CN115319110B - 一种陶瓷增强金属基复合材料及其增材制造方法 - Google Patents

一种陶瓷增强金属基复合材料及其增材制造方法 Download PDF

Info

Publication number
CN115319110B
CN115319110B CN202210871238.6A CN202210871238A CN115319110B CN 115319110 B CN115319110 B CN 115319110B CN 202210871238 A CN202210871238 A CN 202210871238A CN 115319110 B CN115319110 B CN 115319110B
Authority
CN
China
Prior art keywords
ceramic
metal
matrix composite
additive manufacturing
metal matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210871238.6A
Other languages
English (en)
Other versions
CN115319110A (zh
Inventor
文世峰
王晓强
周燕
史玉升
陶亚坤
汪硕
陈志桥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202210871238.6A priority Critical patent/CN115319110B/zh
Publication of CN115319110A publication Critical patent/CN115319110A/zh
Application granted granted Critical
Publication of CN115319110B publication Critical patent/CN115319110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明属于多材料增材制造相关技术领域,其公开了一种陶瓷增强金属基复合材料及其增材制造方法,所述方法包括以下步骤:(1)将无机盐溶液均匀地沉积到金属基半成品上,所述金属基半成品是对铺设的金属基粉末进行激光烧结得到的;(2)对步骤(1)得到的金属基半成品进行加热,使得无机盐溶液受热分解而原位形成陶瓷相颗粒,进而得到陶瓷增强金属基复合材料。其中无机盐溶液中溶质是均匀溶解的,因而在受热分解时产生的陶瓷增强颗粒在整个金属基体上的分布是极为均匀的,相比目前的粉末冶金、增材制造方式,无需人工混合金属基粉末和陶瓷颗粒,避免了陶瓷颗粒的沉积和团聚,强化作用显著。

Description

一种陶瓷增强金属基复合材料及其增材制造方法
技术领域
本发明属于多材料增材制造相关技术领域,更具体地,涉及一种陶瓷增强金属基复合材料及其增材制造方法。
背景技术
陶瓷增强金属基复合材料,是以陶瓷颗粒作为增强相,通过工艺使其连续均匀分散到金属基体中成形的复合材料。陶瓷增强金属基复合材料具备金属的延展性和韧性,同时又表现出高的强度和刚度。常见的陶瓷增强相包括Al2O3、B4C、BeO、NbC、SiC、TaC、TiB、TiC、WC等,这些增强相与Al、Co、Ti、Fe、Cu、Mg、Ni等金属形成了多种金属基复合材料,广泛适用于航空航天、汽车领域中高负载、高磨损、高温环境中,成为重要的产业材料。
目前,常见的陶瓷增强金属基复合材料加工方法包括搅拌铸造法、粉末冶金法、挤压铸造法、喷射成形法等。但上述方式都存在一定的缺点,如搅拌铸造法容易造成陶瓷颗粒沉积和团聚,引入气孔;粉末冶金法成本较高,不适合加工形状复杂的零件;挤压铸造法难加工大尺寸零件等。近年来,增材制造技术的兴起,使得陶瓷增强金属基复合材料有了一个新的加工途径。增材制造能够满足复杂几何零件的自由成形,满足陶瓷增强金属基复合材料的加工需求。目前,通过增材制造加工零件的主要过程为:通过预先混合金属基粉末和陶瓷增强相颗粒,然后激光烧结成形。但在粉末混合的过程中,增强颗粒和金属基体之间的相容性、颗粒表面污染、表面化学处理过程、以及两种粉末能否充分混合,是否会造成颗粒沉积和团聚的现象,都是需要考虑的因素,这使得增材制造难以充分发挥增强相的优势。
综上所述,现有的陶瓷增强金属基复合材料缺乏一种高效快速的加工方法。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种陶瓷增强金属基复合材料及其增材制造方法,其在传统的粉末熔融技术基础上,通过引入无机盐溶液,而无机盐溶液受热分解原位形成陶瓷相颗粒,得到了陶瓷增强金属基复合材料。
为实现上述目的,按照本发明的一个方面,提供了一种陶瓷增强金属基复合材料的增材制造方法,所述方法包括以下步骤:
(1)将无机盐溶液均匀地沉积到金属基半成品上,所述金属基半成品是对铺设的金属基粉末进行激光烧结得到的;
(2)对步骤(1)得到的金属基半成品进行加热,使得无机盐溶液受热分解而原位形成陶瓷相颗粒,进而得到陶瓷增强金属基复合材料。
进一步地,得到陶陶瓷相颗粒后进行整体烧结,使得陶瓷颗粒进一步弥散分布,以得到所述陶瓷增强金属基复合材料。
进一步地,整体烧结温度选择800℃-1000℃。
进一步地,无机盐溶液为Al2(SO4)3溶液、饱和Mg(OH)2溶液、H2SiO3溶液中的任一种。
进一步地,步骤(2)中采用的加热温度为250℃-350℃,该加热温度高于无机盐溶液的热解温度。
进一步地,激光烧结时,激光功率P为100W-400W,激光扫描速度V为300mm/s-1000mm/s,激光填充间距h为0.1mm-0.12mm,层厚u为30-50μm。
进一步地,所述金属基粉末为铝基粉末、镁基粉末、铜基粉末、铁基粉末、钛基粉末、镍基粉末、高温合金基粉末、以及难熔金属基粉末中的任一种或者多种。
进一步地,金属基粉末铺设时采用的铺粉层厚为30μm~50μm。
进一步地,采用螺杆挤出机将无机盐溶液沉积到金属基半成品上,螺杆挤出机挤出的溶液厚度在40μm。
按照本发明的另一个方面,提供了一种陶瓷增强金属基复合材料,该陶瓷增强金属基复合材料是采用如上所述的陶瓷增强金属基复合材料的增材制造方法制造而成的。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,本发明提供的陶瓷增强金属基复合材料及其增材制造方法主要包括以下步骤:
1.无机盐溶液中溶质是均匀溶解的,因而在受热分解时产生的陶瓷增强颗粒在整个金属基体上的分布是极为均匀的,相比目前的粉末冶金、增材制造方式,无需人工混合金属基粉末和陶瓷颗粒,避免了陶瓷颗粒的沉积和团聚,强化作用显著。
2.在整个激光加工过程中,加工工艺是针对金属基材料制定的,不需要考虑陶瓷颗粒的微观形状,因为非球形的颗粒会影响铺粉过程的均匀性,省去了陶瓷颗粒的制粉过程,降低了成本;同时也不需要考虑陶瓷颗粒和金属基体之间在高温下的化学反应及颗粒表面的污染问题。
3.本发明相对于传统的陶瓷增强金属基复合材料加工方法,工艺简单高效,且在复杂构件的成形方面具有很大的优势。
4、采用合适的加热温度,使得无机盐溶液能够热分解,继而顺利完成陶瓷相颗粒的原位生成;整体烧结温度选择800℃-1000℃,该温度高于无机盐溶液的热分解温度,在该温度下保温可以保证残余无机盐的全部分解,并原位弥散分布于金属基体内部,起到弥散强化的作用。
附图说明
图1是本发明用到的增材制造设备的示意图;
图2是本发明提供的一种陶瓷增强金属基复合材料的增材制造方法的流程示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-激光器,2-激光,3-聚焦透镜,4-振镜,5-加热装置,6-金属基粉末,7-粉缸升降平台,8-工作缸升降平台,9-成形零件,10-铺粉滚轮,11-螺杆挤出机。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1及图2,本发明提供了一种陶瓷增强金属基复合材料的增材制造方法,所述方法在传统的粉末床熔融技术基础上,在每层金属基粉末烧结后,通过螺杆挤出机引入无机盐溶液,无机盐溶液受热分解原位形成陶瓷相颗粒,由于溶质在溶液中均匀分布,由此受热分解得到的陶瓷相颗粒均匀分布于金属基体上,起弥散强化的作用,因而得到陶瓷增强金属基复合材料。相比目前的粉末冶金、增材制造方式,无需人工混合金属基粉末和陶瓷颗粒,避免了陶瓷颗粒的沉积和团聚,强化作用显著。而且在加工时不需要考虑陶瓷颗粒的微观形状,因为非球形的颗粒会影响铺粉过程的均匀性,省去了陶瓷颗粒的制粉过程,降低了成本。同时也不需要考虑陶瓷颗粒和金属基体之间在高温下的化学反应以及颗粒表面的污染问题。
所述方法主要包括以下步骤:
步骤一,铺粉:利用铺粉滚轮将金属基粉末进行铺粉。
本实施方式中,采用的增材制造设备包括激光器1、聚焦透镜3、振镜4、加热装置5、粉缸升降平台7、工作缸升降平台8、铺粉滚轮10及螺杆挤出机11,所述激光器1用于发射激光2。所述聚焦振镜3与所述振镜4相邻设置,所述加热装置5设置在所述工作缸升降平台8上方。所述铺粉滚轮10与所述螺杆挤出机11相邻设置,且位于所述工作缸升降平台8的一侧。所述粉缸升降平台7位于所述工作缸升降平台8的外侧,其用于收容金属基粉末6。成形零件9最后形成在所述工作缸升降平台7上。
本实施方式中,金属基粉末包括铝基、镁基、铜基、铁基、钛基、镍基、高温合金基、以及难熔金属基等金属基粉末,铺粉滚轮铺送的一个铺粉层厚为30μm~50μm。
步骤二,激光烧结,采用合适的激光工艺参数烧结预铺的金属基粉末。
合适的激光工艺参数为:激光功率P为100W-400W,激光扫描速度V为300mm/s-1000mm/s,激光填充间距h为0.1mm-0.12mm,层厚u为30-50μm。
步骤三,沉积无机盐溶液:利用螺杆挤出机将配置好的无机盐溶液定量的沉积到烧结后的金属基零件表面上。
本实施方式中,沉积的无机盐溶液主要为Al2(SO4)3溶液、饱和Mg(OH)2溶液、H2SiO3溶液等能够受热分解形成陶瓷相的盐溶液。螺杆挤出机挤出的溶液厚度在40μm左右。
步骤四,加热烘干:利用加热装置提供热量以使得无机盐溶液受热分解而形成陶瓷相颗粒,并将沉积的无机盐溶液中的酒精/水分蒸发,防止影响下一次铺粉操作。
加热装置提供的表面温度控制在无机盐热分解温度以上,一般取250℃-350℃,因材料而异。
步骤五,转至步骤一,直至零件全部打印完成。
步骤六,整体烧结:将打印完毕的零件放入高温炉中烧结,使得陶瓷颗粒进一步弥散分布,起强化的作用。
整体烧结温度选择800℃-1000℃,该温度高于无机盐溶液的热分解温度,在该温度下保温可以保证残余无机盐的全部分解,并原位弥散分布于金属基体内部,起到弥散强化的作用。
本发明还提供了一种陶瓷增强金属基复合材料,该陶瓷增强金属基复合材料是采用如上所述的陶瓷增强金属基复合材料的增材制造方法制造而成的。
以下以几个具体实施例来对本发明进行进一步的详细说明。
实施例1
本发明实施例1提供的一种陶瓷增强金属基复合材料的增材制造方法,包括以下步骤:
(1)铺粉:利用铺粉滚轮10将金属基粉末材料铺送至加工平台上;
(2)激光烧结:采用合适的激光工艺参数烧结预铺的金属基粉末;
(3)沉积无机盐溶液:利用螺杆挤出机11将配置好的无机盐溶液定量的沉积到烧结后的金属基零件表面;
(4)加热烘干:利用加热装置5提供热量,使无机盐溶液受热分解,形成陶瓷相颗粒,并将沉积的无机盐溶液中的酒精/水分蒸发,防止影响下一次铺粉操作;
(5)循环步骤(1)-(4),直至零件全部打印完成;
(6)整体烧结:将打印完毕的零件放入高温炉中烧结,使得陶瓷颗粒进一步弥散分布,起强化的作用。
进一步地,在步骤(1)中,金属基粉末为CuSn10粉末,铺粉滚轮铺送的一个铺粉层厚为50μm。
进一步地,在步骤(2)中,合适的激光工艺参数为:激光功率P为400W,激光扫描速度V为500mm/s,激光填充间距h为0.12mm,层厚u为50μm。
进一步地,在步骤(3)中,沉积的无机盐溶液为Al2(SO4)3盐溶液。根据受热分解方程式:Al2(SO4)3→Al2O3+3SO3,分解产生的Al2O3陶瓷相会原位分布于CuSn10基体上。螺杆挤出机挤出的溶液厚度为40μm。
进一步地,在步骤(4)中,加热装置提供的表面温度控制在无机盐热分解温度以上,取为300℃。
进一步地,在步骤(6)中,整体烧结温度选择800℃,在该温度下保温可以保证残余无机盐的全部分解,并原位弥散分布于金属基体内部,起到弥散强化的作用。
实施例2
本发明实施例2提供的一种陶瓷增强金属基复合材料的增材制造方法,包括以下步骤:
(1)铺粉:利用铺粉滚轮10将金属基粉末材料铺送至加工平台上;
(2)激光烧结:采用合适的激光工艺参数烧结预铺的金属基粉末;
(3)沉积无机盐溶液:利用螺杆挤出机11将配置好的无机盐溶液定量的沉积到烧结后的金属基零件表面;
(4)加热烘干:利用加热装置5提供热量,使无机盐溶液受热分解,形成陶瓷相颗粒,并将沉积的无机盐溶液中的酒精/水分蒸发,防止影响下一次铺粉操作;
(5)循环步骤(1)-(4),直至零件全部打印完成;
(6)整体烧结:将打印完毕的零件放入高温炉中烧结,使得陶瓷颗粒进一步弥散分布,起强化的作用。
进一步地,在步骤(1)中,金属基粉末为316L钢粉末,铺粉滚轮铺送的一个铺粉层厚为50μm。
进一步地,在步骤(2)中,合适的激光工艺参数为:激光功率P为320W,激光扫描速度V为650mm/s,激光填充间距h为0.14mm,层厚u为50μm。
进一步地,在步骤(3)中,沉积的无机盐溶液为饱和Mg(OH)2溶液。根据受热分解方程式:Mg(OH)2→MgO+H2O,分解产生的MgO陶瓷相会原位分布于316L基体上。螺杆挤出机挤出的溶液厚度为40μm。
进一步地,在步骤(4)中,加热装置提供的表面温度控制在无机盐热分解温度以上,取为350℃。
进一步地,在步骤(6)中,整体烧结温度选择1000℃,在该温度下保温可以保证残余无机盐的全部分解,并原位弥散分布于金属基体内部,起到弥散强化的作用。
实施例3
本发明实施例3提供的一种陶瓷增强金属基复合材料的增材制造方法,包括以下步骤:
(1)铺粉:利用铺粉滚轮10将金属基粉末材料铺送至加工平台上;
(2)激光烧结:采用合适的激光工艺参数烧结预铺的金属基粉末;
(3)沉积无机盐溶液:利用螺杆挤出机11将配置好的无机盐溶液定量的沉积到烧结后的金属基零件表面;
(4)加热烘干:利用加热装置5提供热量,使无机盐溶液受热分解,形成陶瓷相颗粒,并将沉积的无机盐溶液中的酒精/水分蒸发,防止影响下一次铺粉操作;
(5)循环步骤(1)-(4),直至零件全部打印完成;
(6)整体烧结:将打印完毕的零件放入高温炉中烧结,使得陶瓷颗粒进一步弥散分布,起强化的作用。
进一步地,在步骤(1)中,金属基粉末为Ti6Al4V粉末,铺粉滚轮铺送的一个铺粉层厚为40μm。
进一步地,在步骤(2)中,合适的激光工艺参数为:激光功率P为275W,激光扫描速度V为760mm/s,激光填充间距h为0.12mm,层厚u为40μm。
进一步地,在步骤(3)中,沉积的无机盐溶液为H2SiO3溶液。根据受热分解方程式:H2SiO3→SiO2+H2O,分解产生的SiO2陶瓷相会原位分布于Ti6Al4V基体上。螺杆挤出机挤出的溶液厚度为40μm。
进一步地,在步骤(4)中,加热装置提供的表面温度控制在无机盐热分解温度以上,取为250℃。
进一步地,在步骤(6)中,整体烧结温度选择900℃,在该温度下保温可以保证残余无机盐的全部分解,并原位弥散分布于金属基体内部,起到弥散强化的作用。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种陶瓷增强金属基复合材料的增材制造方法,其特征在于,该方法包括以下步骤:
(1)将无机盐溶液均匀地沉积到金属基半成品上,所述金属基半成品是对铺设的金属基粉末进行激光烧结得到的;
(2)对步骤(1)得到的金属基半成品进行加热,使得无机盐溶液受热分解而原位形成陶瓷相颗粒,进而得到陶瓷增强金属基复合材料;
得到陶瓷相颗粒后进行整体烧结,使得陶瓷颗粒进一步弥散分布,以得到所述陶瓷增强金属基复合材料;整体烧结温度选择800℃-1000℃,且高于无机盐溶液的热分解温度。
2.如权利要求1所述的陶瓷增强金属基复合材料的增材制造方法,其特征在于:无机盐溶液为Al2(SO4)3溶液、饱和Mg(OH)2溶液、H2SiO3溶液中的任一种。
3.如权利要求1所述的陶瓷增强金属基复合材料的增材制造方法,其特征在于:步骤(2)中采用的加热温度为250℃-350℃,该加热温度高于无机盐溶液的热解温度。
4.如权利要求1所述的陶瓷增强金属基复合材料的增材制造方法,其特征在于:激光烧结时,激光功率P为100W-400W,激光扫描速度V为300mm/s-1000mm/s,激光填充间距h为0.1mm-0.12mm,层厚u为30-50μm。
5.如权利要求1-4任一项所述的陶瓷增强金属基复合材料的增材制造方法,其特征在于:所述金属基粉末为铝基粉末、镁基粉末、铜基粉末、铁基粉末、钛基粉末、镍基粉末、高温合金基粉末、以及难熔金属基粉末中的任一种或者多种。
6.如权利要求1-4任一项所述的陶瓷增强金属基复合材料的增材制造方法,其特征在于:金属基粉末铺设时采用的铺粉层厚为30μm~50μm。
7.如权利要求1-4任一项所述的陶瓷增强金属基复合材料的增材制造方法,其特征在于:采用螺杆挤出机将无机盐溶液沉积到金属基半成品上,螺杆挤出机挤出的溶液厚度在40μm。
8.一种陶瓷增强金属基复合材料,其特征在于:该陶瓷增强金属基复合材料是采用权利要求1-7任一项所述的陶瓷增强金属基复合材料的增材制造方法制造而成的。
CN202210871238.6A 2022-07-22 2022-07-22 一种陶瓷增强金属基复合材料及其增材制造方法 Active CN115319110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210871238.6A CN115319110B (zh) 2022-07-22 2022-07-22 一种陶瓷增强金属基复合材料及其增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210871238.6A CN115319110B (zh) 2022-07-22 2022-07-22 一种陶瓷增强金属基复合材料及其增材制造方法

Publications (2)

Publication Number Publication Date
CN115319110A CN115319110A (zh) 2022-11-11
CN115319110B true CN115319110B (zh) 2024-05-24

Family

ID=83919925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210871238.6A Active CN115319110B (zh) 2022-07-22 2022-07-22 一种陶瓷增强金属基复合材料及其增材制造方法

Country Status (1)

Country Link
CN (1) CN115319110B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057335A (en) * 1988-10-12 1991-10-15 Dipsol Chemical Co., Ltd. Method for forming a ceramic coating by laser beam irradiation
WO2016060799A1 (en) * 2014-10-14 2016-04-21 Siemens Energy, Inc. Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems
CN107141004A (zh) * 2017-06-13 2017-09-08 华中科技大学 一种碳化硼复合材料及其制备方法
CN108772568A (zh) * 2018-05-25 2018-11-09 迈特李新材料(广州)有限公司 一种用于3d打印的金属基纳米复合材料粉末的制备方法
CN110877427A (zh) * 2018-09-06 2020-03-13 西安交通大学 一种含有空心陶瓷球的复合材料及其制备方法
CN113277856A (zh) * 2021-05-26 2021-08-20 西安交通大学 一种陶瓷与高温合金复合构件及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128664A1 (de) * 2001-06-15 2003-01-30 Univ Clausthal Tech Verfahren und Vorrichtung zur Herstellung von keramischen Formförpern

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057335A (en) * 1988-10-12 1991-10-15 Dipsol Chemical Co., Ltd. Method for forming a ceramic coating by laser beam irradiation
WO2016060799A1 (en) * 2014-10-14 2016-04-21 Siemens Energy, Inc. Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems
CN106794519A (zh) * 2014-10-14 2017-05-31 西门子能源有限公司 形成为一体化体系的包含多种材料的三维部件的激光增材制造
CN107141004A (zh) * 2017-06-13 2017-09-08 华中科技大学 一种碳化硼复合材料及其制备方法
CN108772568A (zh) * 2018-05-25 2018-11-09 迈特李新材料(广州)有限公司 一种用于3d打印的金属基纳米复合材料粉末的制备方法
CN110877427A (zh) * 2018-09-06 2020-03-13 西安交通大学 一种含有空心陶瓷球的复合材料及其制备方法
CN113277856A (zh) * 2021-05-26 2021-08-20 西安交通大学 一种陶瓷与高温合金复合构件及其制造方法

Also Published As

Publication number Publication date
CN115319110A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
Cramer et al. Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method
US11802321B2 (en) Additive manufacturing of metal alloys and metal alloy matrix composites
Chen et al. Additive manufacturing of WC-Co cemented carbides: Process, microstructure, and mechanical properties
Lassègue et al. Laser powder bed fusion (L-PBF) of Cu and CuCrZr parts: Influence of an absorptive physical vapor deposition (PVD) coating on the printing process
DE69511881T2 (de) Verfahren zur herstellung von massgenauer formkörper durch lasersintern
Kumar Process chain development for additive manufacturing of cemented carbide
Gui et al. Aluminum hybrid composite coatings containing SiC and graphite particles by plasma spraying
JP2019522730A5 (ja) 付加製造に使用するための焼結可能な金属ペースト
KR102326418B1 (ko) 적층 합성용 합성 알갱이들을 구비한 복합재료 파우더
CN104745887A (zh) 纳米陶瓷颗粒增强镍基高温合金复合材料及其激光3d打印成形方法
CN110744047A (zh) 一种铝基复合材料的制备方法
CN109332695B (zh) 一种增强抗氧化性钼基合金的选区激光熔化制备方法
Li et al. Microstructures and properties of 80W-20Fe alloys prepared using laser melting deposition process
Tlotleng Microstructural properties of heat-treated LENS in situ additively manufactured titanium aluminide
Gu et al. Metallurgical mechanisms in direct laser sintering of Cu–CuSn–CuP mixed powder
Li et al. Developing cost-effective indirect manufacturing of H13 steel from extrusion-printing to post-processing
CN115319110B (zh) 一种陶瓷增强金属基复合材料及其增材制造方法
Li et al. The key metallurgical features of selective laser melting of stainless steel powder for building metallic part
EP3541552A1 (de) Verfahren zur herstellung eines porösen formkörpers sowie poröser formkörper
Peters et al. Isovolumetric synthesis of chromium carbide for selective laser reaction sintering (SLRS)
Xu et al. 3D extrusion printing of 304 stainless steel/polypropylene composites and sintering process optimization
JP5890843B2 (ja) 溶射用Mo粉末およびそれを用いたMo溶射膜並びにMo溶射膜部品
Wang et al. Effect of SiC Content on Hot Corrosion Resistance of TiC and Ti 5 Si 3 Reinforced Ti-Al-Sn-Zr Titanium Matrix Composites
Igor Aerospace applications of the SLM process of functional and functional graded metal matrix composites based on NiCr superalloys
Shen et al. Large-scale NiFe2O4-based cermets prepared by composite extrusion modelling: From high-qualified composite feedstock to dense sintered microstructure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant