WO2017221599A1 - ガラス充填材及びその製造方法 - Google Patents

ガラス充填材及びその製造方法 Download PDF

Info

Publication number
WO2017221599A1
WO2017221599A1 PCT/JP2017/018832 JP2017018832W WO2017221599A1 WO 2017221599 A1 WO2017221599 A1 WO 2017221599A1 JP 2017018832 W JP2017018832 W JP 2017018832W WO 2017221599 A1 WO2017221599 A1 WO 2017221599A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass filler
length
powder
filler
Prior art date
Application number
PCT/JP2017/018832
Other languages
English (en)
French (fr)
Inventor
北村 嘉朗
潤 木下
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2017221599A1 publication Critical patent/WO2017221599A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • This invention relates to the glass filler used for preparation of a three-dimensional molded item.
  • SLS powder sintering lamination
  • STL stereolithography
  • FDM hot melt lamination
  • the powder sintering lamination method can use engineering plastics with high mechanical strength as a resin material and can produce a durable shaped article, and is currently used for shaping a final product.
  • a three-dimensional model is produced as follows. First flat paved with powdered thermoplastic resin, a powdery resin by sintering is irradiated from above a high CO 2 laser of heat to produce a cured layer having a desired pattern. When one cured layer is formed in this way, a new powdered resin is laid flat on the cured layer, and a laser is irradiated in the same manner to stack a new cured layer on the cured layer. By repeating this operation, a predetermined three-dimensional structure is obtained.
  • the stereolithography method is excellent in fine modeling and accurate size expression, and is widely used.
  • the stereolithography method is to produce a three-dimensional model as follows. First, a modeling stage is provided in a tank filled with a liquid photocurable resin composition, and the photocurable resin composition on the modeling stage is irradiated with an active energy ray such as a UV laser to form a cured layer having a desired pattern. To do. When one cured layer is formed in this way, the modeling stage is lowered by one layer, an uncured photocurable resin composition is introduced onto the cured layer, and active energy rays are similarly formed into the photocurable resin composition. An object is irradiated and a new hardened layer is stacked on the hardened layer. By repeating this operation, a predetermined three-dimensional structure is obtained.
  • a string-like thermoplastic resin called a filament is extruded on a stage while being heated and melted with a heater to form a cured layer of a desired pattern, and the dissolved resin is further extruded onto the cured layer. Stack a new hardened layer. By repeating this operation, a predetermined three-dimensional structure is obtained.
  • Patent Document 1 it has been proposed to add bead-like particles or the like to the photocurable resin.
  • An object of the present invention is to provide a glass filler for laminated three-dimensional modeling resin that has good processability during modeling and can increase the mechanical strength of a modeled article.
  • the glass filler of the present invention is a glass filler for producing a three-dimensional structure, and has an average diameter of 4 to 18 ⁇ m, an average length of 20 to 60 ⁇ m, and an aspect ratio (average length / average diameter) of 1 to 15. It consists of a certain columnar particle.
  • the “average diameter” means an average of values obtained by dividing the sum of the maximum diameter and the minimum diameter of the cross section of the columnar particles (cross section orthogonal to the length direction) by 2.
  • the “average length” means the average value in the length direction of the columnar particles.
  • “Aspect ratio” means the ratio of the average diameter to the average length (height) of the columnar particles.
  • the “diameter” and “length” of the columnar particles are determined by measuring with an image analysis type particle size distribution measuring apparatus.
  • particles having a length of 300 ⁇ m or more are not substantially contained.
  • the glass filler adopting the above configuration can more effectively avoid the deterioration of the fluidity of the resin powder during powder sintering additive manufacturing.
  • the glass is preferably made of glass having a Young's modulus of 50 GPa or more.
  • Young's modulus is a value measured by a resonance method.
  • the glass filler adopting the above configuration makes it easy to obtain a three-dimensionally shaped article with high mechanical strength.
  • the glass composition is preferably made of glass containing 50% by mass or more of SiO 2 + Al 2 O 3 + B 2 O 3 by mass%.
  • SiO 2 + Al 2 O 3 + B 2 O 3 means the total content of SiO 2 , Al 2 O 3 and B 2 O 3 .
  • the glass network component increases and the glass has a high Young's modulus. As a result, it becomes easy to obtain a three-dimensional shaped object with high mechanical strength.
  • the glass composition is preferably made of glass containing 0.1 to 50% by mass of MgO + CaO + SrO + BaO + ZnO.
  • MgO + CaO + SrO + BaO + ZnO means the total content of MgO, CaO, SrO, BaO and ZnO.
  • the viscosity of the glass is lowered, so that the productivity of glass fibers serving as a base material for columnar particles can be increased.
  • the surface of the filler is preferably subjected to silane coupling treatment.
  • the glass filler that adopts the above-mentioned configuration is well-familiar with the thermoplastic resin, and can obtain a three-dimensional shaped product with higher mechanical strength.
  • the average diameter is 5 to 15 ⁇ m
  • the average length is 30 to 50 ⁇ m
  • the aspect ratio (average length / average diameter) is 3 to 13, and substantially no particles of 250 ⁇ m or more are contained. .
  • it is preferably composed of an aggregate of columnar particles.
  • the method for producing a glass filler of the present invention is characterized in that a plurality of glass fibers drawn from molten glass are converged, cut into a length of 25 mm or less to form a glass fiber bundle, and then the glass fiber bundle is pulverized and classified.
  • the glass filler of the present invention has a columnar particle shape.
  • the columnar particles have an average diameter of 4 to 18 ⁇ m, preferably 5 to 17 ⁇ m, more preferably 5 to 15 ⁇ m, particularly preferably 5 to 10 ⁇ m, and an average length of 20 to 60 ⁇ m, preferably 25 to 55 ⁇ m, more preferably.
  • the aspect ratio (average length / average diameter) is 1 to 15, preferably 2 to 14, more preferably 3 to 13, still more preferably 4 to 11, and particularly preferably 5 to 10. If the average diameter of the columnar particles is too small, the dispersibility and fluidity are liable to be lowered, so that it becomes difficult for the glass filler to enter the shaped article, and it becomes difficult to obtain a shaped article having high mechanical strength.
  • the average diameter of the columnar particles is too large, it becomes difficult to produce a model with a smooth surface. If the average length of the columnar particles is too short, the effect of improving the mechanical strength becomes small. On the other hand, if the average length of the columnar particles is too long, it becomes difficult to produce a shaped article with a smooth surface. Further, if the aspect ratio of the columnar particles is too small, the effect of improving the mechanical strength becomes small. On the other hand, if the aspect ratio of the columnar particles is too large, the fluidity of the resin powder at the time of powder sinter lamination molding will deteriorate, making it difficult for the glass filler to enter the molded article and obtaining a molded article with high mechanical strength. Become.
  • the glass filler of the present invention does not substantially contain particles having a length of 300 ⁇ m or more, 270 ⁇ m or more, particularly 250 ⁇ m or more.
  • the maximum length of the glass filler is preferably less than 300 ⁇ m, less than 270 ⁇ m, particularly less than 250 ⁇ m. If particles that are too long are contained in the glass filler, the fluidity of the resin powder at the time of powder sinter additive manufacturing is greatly deteriorated.
  • the cross-sectional shape of the columnar particles is not limited, and various shapes such as a circular shape, an elliptical shape, and a polygonal shape can be adopted.
  • the cross section of the columnar particles is preferably circular from the viewpoint of productivity and fluidity.
  • the glass filler of the present invention is an aggregate of columnar particles, and is preferably composed of an aggregate of particles obtained by pulverizing fibrous glass.
  • long glass fibers such as C fiber and E fiber are preferably pulverized into particles.
  • the glass composition for obtaining a glass long fiber is not specifically limited, It is preferable to employ
  • SiO 2 + Al 2 O 3 + B 2 O 3 by mass% 50 mass% or more, 52.5 mass% or more, 55 to 99 mass%, 60 to 98 mass%, It is preferable to select a glass containing 65 to 95% by mass, particularly 70 to 90% by mass.
  • the content of SiO 2 + Al 2 O 3 + B 2 O 3 is too small, the glass Young's modulus of the drops, the effect of improving the mechanical strength against the three-dimensional object is reduced. Moreover, fiberization becomes difficult.
  • the glass constituting the glass filler for example, by mass%, SiO 2 30-80%, Al 2 O 3 0-50%, B 2 O 3 0-50%, SiO 2 + Al 2 O 3 + B 2
  • a glass containing 50% or more of O 3 is exemplified. The reason for limiting the glass composition as described above will be described below. In the following description, “%” represents mass% unless otherwise specified.
  • SiO 2 is a component that forms a glass skeleton. It is a component that can easily improve chemical durability and suppress devitrification. SiO 2 is preferably 30 to 80%, 40 to 70%, particularly 45 to 65%. When SiO 2 is large, it tends to decrease the melting property, hardly softened when the columnar particles forming, manufacturing becomes difficult. Further, when SiO 2 is small, or made chemically durability tends to decrease, it becomes easy glass devitrified, production becomes difficult.
  • Al 2 O 3 is a vitrification stable component. It is a component that can easily improve chemical durability and suppress devitrification. Al 2 O 3 is preferably 0 to 50%, 3 to 40%, particularly preferably 5 to 30%. When al 2 O 3 is large, it tends to decrease the melting property, hardly softened when the columnar particles forming, manufacturing becomes difficult. Further, when the Al 2 O 3 is small, or made chemically durability tends to decrease, it becomes easy glass devitrified, there is a possibility that the production becomes difficult.
  • B 2 O 3 is a component that forms a glass skeleton. It is a component that can easily improve chemical durability and suppress devitrification. B 2 O 3 is preferably 0 to 50%, 2 to 40%, particularly 3 to 30%. When B 2 O 3 is large, it tends to decrease the melting property, hardly softened when the columnar particles forming, manufacturing becomes difficult. Also, when the B 2 O 3 is small, or made chemically durability tends to decrease, it becomes easy glass devitrified, there is a possibility that the production becomes difficult.
  • MgO, CaO, SrO, BaO and ZnO in a total amount of 0.1 to 50%, 1.0 to 40%, further 2 to 35%, particularly 5 to 30%.
  • These components are components that tend to lower the viscosity of the glass without significantly reducing the durability of the glass.
  • the preferred ranges of the content of these components are 0 to 40%, 0.5 to 30%, particularly 1 to 25%, respectively.
  • components such as TiO 2 , Fe 2 O 3 , P 2 O 5 , Na 2 O, K 2 O, and SO 3 may be contained in a total amount of 5%, particularly 3%.
  • the glass filler of the present invention is preferably made of glass having a Young's modulus of 50 GPa or more, 55 GPa or more, 60 GPa or more, particularly 70 GPa or more. If glass with a Young's modulus that is too low is used, the effect of improving the mechanical strength of the three-dimensional structure is reduced.
  • the surface of the glass filler of the present invention is preferably treated with a silane coupling agent.
  • a silane coupling agent By treating with a silane coupling agent, the familiarity between the glass filler and the thermoplastic resin is improved, and it becomes possible to obtain a molded article with more excellent mechanical strength.
  • the silane coupling agent for example, aminosilane, epoxy silane, acrylic silane and the like are preferable.
  • the silane coupling agent may be appropriately selected depending on the thermoplastic resin used.
  • the glass filler of the present invention can be mixed with a thermoplastic resin and subjected to a powder sintering lamination method or a heat melting lamination method.
  • the mixing ratio of the thermoplastic resin and the glass filler is preferably 50% to 97% for the thermoplastic resin and 3% to 50% for the glass filler in volume%. More preferably, the thermoplastic resin is 55 to 95%, 60 to 92%, particularly 65 to 90%, and the glass filler is preferably 5 to 45%, 8 to 40%, particularly 10 to 35%.
  • the ratio of the glass filler is too high, the ratio of the matrix resin is reduced as a result, so that the adhesive force becomes insufficient, and the mechanical strength of the shaped article is lowered.
  • the fluidity of the thermoplastic resin powder mixed with the glass filler is excessively lowered, resulting in problems such as difficulty in forming a new powder layer on the modeling stage. If the ratio of the thermoplastic resin is too high, it becomes difficult to reflect the strength and hardness of the glass filler in the composite. Moreover, since the content of the glass filler is relatively lowered, the mechanical strength of the shaped article is lowered.
  • thermoplastic resin examples include at least one selected from polyamide, polyethylene, polypropylene, polystyrene, polycarbonate, polyether ether ketone, and polyphenylene sulfide.
  • polyamide and polyphenylene sulfide are particularly suitable in terms of the denseness and strength of the molded product when subjected to the powder sintering modeling method.
  • the thermoplastic resin powder mixed with the glass filler is preferably adjusted to have an average particle size of 10 to 100 ⁇ m, 15 to 90 ⁇ m, particularly 20 to 80 ⁇ m. If the average particle diameter of the thermoplastic resin powder is too small, the fluidity tends to be lowered, so that it becomes difficult for the glass filler to enter the shaped article, and it becomes difficult to obtain a shaped article with high mechanical strength. On the other hand, if it is larger than 100 ⁇ m, it becomes difficult to produce a molded article having a smooth surface. Further, it is preferable to select a thermoplastic resin powder as close to a spherical shape as possible. By using such a powder, it becomes easy to obtain the fluidity of the powder, and the content of the glass filler can be increased.
  • oxide nanoparticles ZrO 2 , Al 2 O 3 , SiO 2 or the like can be used.
  • the mixed powder of glass filler and thermoplastic resin is more preferable as the angle of repose is smaller. Specifically, it is preferably 43 ° or less, particularly preferably 40 ° or less. The smaller the angle of repose, the higher the fluidity of the mixed powder and the easier it is to form a new powder layer on the modeling stage.
  • the glass fiber bundle is obtained by drawing molten glass from a bushing into a fiber, converging a plurality of glass fibers, and cutting the glass into an appropriate length.
  • the diameter of one glass fiber in the glass fiber bundle is 4 to 18 ⁇ m, preferably 5 to 17 ⁇ m, more preferably 5 to 15 ⁇ m. If the diameter of the glass fiber is too small, the dispersibility and fluidity are likely to be lowered, so that it becomes difficult for the glass filler to enter the modeled object, and it becomes difficult to obtain a modeled article with high mechanical strength. On the other hand, if it is larger than 18 ⁇ m, it becomes difficult to produce a molded article having a smooth surface.
  • the length of the glass fiber bundle is preferably 25 mm or less, particularly preferably 10 mm or less. If the length of the glass fiber bundle is too long, it takes a long time to pulverize to a desired length in the subsequent pulverization step.
  • the glass fiber bundle is pulverized and classified.
  • the pulverization method is not particularly limited, and a ball mill, a vibration mill, a jet mill, a crusher, a stone mortar or the like can be used alone or in combination.
  • a method may be employed in which after coarse pulverization with a ball mill, fine pulverization and classification are simultaneously performed with a jet mill.
  • the glass filler produced in this manner is subjected to a surface treatment such as a silane coupling treatment as required, and then used for a filler for a resin composition.
  • a surface treatment such as a silane coupling treatment as required
  • it may replace with the surface treatment here and may perform the surface treatment required at the time of preparation of a glass fiber bundle.
  • a powder obtained by mixing a thermoplastic resin powder and a glass filler is prepared as a three-dimensional modeling resin.
  • the mixing method is not particularly limited, and a V-type mixer, a Nauter mixer, a ribbon mixer, a Henschel mixer, a tumbler mixer, or the like can be used alone or in combination.
  • the above-described resin for three-dimensional modeling is filled in the tank provided with the modeling stage.
  • the modeling stage is positioned so that a powder layer having a desired thickness (for example, a thickness of about 0.3 mm) is formed on the upper surface thereof.
  • a desired thickness for example, a thickness of about 0.3 mm
  • the powder layer is irradiated with laser light to locally sinter the three-dimensional modeling resin, thereby forming a sintered body layer having a predetermined pattern.
  • a CO 2 laser is preferably used as the laser light source.
  • the three-dimensional modeling resin can be efficiently sintered, so that a sintered body layer having a desired pattern can be easily formed.
  • a new three-dimensional modeling resin is introduced onto the formed sintered body layer.
  • a new powder layer is introduced onto the sintered body layer by lowering the modeling stage by one layer. Also in this case, it is preferable to make the thickness of the glass powder layer uniform by using a roller, a squeegee or the like, as described above.
  • a new sintered body layer continuous with the sintered body layer is formed by irradiating a laser beam to the powder layer of the new three-dimensional modeling resin introduced onto the sintered body layer.
  • the sintered body layer is continuously laminated to obtain a three-dimensionally shaped object having a predetermined shape.
  • the obtained three-dimensional modeled object may be subjected to mechanical processing such as polishing or grinding on at least a part of its surface to obtain a final modeled object.
  • Table 1 shows examples of the present invention (sample Nos. 1 to 3) and comparative examples (Nos. 4 to 6).
  • No. Reference numeral 6 is a reference example prepared without including a glass filler.
  • the particle size distribution of each sample was adjusted by changing the classification point of the jet mill.
  • Nylon 12 pseudo-spherical powder with an average particle size of 50 ⁇ m is prepared as a thermoplastic resin, put into the tumbler mixer together with the above glass filler at the ratio shown in Table 1, and the powder mixed for 1 hour is used as a resin for three-dimensional modeling It was. Next, the angle of repose was evaluated about the obtained sample. The results are shown in Table 1.
  • Sample Nos. 1 to 3 which are examples of the present invention have good powder flowability due to the small angle of repose.
  • Sample No. The shaped product produced using 1-3 was high in mechanical strength.
  • No. 4 is an example of the present invention. Although it is a powder having the same blending ratio as 1, a glass filler having a large average length and maximum length is used. Therefore, the fluidity of the powder was poor, and powder filling unevenness was also observed during modeling.
  • No. 5 is an example of the present invention. Although it is a powder having the same blending ratio as 2, a glass filler having a small average length is used. Therefore, there was no problem with the fluidity of the powder, but the strength of the shaped article was low.
  • the average length L50 and the maximum length Lmax were measured using an image analysis type particle size distribution measuring apparatus (Camsizer XT manufactured by Vder Scientific).
  • the aspect ratio was calculated by using the length distribution data obtained by the image analysis type particle size distribution measuring apparatus and dividing the average length by the average diameter of the glass fibers before pulverization.
  • the Young's modulus was measured by a resonance method (JE-RT manufactured by Nippon Techno Plus).
  • the angle of repose was measured using a powder property measuring device (ABD-72, manufactured by Tsutsui Rika Instruments Co., Ltd.).
  • the glass filler of the present invention is suitable as a filler for a thermoplastic resin used in a powder sintered lamination (SLS) method or a hot melt lamination (FDM) method. Moreover, it is also possible to use it as a filler of the photocurable resin used for a stereolithography (STL) method.
  • SLS powder sintered lamination
  • FDM hot melt lamination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

造形時の加工性が良く、造形物の機械的強度を高めることが可能な積層立体造形樹脂用ガラス充填材を提供する。熱可塑性樹脂と混合して立体造形物を作製するためのガラス充填材であって、平均直径4~18μm、平均長さ20~60μm、アスペクト比(平均長さ/平均直径)1~15である柱状粒子からなることを特徴とする。

Description

ガラス充填材及びその製造方法
 本発明は立体造形物の作製に使用するガラス充填材に関する。
 従来、樹脂材料等を積層させて立体造形物を得る方法が知られている。例えば粉末焼結積層(SLS)法、光造形(STL)法、熱溶解積層(FDM)法等種々の方法が提案され実用化されている。
 例えば粉末焼結積層法は、樹脂材料として機械的強度の高いエンジニアリングプラスチックが使用可能で、耐久性のある造形物を作製できるため、現在では最終製品の造形にも利用されている。この方法は以下のようにして立体造形物を作製するものである。まず粉末状の熱可塑性樹脂を平らに敷き詰め、熱量の高いCOレーザーを上部より照射して粉末状の樹脂を焼結させて所望のパターンの硬化層を作製する。このようにして硬化層を1層造ると硬化層上に新たに粉末状の樹脂を平らに敷き詰め、同様にしてレーザーを照射して前記硬化層上に新たな硬化層を積み上げる。この操作を繰り返すことにより、所定の立体造形物を得るものである。
 また、光造形法は、細やかな造形や正確なサイズ表現に優れており、広く普及している。光造形法は以下のようにして立体造形物を作製するものである。まず液状の光硬化性樹脂組成物を満たした槽内に造形ステージを設け、造形ステージ上の光硬化性樹脂組成物にUVレーザー等の活性エネルギー線を照射して所望のパターンの硬化層を形成する。このようにして硬化層を1層形成すると造形ステージを1層分だけ下げて、硬化層上に未硬化の光硬化性樹脂組成物を導入し、同様にして活性エネルギー線を光硬化性樹脂組成物に照射して前記硬化層上に新たな硬化層を積み上げる。この操作を繰り返すことにより、所定の立体造形物を得るものである。
 熱溶解積層法は、フィラメントと呼ばれる紐状の熱可塑性樹脂を、ヒーターで加熱溶解しながらステージ上に押し出して所望のパターンの硬化層を形成し、この硬化層上にさらに溶解した樹脂を押し出して新たな硬化層を積み上げる。この操作を繰り返すことにより、所定の立体造形物を得るものである。
特開平7-26060号公報 特表2015-525150号公報
 光造形法で作製される樹脂製の立体造形物は、細やかで精密であるが、機械的強度等に劣ることが指摘されている。そこで特許文献1で提案されているように、光硬化性樹脂に、ビーズ状粒子等を添加することが提案されている。
 また、粉末焼結積層法や熱溶解積層法で作製される樹脂製の立体造形物において、特許文献2で提案されているように、短繊維等の補強材を添加することが提案されている。
 本発明は、造形時の加工性が良く、造形物の機械的強度を高めることが可能な積層立体造形樹脂用ガラス充填材を提供することを目的とする。
 本発明のガラス充填材は、立体造形物を作製するためのガラス充填材であって、平均直径4~18μm、平均長さ20~60μm、アスペクト比(平均長さ/平均直径)1~15である柱状粒子からなることを特徴とする。ここで「平均直径」とは、柱状粒子の断面(長さ方向と直交する断面)の最大径と最小径の和を2で割った値の平均を意味する。「平均長さ」とは柱状粒子の長さ方向の平均値を意味する。「アスペクト比」とは、柱状粒子の平均長さ(高さ)に対する平均直径の比を意味する。また柱状粒子の「直径」および「長さ」は画像解析型粒度分布測定装置で測定することにより求める。
 上記構成を採用することによって、立体造形物の機械的強度を高めることができる。また、粉末焼結積層造形時の樹脂粉末の流動性の悪化を回避できる。
 本発明においては、300μm以上の長さの粒子を実質的に含まないことが好ましい。
 上記構成を採用したガラス充填材は、粉末焼結積層造形時の樹脂粉末の流動性の悪化をより効果的に回避できる。
 本発明においては、ヤング率が50GPa以上のガラスからなることが好ましい。ここで「ヤング率」は共振法で測定した値である。
 上記構成を採用したガラス充填材は、機械的強度の高い立体造形物を得ることが容易になる。
 本発明においては、ガラス組成として、質量%でSiO+Al+B 50質量%以上含有するガラスからなることが好ましい。ここで「SiO+Al+B」とは、SiO、Al及びBの含有量の合量を意味する。
 上記構成を採用すれば、ガラスのネットワーク成分が多くなり、ヤング率の高いガラスとなる。その結果、機械的強度の高い立体造形物を得ることが容易になる。
 本発明においては、さらに、ガラス組成として、MgO+CaO+SrO+BaO+ZnO 0.1~50質量%含有するガラスからなることが好ましい。ここで「MgO+CaO+SrO+BaO+ZnO」とは、MgO、CaO、SrO、BaO及びZnOの含有量の合量を意味する。
 上記構成を採用すれば、ガラスの粘度が低下するため、柱状粒子の母材となるガラス繊維の生産性を高めることができる。
 本発明においては、充填材の表面がシランカップリング処理されていることが好ましい。
 上記構成を採用したガラス充填材は、熱可塑性樹脂との馴染みが良く、より機械的強度の高い立体造形物を得ることができる。
 本発明においては、平均直径が5~15μm、平均長さが30~50μm、アスペクト比(平均長さ/平均直径)が3~13であり、250μm以上の粒子を実質的に含まないことが好ましい。
 本発明においては、柱状粒子の集合体からなることが好ましい。
 本発明のガラス充填材の製造方法は、溶融ガラスから引き出した複数のガラス繊維を集束させ、25mm以下の長さに切断してガラス繊維束とし、次いでガラス繊維束を粉砕、分級することを特徴とする。
試料No.1の充填材のSEM写真である。
 本発明のガラス充填材は、柱状の粒子形状をしている。柱状粒子は、平均直径が4~18μm、好ましくは5~17μm、さらに好ましくは5~15μm、特に好ましくは5~10μmであり、平均長さが20~60μm、好ましくは25~55μm、さらに好ましくは30~50μmであり、アスペクト比(平均長さ/平均直径)が1~15、好ましくは2~14、より好ましくは3~13、さらに好ましくは4~11、特に好ましくは5~10である。柱状粒子の平均直径が小さすぎると分散性や流動性が低下しやすくなることから、造形物にガラス充填材が入り難くなり、機械的強度の高い造形物を得難くなる。一方、柱状粒子の平均直径が大きすぎると表面の平滑な造形物を作製することが困難となる。柱状粒子の平均長さが短すぎると機械的強度の向上効果が小さくなる。一方、柱状粒子の平均長さが長すぎると表面の平滑な造形物を作製することが困難となる。また柱状粒子のアスペクト比が小さすぎると機械的強度の向上効果が小さくなる。一方、柱状粒子のアスペクト比が大きすぎると粉末焼結積層造形時の樹脂粉末の流動性が悪化することから、造形物にガラス充填材が入り難くなり、機械的強度の高い造形物を得難くなる。
 また本発明のガラス充填材は、300μm以上、270μm以上、特に250μm以上の長さの粒子を実質的に含まないことが好ましい。言い換えるとガラス充填材の最大長さが300μm未満、270μm未満、特に250μm未満であることが好ましい。ガラス充填材中に長すぎる粒子が含まれていると、粉末焼結積層造形時の樹脂粉末の流動性が大幅に悪化する。
 本発明においては、柱状粒子の断面形状に制限はなく、円形状、楕円状、多角形状等種々の形状が採用できる。ただし生産性や流動性の観点から柱状粒子の断面は円形状であることが望ましい。
 また本発明のガラス充填材は、柱状粒子の集合体であり、特に繊維状ガラスを粉砕した粒子の集合体からなることが好ましい。例えば、Cファイバ、Eファイバ等のガラス長繊維を粉砕して粒子状にしたものであることが好ましい。ガラス長繊維を得るためのガラス組成は特に限定されないが、ガラス繊維を得るのに適した溶融粘度を有するガラス組成を採用することが好ましい。
 本発明のガラス充填材を構成するガラスとしては、質量%でSiO+Al+B 50質量%以上、52.5質量%以上、55~99質量%、60~98質量%、65~95質量%、特に70~90質量%含有するガラスを選択することが好ましい。SiO+Al+Bの含有量が少なすぎると、ガラスのヤング率が低下し、立体造形物に対する機械的強度の向上効果が低下する。また繊維化が困難になる。
 ガラス充填材を構成するガラスの具体例として、例えば質量%で、SiO 30~80%、Al 0~50%、B 0~50%、SiO+Al+B 50%以上含有するガラスが挙げられる。以下にガラス組成を上記のように限定した理由を説明する。なお以下の説明において特に断りがない限り「%」は質量%を表す。
 SiOはガラス骨格を形成する成分である。化学耐久性を向上させやすく、失透性を抑制できる成分である。SiOは、30~80%、40~70%、特に45~65%であることが好ましい。SiOが多いと、溶融性が低下しやすく、柱状粒子成形時に軟化しにくく、製造が困難になる。また、SiOが少ないと、化学耐久性が低下しやすくなったり、ガラスが失透しやすくなり、製造が困難になる。
 Alはガラス化安定成分である。化学耐久性を向上させやすく、失透性を抑制できる成分である。Alは、0~50%、3~40%、特に5~30%であることが好ましい。Alが多いと、溶融性が低下しやすく、柱状粒子成形時に軟化しにくく、製造が困難になる。また、Alが少ないと、化学耐久性が低下しやすくなったり、ガラスが失透しやすくなり、製造が困難になる可能性がある。
 Bはガラス骨格を形成する成分である。化学耐久性を向上させやすく、失透性を抑制できる成分である。Bは、0~50%、2~40%、特に3~30%であることが好ましい。Bが多いと、溶融性が低下しやすく、柱状粒子成形時に軟化しにくく、製造が困難になる。また、Bが少ないと、化学耐久性が低下しやすくなったり、ガラスが失透しやすくなり、製造が困難になる可能性がある。
 またMgO、CaO、SrO、BaO及びZnOを合量で0.1~50%、1.0~40%、さらに2~35%、特に5~30%添加することが好ましい。これらの成分は、ガラスの耐久性を大きく低下させずにガラスの粘度を低下させやすい成分である。なおこれらの成分の含有量の好ましい範囲は、各々0~40%、0.5~30%、特に1~25%である。
 さらに上記以外にも、TiO、Fe、P、NaO、KO、SO等の成分を合量で5%まで、特に3%まで含有してもよい。
 本発明のガラス充填材は、ヤング率が50GPa以上、55GPa以上、60GPa以上、特に70GPa以上のガラスからなることが好ましい。ヤング率が低すぎるガラスを使用すると立体造形物の機械的強度向上効果が小さくなる。
 本発明のガラス充填材は、その表面がシランカップリング剤によって処理されていることが好ましい。シランカップリング剤で処理すれば、ガラス充填材と熱可塑性樹脂のなじみが良くなり、より機械的強度の優れた造形物を得ることが可能になる。シランカップリング剤としては、例えばアミノシラン、エポキシシラン、アクリルシラン等が好ましい。なおシランカップリング剤は、用いる熱可塑性樹脂によって適宜選択すればよい。
 本発明のガラス充填材は、熱可塑性樹脂と混合して粉末焼結積層法や熱溶解積層法に供することができる。この場合、熱可塑性樹脂とガラス充填材の混合割合は、体積%で熱可塑性樹脂が50~97%、ガラス充填材が3~50%であることが好ましい。より好ましくは、熱可塑性樹脂が55~95%、60~92%、特に65~90%であり、ガラス充填材が5~45%、8~40%、特に10~35%であることが好ましい。ガラス充填材の割合が高すぎると、結果的にマトリックス樹脂の割合が減少するため接着力が不十分になり、造形物の機械的強度が低くなる。また粉末焼結積層法を使用する場合は、ガラス充填材を混合した熱可塑性樹脂粉末の流動性が低下し過ぎて、造形ステージ上に新たな紛体層を形成しにくくなる等の不具合が生じる。熱可塑性樹脂の割合が高すぎるとガラス充填材の持つ強度や硬度をコンポジットに反映しにくくなる。また相対的にガラス充填材の含有量が低下することから造形物の機械的強度が低下する。
 熱可塑性樹脂としては、例えばポリアミド、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリエーテルエーテルケトン、ポリフェニレンサルファイドより選ばれる少なくとも1つが挙げられる。粉末焼結造形法に供する場合、これらの樹脂の中でも特にポリアミドやポリフェニレンサルファイドが造形物の緻密性や強度の点で適している。
 粉末焼結積層法に供する場合、ガラス充填材と混合される熱可塑性樹脂粉末は、平均粒子径が10~100μm、15~90μm、特に20~80μmとなるように調整することが好ましい。熱可塑性樹脂粉末の平均粒子径が小さすぎると流動性が低下しやすくなることから、造形物にガラス充填材が入り難くなり、機械的強度の高い造形物を得難くなる。一方、100μmより大きいと表面の平滑な造形物を作製することが困難になる。また熱可塑性樹脂粉末は、できるだけ球状に近い形状のものを選択することが好ましい。このような粉末を用いることで粉末の流動性を得やすくなり、ガラス充填材の含有量を高めることが可能となる。
 さらに、ガラス充填材と熱可塑性樹脂の混合粉末に、酸化物ナノ粒子を樹脂組成物に対して1%以下の割合で添加してもよい。酸化物ナノ粒子は、ZrO、Al、SiO等が使用できる。
 ガラス充填材と熱可塑性樹脂の混合粉末は、安息角が小さいほど好ましい。具体的には43°以下、特に40°以下であることが好ましい。安息角が小さいほど、混合粉末の流動性が高くなり、造形ステージ上に新たな粉体層を形成し易くなる。
 次に本発明のガラス充填材の製造方法を説明する。なお以下の説明は一例であり、本発明のガラス充填材を作製する方法はこれに限定されるものではない。
 まず適当な長さのガラス繊維束を用意する。ガラス繊維束は、溶融したガラスをブッシングから引き出して繊維化するとともに複数本のガラス繊維を集束させ、適当な長さに切断したものである。ガラス繊維束中1本あたりのガラス繊維の直径は4~18μm、好ましくは5~17μm、さらに好ましくは5~15μmであることが好ましい。ガラス繊維の直径が小さすぎると分散性や流動性が低下しやすくなることから、造形物にガラス充填材が入り難くなり、機械的強度の高い造形物を得難くなる。一方、18μmより大きいと表面の平滑な造形物を作製することが困難となる。ガラス繊維束の長さは25mm以下、特に10mm以下であることが好ましい。ガラス繊維束の長さが長すぎると、後の粉砕工程で所望の長さに粉砕するのに長時間を要する。
 次にガラス繊維束を粉砕、分級する。粉砕の方法は特に限定されるものではなく、ボールミル、振動ミル、ジェットミル、擂潰機、石臼等を単独又は組み合わせて使用することができる。例えばボールミルで粗粉砕した後、ジェットミルで微粉砕と分級を同時に行うという方法を採用してもよい。
 このようにして作製したガラス充填材は、必要に応じてシランカップリング処理等の表面処理を施した後、樹脂組成物の充填材用途に供される。なおここでの表面処理に代えて、ガラス繊維束の作製時に必要な表面処理を施しておいてもよい。
 次に上記したガラス充填材を用いた立体造形物の製造方法を、粉末焼結積層法を用いて説明する。
 まず熱可塑性樹脂粉末とガラス充填材を混合した粉末を立体造形用樹脂として準備する。なお混合の方法は特に限定されるものではなく、V型混合機、ナウターミキサー、リボンミキサー、ヘンシェルミキサー、タンブラーミキサー等を単独又は組み合わせて使用することができる。
 次に造形用ステージを設けた槽内に前述の立体造形用樹脂を満たす。造形用ステージは、その上面に所望の厚みの粉末層(例えば厚み0.3mm程度)が形成されるように位置させる。ここで、ローラーやスキージ等を用いて粉末層の厚みを均一化することが好ましい。このようにすれば、所望の寸法及び形状を有する立体造形物が得られやすくなる。
 その後、上記の粉末層にレーザー光を照射して、立体造形用樹脂を局所的に焼結することにより、所定パターンを有する焼結体層を形成する。なおレーザー光源としては、COレーザーを使用することが好ましい。COレーザーを使用することで、立体造形用樹脂に対して効率的に焼結させることができるため、所望のパターンを有する焼結体層を容易に形成することができる。
 続いて、形成した焼結体層上に、新たな立体造形用樹脂を導入する。例えば、上記の造形用ステージを1層分下降させることにより、焼結体層上に新たな粉末層を導入する。この際にも上述と同様に、ローラーやスキージ等を用いてガラス粉末層の厚みを均一化することが好ましい。
 その後、焼結体層上に導入した新たな立体造形用樹脂の粉末層にレーザー光を照射して、前記焼結体層と連続した新たな焼結体層を形成する。
 以上の操作を繰り返すことによって焼結体層を連続的に積層し、所定形状の立体造形物を得る。
 なお必要に応じて、得られた立体造形物に対して、その表面の少なくとも一部に研磨や研削等の機械加工を施して最終的な造形物とすることもできる。
 以下に本発明のガラス充填材を用いた立体造形用樹脂組成物を実施例に基づいて説明する。表1は本発明の実施例(試料No.1~3)及び比較例(No.4~6)を示している。なおNo.6はガラス充填材を含まずに作製した参考例である。
Figure JPOXMLDOC01-appb-T000001
(ガラス充填材の調製)
 まずガラス組成として質量%で、SiO 56%、Al15%、B 5%、MgO 2%、CaO 22%含有するガラスとなるように調合した原料を1500℃で4時間溶融した後、ブッシング炉に供給し、ブッシングノズルから平均直径7μmのガラス繊維を引き出した。このガラス繊維の複数本を集束し、集束した繊維束を長さ9mmに切断した後、擂潰機を用いて粗粉砕した。続いてジェットミル内にガラス繊維の粗粉砕物を投入し、微粉砕と分級を行うことによりガラス充填材を得た。なおガラス充填材を構成するガラスのヤング率を測定したところ、ヤング率は75GPaであった。
 なお各試料の粒度分布は、ジェットミルの分級点を変更することにより調節した。
 次に得られたガラス充填材について、平均長さ(平均繊維長)L50、最大長さ(最大繊維長)Lmax、アスペクト比について評価した。結果を表1に示す。また試料No.1のガラス充填材のSEM画像を図1に示す。
(立体造形用樹脂の調製)
 熱可塑性樹脂として平均粒子径50μmのナイロン12疑似球状粉末を準備し、表1に示す割合で上述のガラス充填材と合わせてタンブラーミキサーに投入し、1時間混合した粉末を立体造形用樹脂として用いた。次に得られた試料について、安息角について評価した。結果を表1に示す。
(立体造形物の調製)
 上述の立体造形用樹脂を粉末焼結積層造形装置(3Dシステムズ社製 sPro60)に投入し、積層厚0.1mmの条件で積層造形し、厚さ4mmの板状造形物を得た。
 次に得られた板状造形物について、曲げ強度及び曲げ弾性率について評価した。結果を表1に示す。
 表1から明らかなように、本発明の実施例である試料No.1~3は、安息角が小さいことから粉末の流動性が良好であることが分かる。また試料No.1~3を用いて作製した造形物は機械的強度が高かった。
 一方、比較例であるNo.4は、本発明の実施例であるNo.1と同じ配合比の粉末であるが、平均長さや最大長さが大きいガラス充填材を用いている。そのため、粉末の流動性が悪く、造形時には粉末の充填むらも見られた。
 比較例であるNo.5は、本発明の実施例であるNo.2と同じ配合比の粉末であるが、平均長さの小さいガラス充填材を用いている。そのため、粉末の流動性には問題なかったが、造形物の強度が低かった。
(各種測定)
 なお、平均長さL50および最大長さLmaxは、画像解析型粒度分布測定装置(ヴァーダーサイエンティフィック社製 カムサイザーXT)を使用して測定した。
 アスペクト比の算出には、上記画像解析型粒度分布測定装置で得られる長さ分布データを用い、平均長さを粉砕前のガラス繊維の平均直径で除して求めた。
 ヤング率は、共振法(日本テクノプラス製JE-RT)にて測定した。
 安息角は、紛体特性測定装置(筒井理化学器械(株)製 ABD-72形)を使用して測定した。
 曲げ強度及び曲げ弾性率は、JIS K7171の方法で測定した。
 本発明のガラス充填材は、粉末焼結積層(SLS)法や熱溶解積層(FDM)法に使用される熱可塑性樹脂の充填材として好適である。また光造形(STL)法に使用される光硬化性樹脂の充填材として使用することも可能である。

Claims (9)

  1.  立体造形物を作製するためのガラス充填材であって、平均直径が4~18μm、平均長さが20~60μm、アスペクト比(平均長さ/平均直径)が1~15である柱状粒子からなることを特徴とするガラス充填材。
  2.  300μm以上の長さの粒子を実質的に含まないことを特徴とする請求項1に記載のガラス充填材。
  3.  ヤング率が50GPa以上のガラスからなることを特徴とする請求項1又は2に記載のガラス充填材。
  4.  ガラス組成として、質量%でSiO+Al+B 50質量%以上含有するガラスからなることを特徴とする請求項1~3のいずれか一項に記載のガラス充填材。
  5.  さらに、ガラス組成として、MgO+CaO+SrO+BaO+ZnO 0.1~50質量%含有するガラスからなることを特徴とする請求項4に記載のガラス充填材。
  6.  表面がシランカップリング処理されていることを特徴とする請求項1~5のいずれか一項に記載のガラス充填材。
  7.  立体造形物を作製するためのガラス充填材であって、平均直径が5~15μm、平均長さが30~50μm、アスペクト比(平均長さ/平均直径)が3~13であり、250μm以上の粒子を実質的に含まないことを特徴とする請求項1~6のいずれか一項に記載のガラス充填材。
  8.  柱状粒子の集合体からなることを特徴とする請求項1~7の何れか一項に記載のガラス充填材。
  9.  請求項1~8の何れかに記載のガラス充填材を作製する方法であって、溶融ガラスから引き出した複数のガラス繊維を集束させ、25mm以下の長さに切断してガラス繊維束とし、次いでガラス繊維束を粉砕、分級することを特徴とするガラス充填材の製造方法。
PCT/JP2017/018832 2016-06-22 2017-05-19 ガラス充填材及びその製造方法 WO2017221599A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-123479 2016-06-22
JP2016123479 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017221599A1 true WO2017221599A1 (ja) 2017-12-28

Family

ID=60783393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018832 WO2017221599A1 (ja) 2016-06-22 2017-05-19 ガラス充填材及びその製造方法

Country Status (1)

Country Link
WO (1) WO2017221599A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018043231A1 (ja) * 2016-08-30 2019-06-24 大塚化学株式会社 樹脂組成物、3次元プリンタ用フィラメント及び樹脂粉末、並びに造形物及びその製造方法
JP2021517079A (ja) * 2018-03-06 2021-07-15 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 繊維充填材を含むコア材料に基づくフィラメント

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029579A (ja) * 2000-10-06 2005-02-03 Jsr Corp 樹脂組成物および立体形状物
JP2010260781A (ja) * 2009-04-07 2010-11-18 Nippon Electric Glass Co Ltd 無機充填材及びその製造方法
JP2011105555A (ja) * 2009-11-19 2011-06-02 Nippon Electric Glass Co Ltd 無機充填材用ガラス組成物、無機充填材及び無機充填材の製造方法
JP2015127288A (ja) * 2013-05-23 2015-07-09 日本電気硝子株式会社 フィラー粉末および樹脂組成物
JP2016078284A (ja) * 2014-10-14 2016-05-16 花王株式会社 三次元造形用可溶性材料
JP2016097517A (ja) * 2014-11-19 2016-05-30 日本電気硝子株式会社 立体造形物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029579A (ja) * 2000-10-06 2005-02-03 Jsr Corp 樹脂組成物および立体形状物
JP2010260781A (ja) * 2009-04-07 2010-11-18 Nippon Electric Glass Co Ltd 無機充填材及びその製造方法
JP2011105555A (ja) * 2009-11-19 2011-06-02 Nippon Electric Glass Co Ltd 無機充填材用ガラス組成物、無機充填材及び無機充填材の製造方法
JP2015127288A (ja) * 2013-05-23 2015-07-09 日本電気硝子株式会社 フィラー粉末および樹脂組成物
JP2016078284A (ja) * 2014-10-14 2016-05-16 花王株式会社 三次元造形用可溶性材料
JP2016097517A (ja) * 2014-11-19 2016-05-30 日本電気硝子株式会社 立体造形物の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018043231A1 (ja) * 2016-08-30 2019-06-24 大塚化学株式会社 樹脂組成物、3次元プリンタ用フィラメント及び樹脂粉末、並びに造形物及びその製造方法
US11718732B2 (en) 2016-08-30 2023-08-08 Otsuka Chemical Co., Ltd Resin composition, filament and resin powder for three-dimensional printer, and shaped object and production process therefor
JP2021517079A (ja) * 2018-03-06 2021-07-15 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 繊維充填材を含むコア材料に基づくフィラメント
JP7305665B2 (ja) 2018-03-06 2023-07-10 ビーエーエスエフ ソシエタス・ヨーロピア 繊維充填材を含むコア材料に基づくフィラメント

Similar Documents

Publication Publication Date Title
Tamez et al. A review of additive manufacturing technologies and markets for thermosetting resins and their potential for carbon fiber integration
JPWO2016076180A1 (ja) 立体造形用樹脂組成物、立体造形物の製造方法及び無機充填材粒子
KR102185890B1 (ko) 수지 조성물, 3차원 프린터용 필라멘트 및 수지 분말, 및 조형물 및 그의 제조 방법
KR101886537B1 (ko) Sls 방식 3d 프린터를 이용한 물성이 균등한 3차원 입체 형상 제품의 제조 방법
KR101799558B1 (ko) 파쇄된 불규칙 형상의 비정질 유리를 기반으로 한 3d 프린팅용 성형소재와 3d 프린팅용 성형방법 및 성형체
WO2017221599A1 (ja) ガラス充填材及びその製造方法
CN110877427B (zh) 一种含有空心陶瓷球的复合材料及其制备方法
CN105504749B (zh) 一种3d打印用聚碳酸酯复合材料及其制备方法
JP2022022290A (ja) 樹脂組成物
JP2019112283A (ja) ガラスフィラーの製造方法
CN103980698B (zh) 一种可用于3d打印的高粘尼龙粉体及其制备方法
WO2021049371A1 (ja) 立体造形用樹脂組成物
WO2017014067A1 (ja) ガラス充填材及びそれを用いた立体造形用樹脂組成物
JP6686909B2 (ja) 立体造形用樹脂組成物
KR101820853B1 (ko) 파쇄된 불규칙 형상의 비정질 유리를 기반으로 한 3d 프린팅용 성형소재와 3d 프린팅용 성형방법 및 성형체
JP2014182055A (ja) 有機無機複合体
JP7101937B2 (ja) 立体造形用樹脂組成物
JP7094490B2 (ja) ガラス、ガラスフィラー、及び樹脂混合体
JP6481850B2 (ja) 立体造形用樹脂組成物
JP2016097517A (ja) 立体造形物の製造方法
JP7356634B2 (ja) 樹脂組成物、立体造形物及び立体造形物の製造方法
JP7323861B2 (ja) 樹脂組成物、立体造形物及び立体造形物の製造方法
JP2017114701A (ja) 無機充填材粒子の製造方法
JP2021016970A (ja) 立体造形物の製造方法
WO2022070971A1 (ja) ガラスフィラー粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP