CN110877427A - 一种含有空心陶瓷球的复合材料及其制备方法 - Google Patents

一种含有空心陶瓷球的复合材料及其制备方法 Download PDF

Info

Publication number
CN110877427A
CN110877427A CN201910841136.8A CN201910841136A CN110877427A CN 110877427 A CN110877427 A CN 110877427A CN 201910841136 A CN201910841136 A CN 201910841136A CN 110877427 A CN110877427 A CN 110877427A
Authority
CN
China
Prior art keywords
hollow ceramic
composite
high polymer
layer
ceramic ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910841136.8A
Other languages
English (en)
Other versions
CN110877427B (zh
Inventor
牛春明
李美平
何启平
李俊
姜璠
李智辉
季欣
孟照海
龚顺祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
CNPC Chuanqing Drilling Engineering Co Ltd
Changqing Downhole Operation Co of CNPC Chuanqing Drilling Engineering Co Ltd
Original Assignee
Xian Jiaotong University
CNPC Chuanqing Drilling Engineering Co Ltd
Changqing Downhole Operation Co of CNPC Chuanqing Drilling Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University, CNPC Chuanqing Drilling Engineering Co Ltd, Changqing Downhole Operation Co of CNPC Chuanqing Drilling Engineering Co Ltd filed Critical Xian Jiaotong University
Priority to US16/676,360 priority Critical patent/US11590697B2/en
Publication of CN110877427A publication Critical patent/CN110877427A/zh
Application granted granted Critical
Publication of CN110877427B publication Critical patent/CN110877427B/zh
Priority to US18/091,963 priority patent/US20230147847A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/171Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种含有空心陶瓷球的复合材料及其制备方法。包括通过3D打印方法制备的一种含有空心陶瓷球复合物的耐冲击梯度复合物部件,以及共混融合方式获得的空心陶瓷球‑聚合物复合物介电材料。本发明的优点在于所得的复合材料具有相对低密度,高强度的特点。耐冲击梯度复合物部件为层状复合物,在与层垂直的方向,复合物的组成和性能可以根据设计进行调节,比如通过调控组成变化,使复合物的机械性能由软过度到硬,呈梯度变化,同时根据需要准确控制性能不同层间的厚度。空心陶瓷球‑高聚物复合物介电材料的介电性能、导热性能和机械性能具有较大的增加。

Description

一种含有空心陶瓷球的复合材料及其制备方法
技术领域
本发明属于复合材料制备技术领域,尤其是涉及一种含有空心陶瓷球的复合材料及其制备方法。
发明背景
空心陶瓷球是一种可以大规模制备的新型材料,目前主要用作支撑剂,用于石油和天然气开采。空心陶瓷球具有密度低和强度高的特点,在开发新型复合物方向,具有很大的应用潜力。在环氧树脂等有机电介质材料中添加,可以提高这些有机物的导热系数、介绍电性能以及机械强度。在金属材料中添加,可以有效改进金属材料的机械性能,制备低密度、高强度、耐冲击的复合材料,这种材料作为结构材料在许多领域有重要的引应用。在用作保护材料时同其他材料结合,形成梯度层状结构,可以进一步提高性能。比如表面层为高硬度金属材料,中间层为复合物,底层为高聚物软材料,可以极大提高材料的耐冲击力。3D打印是一种快速成型技术,采用逐层打印的方式来构造物件,通过对层状结构的组成和结构参数调控,可以对材料的性能进行精确设计和控制。
发明内容
有鉴于此,本发明旨在利用空心陶瓷球的低密度和高强度的特点,改进高聚物和金属材料的性能,制备新型复合物材料,进一步提出一种含有空心陶瓷球的复合材料及其制备方法,以克服现有技术的不足。
本发明的一个方面是提供一种含有空心陶瓷球复合物的耐冲击梯度复合物部件的3D打印方法,包括如下步骤:
1)设计部件的尺寸和形状以及内部的层状结构;
2)提供两种原材料,一种是金属或高聚物粉末,另一种是空心陶瓷球;
3)根据设计提供一定厚度的金属或高聚物粉末,然后用热源将粉末融熔和固化,形成金属层或高聚物层,根据设计重复打印金属层或高聚物层直到达到设计的金属层或高聚物层厚度;
4)在金属或高聚物表面提供一层空心陶瓷球,提供金属或高聚物粉末直到所有球之间的空隙被填满,然后用热源将粉末融熔和固化,形成金属或高聚物-陶瓷球复合物层,重复打印复合物层直到达到设计的厚度;
5)重复步骤3)和4)形成耐冲击梯度复合物部件。
本发明的另一个方面是提供一种含有空心陶瓷球复合物的耐冲击梯度复合物部件的3D打印方法,其特征在于,包括如下步骤:
1)设计部件的尺寸和形状以及内部的层状结构;
2)提供原材料,所述原材料含有高聚物、固化剂和空心陶瓷球;
3)根据设计提供一定厚度的原材料,然后用热源固化,形成含有空心陶瓷球的高聚物层,根据设计重复打印直到达到设计的厚度,形成耐冲击梯度复合物部件。
本发明的另一个方面是提供一种空心陶瓷球-高聚物复合物介电材料的制备方法,所述材料制备方法包括如下步骤:
1)提供一种空心陶瓷球和一种高聚物材料;
2)将所述高聚物材料与固化剂、增塑剂混合均匀;
3)加入空心陶瓷球,搅拌混合均匀,真空脱气;
4)加热步骤3所得混合物,进行固化处理,得到空心陶瓷球-高聚物复合物介电材料。
本发明的优点在于所得的复合材料具有相对低密度,高强度的特点。耐冲击梯度复合物部件为层状复合物,在与层垂直的方向,复合物的组成和性能可以根据设计进行调节,比如通过调控组成变化,使复合物的机械性能由软过度到硬,呈梯度变化,同时根据需要准确控制性能不同层间的厚度。空心陶瓷球-高聚物复合物介电材料的介电性能、导热性能和机械性能具有较大的增加。
附图说明
图1为本发明的3D打印示意图;
图2为本发明所用的高强度空心陶瓷球;
图3为本发明所用的空心陶瓷球横截面电子显微镜图;
图4为本发明所制备的环氧树脂-空心球复合物的光学显微镜图;
图5为本发明所用的均匀空心陶瓷球球复合物;
图6为本发明制备的梯度复合物部件的一个示意图;
图7为本发明制备的梯度复合物部件的另一个实例示意图。
其中:1-3D打印原料,2-刮刀,3-激光,4-梯度复合物,5-收集器,6-空心陶瓷球,7-基体,8-纯基体,9-复合物,10-薄层纯基体,11-薄层复合物
具体实施方式
下面结合具体实施方式来对本发明作进一步的说明,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
本发明的一个方面是提供一种含有空心陶瓷球复合物的耐冲击梯度复合物部件的3D打印方法,包括如下步骤:
1)设计部件的尺寸和形状以及内部的层状结构;
2)提供两种原材料,一种是金属粉末,另一种是空心陶瓷球;
3)根据设计提供一定厚度的金属粉末,然后用热源将粉末融熔和固化,形成金属层,根据设计重复打印金属层直到达到设计的金属层厚度;
4)在金属层表面提供一层空心陶瓷球,提供金属粉末直到所有球之间的空隙被填满,然后用热源将粉末融熔和固化,形成金属-陶瓷球复合物层,重复打印复合物层直到达到设计的厚度;
5)重复步骤3)和4)形成耐冲击梯度复合物部件。
优选的,所述步骤3)和步骤4)所述的熔融温度的选择并无特别要求,选择相应材料的常规熔融温度即可。
优选的,所述金属粉末包括但不限于铝粉和钛粉。
本发明的另一个方面是提供一种含有空心陶瓷球复合物的耐冲击梯度复合物部件的3D打印方法,其特征在于,包括如下步骤:
1)设计部件的尺寸和形状以及内部的层状结构;
2)提供原材料,所述原材料含有高聚物、固化剂和空心陶瓷球;
3)根据设计提供一定厚度的原材料,然后用热源固化,形成含有空心陶瓷球的高聚物层,根据设计重复打印直到达到设计的厚度,形成耐冲击梯度复合物部件。
优选的,高聚物粉末包括:环氧树脂与偶联剂混合物,环氧树脂,Nylon,聚醚醚酮(PEEK),聚苯硫醚(PPS),聚酰亚胺(PI)。
优选的,所述环氧树脂与偶联剂的混合物中,所述偶联剂可选择本领域内常见的偶联剂,例如多元羧酸和环酐。
优选的,所述空心陶瓷球的直径为50微米-5毫米,空心陶瓷球壁厚同球半径的比例为1/3-2/3。
优选的,所述空心陶瓷球的破碎率在35MPa下小于5,在60MPa下小于5,在压强高于86MPa时小于5。
优选的,所述空心陶瓷球的材料包括但不限于:玻璃,Si02,刚玉(Al203),莫来石,刚玉和玻璃体的混合物。
本发明的另一个方面是提供一种含有空心陶瓷球复合物的耐冲击梯度复合物部件,使用前述3D打印方法制备。
本发明的另一个方面是提供一种空心陶瓷球-高聚物复合物介电材料的制备方法,所述材料制备方法包括如下步骤:
1)提供一种空心陶瓷球和一种高聚物材料;
2)将所述高聚物材料与固化剂、增塑剂混合均匀;
3)加入空心陶瓷球,搅拌混合均匀,真空脱气;
4)加热步骤3所得混合物,进行固化处理,得到空心陶瓷球-高聚物复合物介电材料。
优选的,所述固化剂和增塑剂为本领域内常规的固化剂和增塑剂。
优选的,所述加热固化为并无特别要求,满足相应高聚物材料的固化条件即可。
优选的,所述空心陶瓷球的直径为50微米-5毫米,空心陶瓷球壁厚同球半径的比例为1/3-2/3。
优选的,所述空心陶瓷球的材料包括但不限于:玻璃,Si02,刚玉(Al203),莫来石,刚玉和玻璃体的混合物;所述高聚物包括环氧树脂,Nylon,聚醚醚酮(PEEK),聚苯硫醚(PPS),聚酰亚胺(PI)以及这些材料的混合物。
本发明的另一个方面是提供一种空心陶瓷球-高聚物复合物介电材料,所述材料使用前述方法制备。
实施例1:空心陶瓷球-环氧树脂梯度复合物
ooo将双酚A环氧树脂(Bisphenol-A epoxy resin,DGEBA),聚己内酯二元醇和三芳基六氟锑酸锍鎓盐阳离子光引发剂按一定比例混合制备成液体A;在液体A中添加一定比例的空心陶瓷球制备B。
如图1所示,提供一定厚度的B,紫外光照射一定时间使环氧树脂固化形成复合物薄层,重复以上步骤直到复合物层的厚度达到设计厚度,然后提供一定厚度的A,紫外光照射一定时间使环氧树脂固化形成纯环氧树脂薄层,重复打印纯环氧树脂直到纯环氧树脂层达到设计厚度。重复打印复合物层和纯环氧树脂层直到形成设计的梯度复合物产物,在真空下150℃加热产物进一步使环氧树脂固化并去除产物中的应力。
实施例2:空心陶瓷球-钛梯度复合物
如图1所示,提供一定厚度的空心陶瓷球(至少一个单层),在陶瓷球上提供一个薄层钛粉,通过震动或其它机制使钛粉完全将陶瓷球间的空隙填充,然后用激光照射一定时间使钛粉凝聚将空心球连接成一体,形成空心陶瓷球-钛复合物薄层,重复以上步骤直到复合物层的厚度达到设计厚度,然后提供一定厚度的钛粉,用激光照射一定时间使钛粉凝聚形成纯钛薄层,重复打印纯钛直到纯钛层达到设计厚度。重复打印复合物层和纯钛层直到形成设计的梯度复合物产物,在真空下高温处理进一步使凝聚固化并去除产物中的应力。
实施例3:空心陶瓷球-环氧树脂复合物复合物
将双酚A环氧树脂(Bisphenol-A epoxy resin,DGEBA),固化剂甲基四氢苯酐(Methyl Tetrahydrophthalic Anhydride,MTHPA)和增速剂N,N-二甲基苄胺(N,N-dimethylbenzylamine,BDMA)按100∶86∶2的比例混合,添加65%重量百分比的空心陶瓷球(圆度>0.95,视密度~2.7,86MPa压强下的破碎率<5%),搅拌均匀后,在60℃真空下脱气30分钟,然后在100℃固化2小时,150℃固化10小时获得空心陶瓷球-环氧树脂复合物。
在光学显微镜下,如图4所示,空心陶瓷球接近紧密堆积,紧密堆积间的空隙由环氧树脂填充,将空心陶瓷球紧密连接在一起形成复合物。图5显示空心陶瓷球在基体中均匀分布。
如表1所示,相比在同样条件下制备的纯环氧树脂,复合物的介电性能、导热性能和机械性能均有比较大的增加。
表1复合物的介电、导热和机械性能
Figure BDA0002192649980000051
Figure BDA0002192649980000061
图2为本发明所用的高强度空心陶瓷球。
图3为本发明所用的空心陶瓷球横截面电子显微镜图。
图6为本发明制备的梯度复合物部件的一个示意图。
图7为本发明制备的梯度复合物部件的另一个实例示意图。
以上所述,仅为本发明的较佳实施例,并不用以限制本发明,各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。凡是依据本发明的技术实质对以上实施例所做的任何细微修改,等同替换和改进,均应包含在本发明技术方案的保护范围之内。

Claims (11)

1.一种含有空心陶瓷球复合物的耐冲击梯度复合物部件的3D打印方法,其特征在于,包括如下步骤:
1)设计部件的尺寸和形状以及内部的层状结构;
2)提供两种原材料,一种是金属粉末,另一种是空心陶瓷球;
3)根据设计提供一定厚度的金属粉末,然后用热源将粉末融熔和固化,形成金属层,根据设计重复打印金属层直到达到设计的金属层厚度;
4)在金属层表面提供一层空心陶瓷球,提供金属粉末直到所有球之间的空隙被填满,然后用热源将粉末融熔和固化,形成金属-陶瓷球复合物层,重复打印复合物层直到达到设计的厚度;
5)重复步骤3)和4)形成耐冲击梯度复合物部件。
2.一种含有空心陶瓷球复合物的耐冲击梯度复合物部件的3D打印方法,其特征在于,优选的,包括如下步骤:
1)设计部件的尺寸和形状以及内部的层状结构;
2)提供原材料,所述原材料含有高聚物、固化剂和空心陶瓷球;
3)根据设计提供一定厚度的原材料,然后用热源固化,形成含有空心陶瓷球的高聚物层,根据设计重复打印直到达到设计的厚度,形成耐冲击梯度复合物部件。
3.根据权利要求1或2所述的方法,其特征在于,所述空心陶瓷球的直径为50微米-5毫米,空心陶瓷球壁厚同球半径的比例为1/3-2/3。
4.根据权利要求1或2所述的方法,其特征在于,所述空心陶瓷球的破碎率在35MPa下小于5,在60MPa下小于5,在压强高于86MPa时小于5。
5.根据权利要求1或2所述的方法,其特征在于,所述空心陶瓷球的材料包括但不限于:玻璃,SiO2,刚玉(Al2O3),莫来石,刚玉和玻璃体的混合物。
6.根据权利要求1所述的方法,其特征在于,所述金属粉末包括但不限于铝粉和钛粉。
7.根据权利要求2所述的方法,其特征在于,所述高聚物粉末包括:环氧树脂与偶联剂混合物,环氧树脂,Nylon,聚醚醚酮(PEEK),聚苯硫醚(PPS),聚酰亚胺(PI)。
8.如权利要求1-7任一项所述的方法制备得到的含有空心陶瓷球复合物的耐冲击梯度复合物部件。
9.一种空心陶瓷球-高聚物复合物介电材料的制备方法,其特征在于,所述材料制备方法包括如下步骤:
1)提供一种空心陶瓷球和一种高聚物材料;
2)将所述高聚物材料与固化剂、增塑剂混合均匀;
3)加入空心陶瓷球,搅拌混合均匀,真空脱气;
4)加热步骤3所得混合物,进行固化处理,得到空心陶瓷球-高聚物复合物介电材料。
10.根据权利要求8所述的方法,其特征在于,所述空心陶瓷球的材料包括但不限于:玻璃,SiO2,刚玉(Al2O3),莫来石,刚玉和玻璃体的混合物;所述高聚物包括环氧树脂,Nylon,聚醚醚酮(PEEK),聚苯硫醚(PPS),聚酰亚胺(PI)以及这些材料的混合物。
11.根据权利要求9-10任一项所述的方法制备得到的空心陶瓷球-高聚物复合物介电材料。
CN201910841136.8A 2018-09-06 2019-09-05 一种含有空心陶瓷球的复合材料及其制备方法 Active CN110877427B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/676,360 US11590697B2 (en) 2018-09-06 2019-11-06 Composite containing hollow ceramic spheres and preparation method of composite
US18/091,963 US20230147847A1 (en) 2018-09-06 2022-12-30 3d printing method for an impact-resistance gradient complex part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018110343896 2018-09-06
CN201811034389 2018-09-06

Publications (2)

Publication Number Publication Date
CN110877427A true CN110877427A (zh) 2020-03-13
CN110877427B CN110877427B (zh) 2021-07-06

Family

ID=69727597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910841136.8A Active CN110877427B (zh) 2018-09-06 2019-09-05 一种含有空心陶瓷球的复合材料及其制备方法

Country Status (2)

Country Link
US (2) US11590697B2 (zh)
CN (1) CN110877427B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113414409A (zh) * 2021-06-21 2021-09-21 哈尔滨工程大学 一种梯度功能减振降噪复合材料增减材复合制造方法
CN114985764A (zh) * 2022-06-13 2022-09-02 广东工业大学 一种陶瓷-金属复合材料增材制造方法
CN115319110A (zh) * 2022-07-22 2022-11-11 华中科技大学 一种陶瓷增强金属基复合材料及其增材制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116535232A (zh) * 2023-02-01 2023-08-04 浙江大学温州研究院 一种适用于直写式3d打印梯度陶瓷多孔材料及制备方法
CN116478679A (zh) * 2023-04-24 2023-07-25 西南石油大学 一种支撑剂及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1718632A (zh) * 2005-07-27 2006-01-11 武汉理工大学 一种空心微珠增强环氧树脂复合材料及其制备方法
CN101522856A (zh) * 2006-08-03 2009-09-02 环氧乙烷材料股份有限公司 支撑剂的组合物及制备方法
CN101921427A (zh) * 2010-08-06 2010-12-22 奇瑞汽车股份有限公司 一种功能性高分子装饰复合材料及其制备方法
US20110130489A1 (en) * 2006-12-08 2011-06-02 Z Corporation Three dimensional printing material system and method using peroxide cure
CN102321369A (zh) * 2011-08-12 2012-01-18 四川大学 低密度聚芳硫醚复合材料及其制备方法
CN102702679A (zh) * 2012-05-31 2012-10-03 中国海洋大学 一种深潜用高强固体浮力材料的制备方法
CN102826840A (zh) * 2012-09-24 2012-12-19 西南石油大学 一种SiO2-Al2O3系中空陶瓷球及其制备方法
CN105189092A (zh) * 2013-03-15 2015-12-23 3D系统公司 三维打印材料系统
CN105647106A (zh) * 2016-01-28 2016-06-08 淄博迈特瑞工程材料有限公司 一种中空陶瓷微珠peek复合覆铜板及其制备方法
CN107225241A (zh) * 2016-03-24 2017-10-03 通用汽车环球科技运作有限责任公司 使用3d打印制造绝热三维(3d)结构的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071628A (en) * 1999-03-31 2000-06-06 Lockheed Martin Energy Systems, Inc. Thermal barrier coating for alloy systems
US10040723B2 (en) * 2016-08-08 2018-08-07 GM Global Technology Operations LLC Ceramic microsphere thermal barrier coating

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1718632A (zh) * 2005-07-27 2006-01-11 武汉理工大学 一种空心微珠增强环氧树脂复合材料及其制备方法
CN101522856A (zh) * 2006-08-03 2009-09-02 环氧乙烷材料股份有限公司 支撑剂的组合物及制备方法
US20110130489A1 (en) * 2006-12-08 2011-06-02 Z Corporation Three dimensional printing material system and method using peroxide cure
CN101921427A (zh) * 2010-08-06 2010-12-22 奇瑞汽车股份有限公司 一种功能性高分子装饰复合材料及其制备方法
CN102321369A (zh) * 2011-08-12 2012-01-18 四川大学 低密度聚芳硫醚复合材料及其制备方法
CN102702679A (zh) * 2012-05-31 2012-10-03 中国海洋大学 一种深潜用高强固体浮力材料的制备方法
CN102826840A (zh) * 2012-09-24 2012-12-19 西南石油大学 一种SiO2-Al2O3系中空陶瓷球及其制备方法
CN105189092A (zh) * 2013-03-15 2015-12-23 3D系统公司 三维打印材料系统
CN105647106A (zh) * 2016-01-28 2016-06-08 淄博迈特瑞工程材料有限公司 一种中空陶瓷微珠peek复合覆铜板及其制备方法
CN107225241A (zh) * 2016-03-24 2017-10-03 通用汽车环球科技运作有限责任公司 使用3d打印制造绝热三维(3d)结构的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113414409A (zh) * 2021-06-21 2021-09-21 哈尔滨工程大学 一种梯度功能减振降噪复合材料增减材复合制造方法
CN113414409B (zh) * 2021-06-21 2022-06-21 哈尔滨工程大学 一种梯度功能减振降噪复合材料增减材复合制造方法
CN114985764A (zh) * 2022-06-13 2022-09-02 广东工业大学 一种陶瓷-金属复合材料增材制造方法
CN114985764B (zh) * 2022-06-13 2023-08-11 广东工业大学 一种陶瓷-金属复合材料增材制造方法
CN115319110A (zh) * 2022-07-22 2022-11-11 华中科技大学 一种陶瓷增强金属基复合材料及其增材制造方法
CN115319110B (zh) * 2022-07-22 2024-05-24 华中科技大学 一种陶瓷增强金属基复合材料及其增材制造方法

Also Published As

Publication number Publication date
US20200276755A1 (en) 2020-09-03
CN110877427B (zh) 2021-07-06
US11590697B2 (en) 2023-02-28
US20230147847A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
CN110877427B (zh) 一种含有空心陶瓷球的复合材料及其制备方法
US20240246284A1 (en) Three-dimensional (3d) printed composite structure and 3d printable composite ink formulation
Feilden et al. 3D printing bioinspired ceramic composites
Kuang et al. High‐speed 3D printing of high‐performance thermosetting polymers via two‐stage curing
WO2018106705A1 (en) 3d printed core-shell filament and method of 3d printing a core-shell filament
KR102676653B1 (ko) 신속 경화 에폭시 아크릴 액체 심
He et al. Resin modification on interlaminar shear property of carbon fiber/epoxy/nano‐caco3 hybrid composites
Ma et al. Bioinspired composites reinforced with ordered steel fibers produced via a magnetically assisted 3D printing process
ES2363426T3 (es) Resinas termoendurecibles.
Ku et al. Contrast on tensile and flexural properties of glass powder reinforced epoxy composites: pilot study
JP2015168687A (ja) コイル含浸用樹脂組成物及びコイル装置
JP2013133342A (ja) 複合材料
CN103642173A (zh) 空心玻璃微珠复合材料的制备方法
WO2017014067A1 (ja) ガラス充填材及びそれを用いた立体造形用樹脂組成物
JP2005105151A (ja) エポキシ樹脂組成物
Ueta et al. Experimental additive manufacturing of green body of SiC/Graphite functionally graded materials by stereolithography
JP4880986B2 (ja) エポキシ樹脂組成物を用いて形成される物品の製造方法
Ku et al. Tensile tests of glass powder reinforced epoxy composites: pilot study
WO2017221599A1 (ja) ガラス充填材及びその製造方法
KR20200141315A (ko) 중공형 필러가 혼합된 복합경화물 및 그 제조방법
Guedes et al. Carbon Nanotube Layer for Reduction of Fiber Print‐Through in Carbon Fiber Composites
Alrashdan et al. Light assisted hybrid direct write additive manufacturing of thermosets
JP2010059300A (ja) 炭素繊維強化複合材料およびその製造方法
JP2021059694A (ja) 樹脂組成物、立体造形物及び立体造形物の製造方法
KR102428735B1 (ko) 중공형 필러 및 섬유강화상이 혼합된 복합경화물 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant