫脲基团更容易在外施电场作用下定向,有利于增大极化强度和提高介电常数。与脂肪族二胺相比,1,3-环己二胺结构较为刚性,能够阻碍大分子链的运动,从而保持较低的介电损耗。因此,在本发明中,选用1,3-环己二胺作为反应单体。
附图说明
图1为PTU-b-PI的合成路线图。
图2为PTU-r-PI的合成路线图。
图3为PTU-r-PI和PTU-r-PI的红外谱图。其中,(a)为整体图,(b)为图(a)中局部放大图。
图4为PTU-r-PI和PTU-r-PI的AFM,其中,(a)为PTU-r-PI的高度图,(b)为PTU-r-PI的相位图,(c)为PTU-b-PI的高度图,(d)为PTU-b-PI的相位图。
具体实施方式
以下结合具体实施例对本发明作进一步的详细描述。
本发明的一种提高储能密度的绝缘介质制备方法,包括下述步骤:
1)1,4-苯二异硫氰酸酯完全溶解于极性溶剂中,然后加入1,3-环己二胺,在氮气环境、室温条件下反应3-6小时,得到端胺基聚硫脲前驱体。
其中,1,4-苯二异硫氰酸酯与极性溶剂的比为0.96mmol:1-4mL。
均苯四甲酸二酐与1,4-苯二异硫氰酸酯的总的物质的量与1,3-环己二胺和4,4'-二氨基二苯醚的总的物质的量相同。
1,4-苯二异硫氰酸酯与1,3-环己二胺的物质的量的比为0.96:1。
4,4'-二氨基二苯醚与均苯四甲酸二酐的物质的量的比为0.96:1。
极性溶剂为N,N-二甲基乙酰胺(DMAc)或N,N-二甲基甲酰胺(DMF)。
2)向步骤1)制备的端胺基聚硫脲前驱体中加入0.96mmol 4,4'-二氨基二苯醚和1mmol均苯四甲酸二酐,在氮气环境、室温条件下反应12-18小时,得到聚硫脲和聚酰胺酸的无规共聚物(PTU-r-PAA)溶液。
3)采用流延法,将无规共聚物PTU-r-PAA溶液铺在清洗干净的铜板上,采用梯度升温(70℃,3小时;100℃,1小时;120℃,1小时;150℃,3小时),酰胺化成膜,最后100℃抽真空烘干处理24小时,得到聚硫脲和聚酰亚胺无规共聚物(PTU-r-PI)。
下面为具体实施例。
实施例1
参见图2,一种提高储能密度的绝缘介质制备方法,包括下述步骤;
1)将0.96mmol 1,4-苯二异硫氰酸酯完全溶解于2mL N,N-二甲基乙酰胺(DMAc)中,1mmol 1,3-环己二胺加入上述溶液中,在氮气环境、室温条件下反应6小时,反应得到端胺基聚硫脲前驱体。
2)根据步骤1)制备端胺基聚硫脲前驱体,在反应溶液中依次加入0.96mmol 4,4'-二氨基二苯醚和1mmol均苯四甲酸二酐,在氮气环境、室温条件下反应18小时,得到聚硫脲和聚酰胺酸的无规共聚物(PTU-r-PAA)溶液。
3)采用流延法,将无规共聚物PTU-r-PAA溶液铺在清洗干净的铜板上,采用梯度升温(70℃,3小时;100℃,1小时;120℃,1小时;150℃,3小时),酰胺化成膜,最后100℃抽真空烘干处理24小时,得到聚硫脲和聚酰亚胺无规共聚物(PTU-r-PI)。
对比例
参见图1,聚硫脲和聚酰亚胺嵌段共聚物(PTU-b-PI)的制备方法包括以下步骤:
1)将0.96mmol 1,4-苯二异硫氰酸酯完全溶解于2mL N,N-二甲基乙酰胺(DMAc)中,然后加入1,3-环己二胺,在氮气环境、室温条件下反应6小时,得到端胺基聚硫脲前驱体;
2)将0.96mmol 4,4'-二氨基二苯醚完全溶解于4mL N,N-二甲基乙酰胺(DMAc)中,然后加入1mmol均苯四甲酸二酐,在氮气环境、室温条件下反应6小时,得到端酐基聚酰胺酸前驱体。
3)将端胺基聚硫脲前驱体和端酐基聚酰胺酸前驱体混合,在氮气环境、室温条件下反应18小时,得到聚硫脲和聚酰胺酸的嵌段共聚物(PTU-b-PAA)溶液。
4)采用流延法,将嵌段共聚物PTU-b-PAA溶液铺在清洗干净的铜板上,采用梯度升温(70℃,3小时;100℃,1小时;120℃,1小时;150℃,3小时),酰胺化成膜,最后100℃抽真空烘干处理24小时,得到聚硫脲和聚酰亚胺嵌段共聚物(PTU-b-PI)。
参见图3中的(a)和(b),可以看出,PTU-r-PI中游离的极性硫脲键较多,因此更容易在外电场作用下转向,PTU-r-PI中极性硫脲基团引起的介电强度增大至0.96,如表1所示。
表1给出了PTU-b-PI和PTU-r-PI的介电响应特征参数,其中α’、β和γ分别是聚硫脲局部链段运动、酰胺极性基团和硫脲极性基团转向引起的松弛过程;表2给出了PTU-b-PI和PTU-r-PI试样的陷阱能级参数。
表1 PTU-b-PI和PTU-r-PI试样介电响应特征参数
Figure BDA0002301048780000061
Figure BDA0002301048780000071
表2 PTU-b-PTU和PI-r-PTU试样的陷阱能级
Figure BDA0002301048780000072
采用Novocontrol宽频介电谱测试系统测试PI-b-PTU和PI-r-PTU试样的介电响应特性。实验前,在试样两面溅射金电极,电极的直径均为12.8mm测试条件如下:频率范围为0.1—106Hz,温度范围为-150—120℃,测量介电温谱时升温间隔为10℃。测试过程中,试样两端施加交流电压,电压幅值为1V。
直流击穿实验测试中,试样厚度为20μm,实验时保证试样厚度的一致性。电极为不锈钢球-球电极,电极直径为25mm。试样和电极放在变压器油中进行实验,以消除试样边缘沿面闪络的影响。采用HJC-100kV击穿试验仪测试进行直流实验,采用连续升压法测试试样的击穿电压,升压速率为0.5kV/s。然后用击穿电压除以试样厚度计算试样的击穿场强。每种试样一次击穿实验至少测试10个击穿点,获得击穿点的击穿场强,采用两参数威布尔函数分析得到试样击穿场强。
聚硫脲和聚酰亚胺共聚物作为线性聚合物,其储能密度能够下列通过公式计算得到,
Ue=1/2ε0εrEb 2
式中,ε0为真空介电常数,εr为试样相对介电常数,Eb为试样直流击穿场强。
参见图4,可以看出,形貌差异表明PTU-b-PI中存在明显的相分离现象,而PTU-r-PI中结构均匀。PTU-b-PI中相界面的存在使得其内部存在更多的缺陷,导致其击穿场强明显低于PTU-r-PI,如表3所示。
表3给出了两种聚酰亚胺共聚物的介电常数、击穿场强和储能密度。
表3 PTU-b-PI和PTU-r-PI试样介电性能和储能密度
Figure BDA0002301048780000081
从表3中可以看到,聚硫脲和聚酰亚胺无规共聚物有利于同时增大介电常数和击穿场强,进而提高储能密度。相比于聚硫脲和聚酰亚胺嵌段共聚物,无规共聚物的介电常数、击穿场强、储能密度分别提高了50.5%、44.9%、215%。
实施例2
一种提高储能密度的绝缘介质制备方法,包括下述步骤;
1)将0.96mmol 1,4-苯二异硫氰酸酯完全溶解于1mL N,N-二甲基乙酰胺(DMAc)中,1mmol 1,3-环己二胺加入上述溶液中,在氮气环境、室温条件下反应3小时,反应得到端胺基聚硫脲前驱体。
2)根据步骤1)制备端胺基聚硫脲前驱体,在反应溶液中依次加入0.96mmol4,4'-二氨基二苯醚和1mmol均苯四甲酸二酐,在氮气环境、室温条件下反应18小时,得到聚硫脲和聚酰胺酸的无规共聚物(PTU-r-PAA)溶液。
3)采用流延法,将无规共聚物PTU-r-PAA溶液铺在清洗干净的铜板上,采用梯度升温(70℃,3小时;100℃,1小时;120℃,1小时;150℃,3小时),酰胺化成膜,最后100℃抽真空烘干处理24小时,得到聚硫脲和聚酰亚胺无规共聚物(PTU-r-PI)。
实施例3
一种提高储能密度的绝缘介质制备方法,包括下述步骤;
1)将0.96mmol 1,4-苯二异硫氰酸酯完全溶解于4mL N,N-二甲基乙酰胺(DMAc)中,1mmol 1,3-环己二胺加入上述溶液中,在氮气环境、室温条件下反应4小时,反应得到端胺基聚硫脲前驱体。
2)根据步骤1)制备端胺基聚硫脲前驱体,在反应溶液中依次加入0.96mmol4,4'-二氨基二苯醚和1mmol均苯四甲酸二酐,在氮气环境、室温条件下反应12小时,得到聚硫脲和聚酰胺酸的无规共聚物(PTU-r-PAA)溶液。
3)采用流延法,将无规共聚物PTU-r-PAA溶液铺在清洗干净的铜板上,采用梯度升温(70℃,3小时;100℃,1小时;120℃,1小时;150℃,3小时),酰胺化成膜,最后100℃抽真空烘干处理24小时,得到聚硫脲和聚酰亚胺无规共聚物(PTU-r-PI)。
实施例4
一种提高储能密度的绝缘介质制备方法,包括下述步骤;
1)将0.96mmol 1,4-苯二异硫氰酸酯完全溶解于3mL N,N-二甲基乙酰胺(DMAc)中,1mmol 1,3-环己二胺加入上述溶液中,在氮气环境、室温条件下反应6小时,反应得到端胺基聚硫脲前驱体。
2)根据步骤1)制备端胺基聚硫脲前驱体,在反应溶液中依次加入0.96mmol4,4'-二氨基二苯醚和1mmol均苯四甲酸二酐,在氮气环境、室温条件下反应15小时,得到聚硫脲和聚酰胺酸的无规共聚物(PTU-r-PAA)溶液。
3)采用流延法,将无规共聚物PTU-r-PAA溶液铺在清洗干净的铜板上,采用梯度升温(70℃,3小时;100℃,1小时;120℃,1小时;150℃,3小时),酰胺化成膜,最后100℃抽真空烘干处理24小时,得到聚硫脲和聚酰亚胺无规共聚物(PTU-r-PI)。
本发明提出的制备方法可以显著提高绝缘介质材料的储能密度。本发明通过改变聚酰亚胺单体在共聚物分子链中的排列方式,从而改变材料介电响应特性和陷阱参数来控制其介电常数和击穿场强,最终控制或者改善材料的储能密度。该方法可以广泛应用于高压储能设备、脉冲功率源、航空航天、混合动力汽车等多个领域。

Claims (6)

1.一种提高储能密度的绝缘介质的制备方法,其特征在于,包括以下步骤:
1)1,4-苯二异硫氰酸酯完全溶解于极性溶剂中,然后加入有机二胺,在氮气环境、室温条件下反应3-6小时,得到端胺基聚硫脲前驱体;其中,有机二胺为1,3-环己二胺;
2)向步骤1)制备的端胺基聚硫脲前驱体中加入4,4'-二氨基二苯醚和均苯四甲酸二酐,在氮气环境、室温条件下反应12-18小时,得到聚硫脲和聚酰胺酸的无规共聚物溶液;
3)采用流延法,将聚硫脲和聚酰胺酸的无规共聚物溶液铺在铜板上,采用梯度升温,酰胺化成膜,得到聚硫脲和聚酰亚胺无规共聚物。
2.根据权利要求1所述的一种提高储能密度的绝缘介质的制备方法,其特征在于,步骤1)中,1,4-苯二异硫氰酸酯与极性溶剂的比为0.96mmol:1-4mL。
3.根据权利要求1所述的一种提高储能密度的绝缘介质的制备方法,其特征在于,均苯四甲酸二酐与1,4-苯二异硫氰酸酯的总的物质的量与1,3-环己二胺和4,4'-二氨基二苯醚的总的物质的量相同。
4.根据权利要求1所述的一种提高储能密度的绝缘介质的制备方法,其特征在于,步骤1)中,1,4-苯二异硫氰酸酯与1,3-环己二胺的物质的量的比为0.96:1;
步骤2)中,4,4'-二氨基二苯醚与均苯四甲酸二酐的物质的量的比为0.96:1。
5.根据权利要求1所述的一种提高储能密度的绝缘介质的制备方法,其特征在于,步骤1)中,极性溶剂为N,N-二甲基乙酰胺或N,N-二甲基甲酰胺。
6.根据权利要求1所述的一种提高储能密度的绝缘介质的制备方法,其特征在于,步骤3)中,梯度升温具体过程为,在70℃下保温3小时,然后在100℃下保温1小时,在120℃下保温1小时,最后在150℃下保温3小时。
CN201911221771.2A 2019-12-03 2019-12-03 一种提高储能密度的绝缘介质的制备方法 Active CN110922618B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911221771.2A CN110922618B (zh) 2019-12-03 2019-12-03 一种提高储能密度的绝缘介质的制备方法
US17/037,618 US11854718B2 (en) 2019-12-03 2020-09-29 Preparation method of insulating dielectric for improving energy density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911221771.2A CN110922618B (zh) 2019-12-03 2019-12-03 一种提高储能密度的绝缘介质的制备方法

Publications (2)

Publication Number Publication Date
CN110922618A CN110922618A (zh) 2020-03-27
CN110922618B true CN110922618B (zh) 2020-10-27

Family

ID=69848439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911221771.2A Active CN110922618B (zh) 2019-12-03 2019-12-03 一种提高储能密度的绝缘介质的制备方法

Country Status (2)

Country Link
US (1) US11854718B2 (zh)
CN (1) CN110922618B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113512223B (zh) * 2021-06-28 2023-04-07 浙江中科玖源新材料有限公司 一种聚酰亚胺导电膜
CN114316327B (zh) * 2021-12-29 2022-10-25 西安交通大学 一种高沿面闪络电压强气体吸附涂层及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123707A1 (en) * 2006-03-30 2007-11-01 Tti Ellebeau, Inc. Controlled release membrane and methods of use
US20120211258A1 (en) * 2011-02-18 2012-08-23 Hitachi Cable, Ltd. Polyamide-imide resin insulating coating material and insulated wire using the same
JP2013155281A (ja) * 2012-01-30 2013-08-15 Hitachi Cable Ltd 絶縁塗料、該絶縁塗料を用いた絶縁電線および該絶縁電線を用いたコイル
CN103434236B (zh) * 2013-08-30 2015-06-17 广州凯恒特种电线电缆有限公司 电线电缆绝缘用聚酰亚胺/聚四氟乙烯复合膜及制备方法
CN104530703A (zh) * 2015-01-20 2015-04-22 无锡顺铉新材料有限公司 低介电常数聚酰亚胺及其制备方法
JP2019040790A (ja) * 2017-08-28 2019-03-14 トヨタ自動車株式会社 絶縁電線

Also Published As

Publication number Publication date
US11854718B2 (en) 2023-12-26
US20210166833A1 (en) 2021-06-03
CN110922618A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN110922618B (zh) 一种提高储能密度的绝缘介质的制备方法
Meng et al. Comparisons of different polypropylene copolymers as potential recyclable HVDC cable insulation materials
Zhou et al. Study on charge transport mechanism and space charge characteristics of polyimide films
CN110105592A (zh) 一种高强度聚乙烯醇-氧化石墨烯-聚吡咯复合水凝胶的制备方法
CN108164699B (zh) 一种聚合物薄膜电介质及其制备方法与用途
Kazemi et al. Metal-polyaniline nanofibre composite for supercapacitor applications
CN111234529A (zh) 聚酰亚胺介电薄膜及其制备方法和应用
CN113003574A (zh) 一种高比表面积多孔材料的制备方法及其应用
Mattes et al. Morphological modification of polyaniline films for the separation of gases
CN111554973A (zh) 基于树枝状聚酰胺-6纳米纤维膜的全固态聚合物电解质及其制备方法
CN114874474A (zh) 一种耐高温高储能全有机聚酰亚胺复合薄膜及其制备方法和应用
CN111116974B (zh) 一种用于空气过滤的尼龙纳米纤维气凝胶材料及其制备方法
CN113571704B (zh) 锂离子电池用聚酰胺酰亚胺粘结剂及电极极片
CN114044901B (zh) 一种聚酰亚胺材料及其制备方法和应用
CN116063847A (zh) 新能源电池用耐酸碱聚酰亚胺薄膜及其制备工艺
CN110919948A (zh) 一种提高绝缘介质介电常数的热处理方法
Nikolić et al. Electrical Strength Tests of a Self-healable Copolymer Based on Ethylene and Anisylpropylene
CN115141371B (zh) 一种交联聚醚酰亚胺电介质材料及其制备方法
CN114716675B (zh) 一种可调控的水溶性电池黏结剂及其制备方法
CN110527068B (zh) 一种有机自由基聚合物电介质材料及其合成方法
CN114316327B (zh) 一种高沿面闪络电压强气体吸附涂层及其制备方法
CN112973481B (zh) 中空纤维荷正电膜及其制备方法
Wan et al. Self-Healing of Electrical/Mechanical Damage in Smart Copolyimide
CN118027401A (zh) 一种含氟基团封端的聚酰亚胺及其制备方法和应用
CN117004063A (zh) 一种高储能密度端基功能化绝缘介质及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant