CN116535232A - 一种适用于直写式3d打印梯度陶瓷多孔材料及制备方法 - Google Patents

一种适用于直写式3d打印梯度陶瓷多孔材料及制备方法 Download PDF

Info

Publication number
CN116535232A
CN116535232A CN202310049118.2A CN202310049118A CN116535232A CN 116535232 A CN116535232 A CN 116535232A CN 202310049118 A CN202310049118 A CN 202310049118A CN 116535232 A CN116535232 A CN 116535232A
Authority
CN
China
Prior art keywords
printing
gradient
porous material
direct
ceramic porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310049118.2A
Other languages
English (en)
Inventor
兰俊杰
曹旭丹
吴艳芳
李跃
周馨
杨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou Research Institute Of Zhejiang University
Original Assignee
Wenzhou Research Institute Of Zhejiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Research Institute Of Zhejiang University filed Critical Wenzhou Research Institute Of Zhejiang University
Priority to CN202310049118.2A priority Critical patent/CN116535232A/zh
Publication of CN116535232A publication Critical patent/CN116535232A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)

Abstract

本发明提供一种适用于直写式3D打印梯度陶瓷多孔材料及制备方法,包括中空微球,陶瓷粉末,絮凝剂,分散剂,溶剂,且中空微球和陶瓷粉末在体系中的质量百分比呈梯度变化,上述组分质量百分比之和为100%。该梯度陶瓷多孔材料具有较高的致密度,本发明还提供了一种直写式3D打印梯度陶瓷多孔材料的制备方法,将中空微球、陶瓷粉末、溶剂、絮凝剂、分散剂进行混合,搅拌,中空微球和陶瓷粉末在体系中的百分比呈梯度变化,得到梯度陶瓷的系列浆料;将系列浆料加入3D打印机,直写打印得到梯度陶瓷坯体,经过干燥、脱脂和烧结,得到梯度陶瓷多孔材料。该方法通过直写式3D打印制备梯度陶瓷多孔材料,具有较低的收缩率,能够控制打印厚度。

Description

一种适用于直写式3D打印梯度陶瓷多孔材料及制备方法
技术领域
本发明涉及3D打印技术领域,具体涉及一种适用于直写式3D打印梯度陶瓷多孔材料及制备方法。
背景技术
直写成型技术属于3D打印技术中的一种,用于制备高纵横比、大跨度微型结构的三维功能材料,作为一种新型的固体无模制造技术,与光固化成型、激光选区烧结成型方法相比,能够在常温、不需要紫外光照射或者激光加热条件下直接“书写”出三维结构,成型过程简单。
随着社会的发展,材料的使用环境越来越复杂,对材料的性能要求也越来越高,传统的材料已不能满足现代工程的需要,梯度功能材料应运而生。这种全新的材料设计概念的基本思想是:根据具体要求,选择两种具有不同性能的材料,通过连续地改变两种材料的组成和结构,使其内部界面消失,从而得到功能相对于组成和结构的变化而渐变的非均质材料。陶瓷材料具有高强、高硬、高化学稳定性的优异性能,而多孔结构中空微球材料密度低、隔热性好、催化效率高,通过梯度功能设计使其各自的优异性能有机的结合起来,可以扩大高性能陶瓷多孔材料在各领域的应用,是材料科学领域的重点研究方向。
现有的梯度陶瓷制备技术主要有激光烧结和化学气相沉积。激光烧结在熔融覆盖烧结过程中,难以解决不同粉末烧结温度的差异问题以及不同层烧结收缩量不同的重大难题,在梯度陶瓷多孔材料制备中的应用还比较少;化学气相沉积可以制得表面光滑致密的结构,适合薄膜的制备,对于较厚梯度结构的制备无能为力。有一种3D打印梯度陶瓷金属材料以及制备方法公开号CN113458387A就此些问题提出了一种3D打印梯度材料的方法,但受限于制作工艺,其提供的方法仅能用于制备小尺寸原料的梯度复合材料,对于颗粒尺寸较大的中空微球原料则无法制备。
发明内容
本发明的目的在于提供一种适用于直写式3D打印梯度陶瓷多孔材料及制备方法,用于解决上述问题,同时本发明能够制备复杂结构的梯度材料,收缩率低,能制备大尺寸颗粒原料,容易控制梯度组成。
一种适用于直写式3D打印梯度陶瓷多孔材料,包括以下重量百分比组成的原料:中空微球50%-70%、陶瓷粉末10%-30%、絮凝剂1%-5%、分散剂0.01%-0.5%、溶剂,所述中空微球和陶瓷粉末在体系中的质量百分比呈梯度变化,上述组分质量百分比之和为100%。
所述中空微球包括氧化铝、二氧化钛、二氧化硅中的一种或多种,所述中空微球的粒径值为50-400μm。
所述陶瓷粉末包括瓷土、石灰石、钾长石、高岭土中的一种或多种,所述陶瓷粉末的粒径值为5-15μm。
所述中空微球为氧化铝,所述中空微球的粒径值为100-300μm,所述陶瓷粉末的粒径值为8-12μm。
所述的絮凝剂包括PEG 6000、聚乙烯醇、羧甲基纤维素钠中的一种或多种。
所述的分散剂包括六偏磷酸钠、聚丙烯酸钠、聚(4-苯乙烯磺酸)中的一种或多种。
本发明还包括一种适用于直写式3D打印梯度陶瓷多孔材料制备方法,包括步骤:
S1:将溶剂、陶瓷粉末、中空微球、分散剂、黏接剂进行混合,搅拌,其中,陶瓷粉末和中空微球在体系中的百分比呈现梯度变化,从而得到梯度陶瓷的系列浆料;
S2:直写成型,将所述系列浆料加入3D打印机料筒,基于设定模型,通过3D打印机不同打印头直写挤出,逐层堆叠所述系列浆料,得到3D打印梯度陶瓷坯体;
S3:将所述3D打印梯度陶瓷坯体依次进行干燥、烧结,得到3D打印梯度陶瓷多孔材料。
所述直写挤出方式为气压加螺杆挤出。
所述直写成型条件为:气压为0.3-0.6Mpa,打印针头直径为1-3mm,打印速度为3-12mm/s,打印线宽为1.03-3.05mm,打印层高为0.5-2mm。
所述烧结具体为:
将烧结温度从常温升至300℃,耗时90min;
将烧结温度从300℃升至920℃,耗时120min;
将烧结温度从920℃升至1050℃,耗时90min;
将烧结温度从1050℃升至1340℃,耗时150min;
将烧结温度从1340℃自然冷却至室温,完成烧结。
发明提供的种适用于直写式3D打印梯度陶瓷多孔材料及制备方法有益效果在于:
1、本发明提供的3D打印陶瓷梯度多孔材料将大颗粒的中空微球与小尺寸的陶瓷粉末复合,利用小尺寸颗粒填补大尺寸颗粒间的空隙,且随各组分的梯度变化,可制得结构稳定、性能多样的梯度陶瓷多孔材料。
2、由于本发明提供的3D打印梯度陶瓷多孔材料的打印原料固含量高,使得该3D打印陶瓷多孔材料具有较低的烧成收缩率,易于控制3D打印产品的尺寸。
3、本发明提供的3D打印梯度陶瓷多孔材料挤出方式为气压加螺杆双重挤出,可以更精准的控制原料的输送,且对原料的流变性能适用性更加宽泛,因而在梯度材料的组合上具有更灵活的选择。
4、3D打印直写技术作为一种增材制造技术,材料利用率高,能耗低,对环境友好,是一种绿色的制造技术。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1中3D打印陶瓷梯度多孔材料结构示意图结构图。
具体实施方式
下面结合附图和实施例对发明的技术方案做进一步的说明,以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
实施例1
1、打印浆料制备
中空微球:氧化铝,粒径100-300μm,在浆料体系中质量百分比分别为50%、60%,做成2份梯度浆料;
陶瓷粉末:龙泉宝溪瓷土:粒径8-12μm,在浆料体系中质量百分比分别为30%、20%,做成2份梯度浆料;
絮凝剂:PEG 6000、聚乙烯醇,添加比例PEG 6000:聚乙烯醇=3:2,在浆料体系中质量百分比分别为1%、3%;
分散剂:六偏磷酸钠、聚丙烯酸钠,添加比例六偏磷酸钠:聚丙烯酸钠=1:1,在浆料体系中质量百分比分别为0.5%、0.2%;
溶剂:去离子水,按100%浆料的剩余量补足去离子水。
将以上溶剂、分散剂、絮凝剂搅拌混合成均匀溶液,按顺序边搅拌边缓慢加入陶瓷粉末和中空微球,将制得的浆料放在真空箱中去除气泡2小时,获得高固含量直写3D打印陶瓷浆料。
2、打印坯体制作
将制得的打印浆料分别装入打印料筒,按设定程序打印坯体。打印参数为:气压为0.4-0.6MPa,打印针头直径为1mm,打印速度为12mm/s,打印线宽1.03mm,打印层高为0.5mm。打印过程中,使用1#打印头打印2mm高度浆料A(50%氧化铝+30%龙泉宝溪瓷土),然后转换2#打印头打印2mm高度浆料B(60%氧化铝+20%龙泉宝溪瓷土),依次交替进行打印,得到均质梯度坯体。
3、烧结
将坯体按照如下升温曲线进行烧结:
将烧结温度从常温升至300℃,耗时90min;
将烧结温度从300℃升至920℃,耗时120min;
将烧结温度从920℃升至1050℃,耗时90min;
将烧结温度从1050℃升至1340℃,耗时150min;
将烧结温度从1340℃自然冷却至室温,完成烧结。
然后自然冷却。烧结过程在空气中进行,最终得到3D打印梯度陶瓷多孔材料,所述材料收缩率5.89%。
实施例2
1、打印浆料制备
中空微球:氧化铝,在浆料体系中质量百分比:50%、55%、60%、65%、70%,做成5份梯度浆料;
陶瓷粉末:龙泉宝溪瓷土,在浆料体系中质量百分比:30%、25%、20%、15%、10%,做成5份梯度浆料;
絮凝剂:PEG 6000、羧甲基纤维素钠,添加比例PEG 6000:羧甲基纤维素钠=1:1,在浆料体系中质量百分比:3%、3.5%、4%、4.5%、5%;
分散剂:聚(4-苯乙烯磺酸),在浆料体系中质量百分比:0.01%、0.01%、0.02%、0.03%、0.05%;
溶剂:去离子水,按100%浆料的剩余量补足去离子水。
将以上溶剂、分散剂、絮凝剂搅拌混合成均匀溶液,按顺序边搅拌边缓慢加入陶瓷粉末和中空微球,将制得的浆料放在真空箱中去除气泡2小时,获得高固含量直写3D打印陶瓷浆料。
2、打印坯体制作
将制得的打印浆料分别装入打印料筒,按设定程序打印坯体。打印参数为:气压为0.4-0.6MPa,打印针头直径为3mm,打印速度为3mm/s,打印线宽3.05mm,打印层高为2mm。打印过程中,先打印50%氧化铝+30%龙泉宝溪瓷土的浆料,然后按氧化铝含量依次递减,龙泉宝溪瓷土含量依次递增的顺序依次堆叠打印,得到原料组成梯度变化的打印坯体。
3、烧结
将坯体按照如下升温曲线进行烧结:
将烧结温度从常温升至300℃,耗时90min;
将烧结温度从300℃升至920℃,耗时120min;
将烧结温度从920℃升至1050℃,耗时90min;
将烧结温度从1050℃升至1340℃,耗时150min;
将烧结温度从1340℃自然冷却至室温,完成烧结。
烧结过程在空气中进行,最终得到3D打印梯度陶瓷多孔材料,所述材料收缩率5.01%。
实施例3
1、打印浆料制备
中空微球:氧化铝和二氧化钛,两者质量比1:1,在浆料体系中质量百分比:60%、65%、70%,做成3份梯度浆料;
陶瓷粉末:龙泉宝溪瓷土和高岭土,两者质量比2:1,在浆料体系中质量百分比:20%、15%、10%,做成3份梯度浆料;
絮凝剂:PEG 6000、羧甲基纤维素钠,添加比例PEG 6000:羧甲基纤维素钠=2:1,在浆料体系中质量百分比:4%、4.5%、5%;
分散剂:聚(4-苯乙烯磺酸),在浆料体系中质量百分比:0.02%、0.03%、0.05%;
溶剂:去离子水,按100%浆料的剩余量补足去离子水。
将以上溶剂、分散剂、絮凝剂机械搅拌混合成均匀溶液,按顺序边搅拌边缓慢加入陶瓷粉末和中空微球,将制得的浆料放在真空箱中去除气泡2小时,获得高固含量直写3D打印陶瓷浆料。
2、打印坯体制作
将制得的打印浆料分别装入打印料筒,按设定程序打印坯体。打印参数为:气压为0.4-0.6MPa,打印针头直径为2mm,打印速度为8mm/s,打印线宽2.03mm,打印层高为1mm。打印过程中,先打印60%中空微球+20%陶瓷粉末的浆料,然后按中空微球含量依次递减,陶瓷粉末含量依次递增的顺序依次堆叠打印,得到原料组成梯度变化的打印坯体。
3、烧结
将坯体按照如下升温曲线进行烧结:
将烧结温度从常温升至300℃,耗时90min;
将烧结温度从300℃升至920℃,耗时120min;
将烧结温度从920℃升至1050℃,耗时90min;
将烧结温度从1050℃升至1340℃,耗时150min;
将烧结温度从1340℃自然冷却至室温,完成烧结。
烧结过程在空气中进行,最终得到3D打印梯度陶瓷多孔材料,所述材料收缩率4.27%。
以上所述的具体实施例,对本发明解决的技术问题、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种适用于直写式3D打印梯度陶瓷多孔材料,其特征在于,包括以下重量百分比组成的原料:中空微球50%-70%、陶瓷粉末10%-30%、絮凝剂1%-5%、分散剂0.01%-0.5%、溶剂,所述中空微球和陶瓷粉末在体系中的质量百分比呈梯度变化,上述组分质量百分比之和为100%。
2.根据权利要求1所述的一种适用于直写式3D打印梯度陶瓷多孔材料,其特征在于,所述中空微球包括氧化铝、二氧化钛、二氧化硅中的一种或多种,所述中空微球的粒径值为50-400μm。
3.根据权利要求2所述的一种适用于直写式3D打印梯度陶瓷多孔材料,其特征在于,所述陶瓷粉末包括瓷土、石灰石、钾长石、高岭土中的一种或多种,所述陶瓷粉末的粒径值为5-15μm。
4.根据权利要求3所述的一种适用于直写式3D打印梯度陶瓷多孔材料,其特征在于,所述中空微球为氧化铝,所述中空微球的粒径值为100-300μm,所述陶瓷粉末的粒径值为8-12μm。
5.根据权利要求1所述的一种适用于直写式3D打印梯度陶瓷多孔材料,其特征在于,所述的絮凝剂包括PEG 6000、聚乙烯醇、羧甲基纤维素钠中的一种或多种。
6.根据权利要求1所述的一种适用于直写式3D打印梯度陶瓷多孔材料,其特征在于,所述的分散剂包括六偏磷酸钠、聚丙烯酸钠、聚(4-苯乙烯磺酸)中的一种或多种。
7.一种适用于直写式3D打印梯度陶瓷多孔材料制备方法,根据权利要求1-6任一项所述的一种适用于直写式3D打印梯度陶瓷多孔材料,其特征在于,包括步骤:
S1:将溶剂、陶瓷粉末、中空微球、分散剂、黏接剂进行混合,搅拌,其中,陶瓷粉末和中空微球在体系中的百分比呈现梯度变化,从而得到梯度陶瓷的系列浆料;
S2:直写成型,将所述系列浆料加入3D打印机料筒,基于设定模型,通过3D打印机不同打印头直写挤出,逐层堆叠所述系列浆料,得到3D打印梯度陶瓷坯体;
S3:将所述3D打印梯度陶瓷坯体依次进行干燥、烧结,得到3D打印梯度陶瓷多孔材料。
8.根据权利要求7所述的一种适用于直写式3D打印梯度陶瓷多孔材料制备方法,其特征在于,所述直写挤出方式为气压加螺杆挤出。
9.根据权利要求8所述的一种适用于直写式3D打印梯度陶瓷多孔材料制备方法,其特征在于,所述直写成型条件为:气压为0.3-0.6Mpa,打印针头直径为1-3mm,打印速度为3-12mm/s,打印线宽为1.03-3.05mm,打印层高为0.5-2mm。
10.根据权利要9所述的一种适用于直写式3D打印梯度陶瓷多孔材料制备方法,其特征在于,所述烧结具体为:
将烧结温度从常温升至300℃,耗时90min;
将烧结温度从300℃升至920℃,耗时120min;
将烧结温度从920℃升至1050℃,耗时90min;
将烧结温度从1050℃升至1340℃,耗时150min;
将烧结温度从1340℃自然冷却至室温,完成烧结。
CN202310049118.2A 2023-02-01 2023-02-01 一种适用于直写式3d打印梯度陶瓷多孔材料及制备方法 Pending CN116535232A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310049118.2A CN116535232A (zh) 2023-02-01 2023-02-01 一种适用于直写式3d打印梯度陶瓷多孔材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310049118.2A CN116535232A (zh) 2023-02-01 2023-02-01 一种适用于直写式3d打印梯度陶瓷多孔材料及制备方法

Publications (1)

Publication Number Publication Date
CN116535232A true CN116535232A (zh) 2023-08-04

Family

ID=87454833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310049118.2A Pending CN116535232A (zh) 2023-02-01 2023-02-01 一种适用于直写式3d打印梯度陶瓷多孔材料及制备方法

Country Status (1)

Country Link
CN (1) CN116535232A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241515A (zh) * 2010-05-14 2011-11-16 河北勇龙邦大新材料有限公司 一种轻质、高强、高韧性陶瓷及其制备方法
CN103496999A (zh) * 2013-09-18 2014-01-08 清华大学 一种采用陶瓷空心球制备多孔陶瓷的方法
CN105645840A (zh) * 2015-12-30 2016-06-08 成都新柯力化工科技有限公司 一种用于3d打印的陶瓷材料及其制造方法
US20200276755A1 (en) * 2018-09-06 2020-09-03 Xi'an Jiaotong University Composite containing hollow ceramic spheres and preparation method of composite
CN113458387A (zh) * 2021-07-02 2021-10-01 中国科学院宁波材料技术与工程研究所 一种3d打印梯度陶瓷金属材料以及制备方法
CN115159962A (zh) * 2021-04-02 2022-10-11 深圳市绎立锐光科技开发有限公司 多孔复相荧光陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241515A (zh) * 2010-05-14 2011-11-16 河北勇龙邦大新材料有限公司 一种轻质、高强、高韧性陶瓷及其制备方法
CN103496999A (zh) * 2013-09-18 2014-01-08 清华大学 一种采用陶瓷空心球制备多孔陶瓷的方法
CN105645840A (zh) * 2015-12-30 2016-06-08 成都新柯力化工科技有限公司 一种用于3d打印的陶瓷材料及其制造方法
US20200276755A1 (en) * 2018-09-06 2020-09-03 Xi'an Jiaotong University Composite containing hollow ceramic spheres and preparation method of composite
CN115159962A (zh) * 2021-04-02 2022-10-11 深圳市绎立锐光科技开发有限公司 多孔复相荧光陶瓷及其制备方法
CN113458387A (zh) * 2021-07-02 2021-10-01 中国科学院宁波材料技术与工程研究所 一种3d打印梯度陶瓷金属材料以及制备方法

Similar Documents

Publication Publication Date Title
Liang et al. Influencing factors on the performance of tubular ceramic membrane supports prepared by extrusion
CN104258737B (zh) 大尺寸薄壁中空平板陶瓷膜的制备方法
CN112047727B (zh) 一种3d打印氧化铝陶瓷材料的制备方法
CN104174420B (zh) 一种用于合成气甲烷化的碳化硅基整体催化剂及制备方法
CN102825649B (zh) 一种凝胶注模成型制备MgAlON透明陶瓷素坯的方法
CN101948316B (zh) 陶瓷过滤支撑体的制备方法
CN113563103B (zh) 一种采用流延成型法制备梯度氧化铝多孔陶瓷的方法
CN112778020B (zh) 一种高温多孔陶瓷及其制备方法
JP5036008B2 (ja) コージエライトの形成
CN107892581B (zh) 一种高强抗腐锆刚玉蜂窝陶瓷体及其制备方法
CN110922204A (zh) 一种低温烧结氧化铝陶瓷膜的制备方法
CN102424569A (zh) 抗热震性薄壁堇青石蜂窝陶瓷及其制备方法
CN103922750B (zh) 耐磨氮化硅陶瓷材料及其制备方法
CN110950651A (zh) 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法
CN109384437B (zh) 可供3d打印的混杂纤维水泥基复合材料及其制备方法
CN108484149A (zh) 一种NaA分子筛膜支撑体制备方法
JP2011005417A (ja) ハニカムフィルタ及びその製造方法
Li et al. Phase evolution and properties of porous cordierite ceramics prepared by cordierite precursor pastes based on supportless stereolithography
CN105819851B (zh) 钛酸铝蜂窝陶瓷材料及其制备方法
CN107814583B (zh) 一种Al4O4C增强的碳化硅蜂窝陶瓷及其制备方法
CN116535232A (zh) 一种适用于直写式3d打印梯度陶瓷多孔材料及制备方法
CN102249656A (zh) 一种薄壁低膨胀堇青石蜂窝陶瓷的制备方法
CN106268334A (zh) 一种陶瓷分离膜元件及其制备方法
CN116444290A (zh) 一种稀土改进粉煤灰陶瓷膜及其制备方法
CN114656249B (zh) 一种高强度茶晶石基薄型陶瓷板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination