CN110823980A - 一种基于类过氧化酶催化银沉积检测gpc3的方法 - Google Patents

一种基于类过氧化酶催化银沉积检测gpc3的方法 Download PDF

Info

Publication number
CN110823980A
CN110823980A CN201911169922.4A CN201911169922A CN110823980A CN 110823980 A CN110823980 A CN 110823980A CN 201911169922 A CN201911169922 A CN 201911169922A CN 110823980 A CN110823980 A CN 110823980A
Authority
CN
China
Prior art keywords
gpc3
solution
apt
hgns
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911169922.4A
Other languages
English (en)
Other versions
CN110823980B (zh
Inventor
李桂银
赵乐
李文湛
陈敏
梁晋涛
周治德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201911169922.4A priority Critical patent/CN110823980B/zh
Publication of CN110823980A publication Critical patent/CN110823980A/zh
Application granted granted Critical
Publication of CN110823980B publication Critical patent/CN110823980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57488Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hospice & Palliative Care (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种基于类过氧化酶催化银沉积检测GPC3的方法,包含电化学纳米传感器构建、丝网印刷电极的活化、修饰及生物传感界面的构建,GPC3的工作曲线绘制和待测样品检测。以HGNs为载体,制备HGNs‑Apt信号探针,构建了Apt‑GPC3‑HGNs‑Apt夹心型电化学纳米适体传感器。借助于HGNs的过氧化物酶性质的催化作用,H2O2将溶液中的银离子还原为金属银沉积在电极表面,Ag的沉积量通过GPC3蛋白的量得出,通过差分脉冲伏安法(DPV)进行定量。Ag的电流响应与GPC3浓度在10.0‑100.0µg/mL范围内具有良好的正相关,实现了对GPC3的检测。

Description

一种基于类过氧化酶催化银沉积检测GPC3的方法
技术领域
本发明属于生物检测技术领域,具体涉及一种基于电化学生物传感器检测GPC3的方法。
背景技术
磷脂酰肌醇蛋白聚糖3 ( glypican-3 , GPC3)是一种肝癌标志物。GPC3检测方法主要方法有ELISA、荧光免疫分析法、酶联免疫吸附法等。免疫学方法测定血清GPC3其检测敏感性差而难以临床转化应用。公开号为CN 106645724A的发明专利,公开了一种循环肿瘤细胞表面标志分子GPC3的检测方法,通过对血液进行红细胞裂解,利用纳米技术使剩余有核细胞全部平铺富集在纳米基底上固定,用细胞核荧光染料DAPI标记出所有细胞,用GPC3一抗孵育所有细胞,再用标记有FITC荧光基团的二抗孵育,最后通过高通量技术扫描。公开号为CN 101290318 B的发明专利公开了一种用于诊断肝癌的ELISA试剂盒。但方法操作繁琐、复杂,费用昂贵还没有发现基于血红素/石墨烯( Hemin/ GO nanoparticles, HGNs)类过氧化酶催化沉积的GPC3纳米适配体传感器构建快速、便携检测GPC3的方法报道。
发明内容
本发明所要解决的技术问题是提供一种基于石墨烯/血红素(HGNs)类过氧化酶催化沉积的GPC3纳米适配体传感器来检测GPC3的方法,该方法检测结果稳定,灵敏度高,成本低。
本发明设计了一种以HGNs纳米材料作为类过氧化酶,将石墨烯/血红素/适体(HGNs-Apt)固定在GPC3/GPC3 Apt/Au NPs/SPCE修饰的丝网印刷电极表面,设计了一种能特异性检测血清中GPC3水平的电化学生物传感器。
本发明的检测原理:以HGNs为载体,制备了石墨烯/血红素/适体(HGNs-Apt)信号探针,构建了HGNs-Apt/GPC3/GPC3 Apt/Au NPs/SPCE夹心电化学纳米适体传感器。借助于HGNs的过氧化物酶的催化作用,H2O2可以将溶液中的银离子(Ag+)还原为金属Ag沉积在电极表面,通过差分脉冲伏安法(DPV)量化源自GPC3蛋白量的沉积Ag的质量,Ag的电流响应与GPC3浓度在10.0-100.0μg/ mL范围内具有良好的正相关,实现对GPC3的检测。本发明按照以下步骤进行:
步骤1:HGNs-Apt信号探针的制备
(1)在室温下将石墨烯(GO)分散于超纯水中,超声形成石墨烯的悬浮液(GO溶液),离心取上清液;
(2)将血红素(Hemin) 溶于超纯水和氨水中;将上述GO溶液和Hemin的氨水混溶,混合液中加入水合肼,震荡混合,再次溶于超纯水得到HGNs溶液;
(3)将GPC3适配体和HGNs溶液混合,孵育,产物经离心洗涤后,去除游离的适配体,即得HGNs-Apt溶液。
步骤2:丝网印刷电极的修饰与生物传感界面的构建
(1)将丝网印刷电极(SPCE)置于H2SO4溶液中进行循环伏安扫描活化电极表面后得到活化后的丝网印刷电极,用纯水冲洗干净;
(2)将活化后的电极浸入氯金酸(HAuCl4)溶液中进行恒电位沉积,得到Au NPs/SPCE,用纯水冲洗晾干备用;
(3)将GPC3适配体(GPC3-Apt)滴加在Au NPs/SPCE的表面,孵育,洗涤晾干,得到GPC3-Apt/Au NPs/SPCE;
(4)将GPC3标准液(或者待测样品)滴加到步骤(3)中GPC3-Apt/Au NPs/SPCE表面,孵育后,清洗晾干后得到GPC3/GPC3-Apt/Au NPs/SPCE;
(5)在GPC3/GPC3-Apt/Au NPs/SPCE上滴加HGNs-Apt溶液,孵育,清洗晾干得到HGNs-Apt/GPC3/GPC3-Apt/Au NPs/SPCE;
(6)在HGNs-Apt/GPC3/GPC3-Apt/Au NPs/SPCE表面滴加H2O2和AgNO3溶液,避光反应,冲洗晾干,得到工作电极(Ag/HGNs-Apt/GPC3/GPC3-Apt/Au NPs/SPCE),备用。
步骤3:GPC3的工作曲线绘制
(1)将GPC3标准液得到的工作电极浸入到HNO3-KNO3溶液里面,用电化学工作站,采用差分脉冲伏安法(DPV)进行扫描,记录传感器的响应电流值;
(2)根据传感器的电流响应值与GPC3浓度的关系,绘制工作曲线。并计算出该方法的最低检测限。
步骤4:待测样品中GPC3的检测
(1)用待测样品制备的工作电极浸入到HNO3-KNO3溶液里面,用电化学工作站,采用差分脉冲伏安法(DPV)进行扫描,记录响应电流值;
(2)根据步骤3所得到的GPC3的工作曲线,计算待测样品中GPC3的浓度。
优选步骤1中GO溶液浓度为1.0mg/mL。
优选步骤1中HPtCl4溶液浓度为0.01mg/mL。
优选步骤1中HGNs溶液浓度为1.0mg/mL。
优选步骤1中GPC3- Apt溶液浓度为10.0 μmol/L。
优选步骤2中H2SO4溶液浓度为0.5 mol/L。
优选步骤2中扫描电压为-0.2 V ~ 1.0 V,扫描圈数为10。
进一步,所述步骤2中将电极置于H2SO4中进行循环伏安扫描后,用纯水冲洗干净后,然后将电极放到装有0.01%的HAuCl4溶液中进行恒电位沉积金处理,用蒸馏水冲洗晾干备用。
优选步骤2中,使用的HAuCl4浓度为0.01%,沉积电位为-0.5 V,沉积时间120 s。
优选步骤3中HNO3-KNO3溶液中HNO3浓度为0.1mol/L,KNO3浓度为0.6mol/L。
优选步骤3中电极的孵育温度为25°C,孵育时间为30分钟。
优选所述步骤3和步骤4中的DPV扫描范围-0.1 V ~ 0.6 V,扫描速率为100 mV/s。
其中,步骤1制备一种独特的 HGNs纳米复合材料,为GPC3-Apt的固定提供了良好的载体,形成了具有大比表面积和高的电子转移效率的HGNs-Apt纳米信号探针,为步骤2提供一个检测信号。步骤2构建了一种生物传感界面,利用GPC3适配体和GPC3蛋白的特异性结合以及HGNs纳米复合材料兼备类过氧化酶的性质,实现良好的协同效应及催化作用,并有利于电信号的传递。步骤2中生物传感界面的构建为步骤3和步骤4中GPC3的电化学检测中必不可少的关键步骤。步骤3的GPC3的工作曲线为步骤4的实际样本中GPC3浓度的测定提供计算依据。可见步骤1-4相互支撑,共同作用,才能实现电化学检测GPC3。
本发明与现有技术相比具有如下优点:
1.目前一般采用免疫法测定血清GPC3水平,因其检测敏感性差而难以临床转化应用,而电化学适配体传感器具有优异的灵敏度,快速响应,从而实现了GPC3水平的灵敏检测。
2.运用HGNs-Apt的信号放大和优良的电子传递效应,以及HGNs纳米材料的类过氧化酶的性质,催化AgNO3还原成单质银,并沉积在电极表面,采用差分脉冲伏安法(DPV)检测的电流响应信号实现对GPC3蛋白的检测,最低检测限能达到3.16 μg / mL。
3.本发明建立的检测GPC3的电化学适配体传感器方法有益效果在于操作简单、快速,易于微型化。
附图说明
图1 一种基于过氧化物酶催化银沉积的检测GPC3的原理图;
图2 HGNs复合纳米材料的透射电镜图;
图3 电极表面不同修饰过程的循环伏安扫描图;
图4 GPC3的工作曲线。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
图1是基于过氧化物酶催化银沉积的检测GPC3的原理图。首先,通过一步还原法制备HGNs复合材料,应用HGNs固定GPC3-Apt形成HGNs-Apt信号探针。使用金纳米粒修饰活化的SPCE,通过物理吸附将GPC3-Apt固定在沉积金的丝网印刷电极的表面。当进一步修饰GPC3时,GPC3-Apt和GPC3之间的特异性识别反应产生了排列在电极表面上的适体-抗原复合物。 HGNs-Apt纳米材料通过π-π键和静电吸附固定在电极表面,形成适体-抗原-适体夹心复合物,最后将银纳米颗粒沉积在SPCE。具有过氧化物酶样催化沉积作用的HGNs诱导银沉积。产生可被DPV检测到的电流信号。DPV电流信号与GPC3浓度成正比。从而实现GPC3的高灵敏度检测。
具体实施步骤如下:
1.HGNs-Apt信号探针的制备
(1)在室温下将10 mg GO分散于10 mL超纯水中,超声形成1.0 mg/mL石墨烯的悬浮液(GO溶液),以3000r/min的速度离心去除沉淀中颗粒较大的石墨烯粒子,取悬浮液中的上清液10 mL于50mL的烧杯中,称量10mg的抗坏血酸(AA),加入到烧杯中,搅拌12h后,进行离心,取上清液,进行干燥处理,即为还原氧化石墨烯(RGO)。图2a为RGO的透射电镜图,呈黑色片状结构,可见形成了一种新的还原氧化石墨烯粒子。
(2)将10.0 mg Hemin溶解于1.0 mL超纯水和100µL氨水中;将上述GO溶液和Hemin的氨水溶液充分混和。
(3)将(2)中混合液中加入100µL质量分数为80%的水合肼,涡旋震荡使之混合接触,然后将其置于水浴锅中反应4 h,冷却离心,再次溶于超纯水得到HGNs溶液。图2b为HGNs的透射电镜图,黑色片状结构成功附着粒子颗粒,表明新的HGNs材料构建成功。
2.丝网印刷电极的修饰与生物传感界面的构建
(1)将丝网印刷电极(SPCE)浸入5 mL浓度为0.5 mol/L的H2SO4溶液中,通过电化学以100 mV/s的扫描速度在为0.2 V至1 V的电压范围循环扫描活化10圈,结束后用蒸馏水冲洗干净。
(2)将活化后的SPCE电极浸入持续搅拌的5 mL质量分数为0.01%的HAuCl4溶液中,通过电化学在-0.5 V电位下进行恒电位电沉积120s,在活化的SPCE表面沉积Au NPs,得到SPCE/ Au NPs 电极。用蒸馏水冲洗晾干备用。
(3)将4µL 10µmol/L的GPC3-Apt滴加在Au NPs/SPCE的表面。在25oC下孵育1h,洗涤未能固定到界面的适配体,采用1.0% MCH溶液进行封闭,自然晾,得到GPC3-Apt/Au NPs/SPCE。
(4)滴加6µL HGNs-Apt探针溶液在GPC3-Apt/Au NPs/SPCE上,25℃孵育1h,纯水清洗三次,晾干得到HGNs-Apt/GPC3/GPC3-Apt/Au NPs/SPCE。
(5)在上述电极表面滴加6µL H2O2和4µL AgNO3溶液,将其置于37℃下避光反应30min,30 min后用pH 8.6 的甘氨酸-NaOH溶液将电极表面多余的AgNO3冲洗干净,晾干备用,在使用前存储在4oC冰箱中。
图3为不同修饰电极在HNO3浓度为0.1mol/L、KNO3浓度为0.6mol/L的HNO3-KNO3溶液中进行循环伏安扫描的CV表征图。如图3 (A),裸SPCE具有相对低的电导率和低的氧化还原峰(曲线a)。在SPCE电沉积Au NPs之后促进电子转移,氧化还原峰明显增加(曲线b)。然而,当适配体(曲线c)修饰在电极上时,氧化还原峰电流急剧下降,可能是因为适配体可产生绝缘层并阻碍电子转移。当GPC3(曲线d)修饰在电极上氧化还原峰稍加上升归因于GPC3和GPC3-Apt的特异性结合。在HGNs(曲线e)修饰在电极表面氧化还原峰电流轻微下降。然而当AgNO3及H2O2(曲线f)沉积于电表面氧化还原峰急剧增加,表面在HGNs类过氧化酶的催化下,大量单质银沉积在电极表面。
3.GPC3工作曲线的绘制
(1)在步骤2构建的GPC3电化学生物传感界面滴加3μL GPC3标准溶液,放到25℃孵育箱中孵育1h,得到GPC3电化学生物传感器。图3 CV图中的曲线(曲线f)沉积于电表面氧化还原峰急剧增加,表面在HGNs类过氧化酶的催化下,大量单质银沉积在电极表面,增加导电性,因此正电位峰值增加非常明显。这也说明GPC3电化学生物传感器已经成功构建。
(2)将上述的工作电极浸入到HNO3浓度为0.1mol/L、KNO3浓度为0.6mol/L的HNO3-KNO3溶液里面,用电化学工作站,采用差分脉冲伏安法(DPV)进行扫描,记录传感器的响应电流值;根据传感器的电流响应值与GPC3浓度的关系,绘制工作曲线,见图4所示。由图4可知,在10.0-100.0 μg /mL范围内GPC3浓度和相应电流值呈良好的线性关系。线性回归方程I(μA)=0.04337C(μg/mL)+2.03456(I是电流响应 ,C是GPC3浓度),相关系数为0.99723。将空白对照的三倍标准差定义为检测下限,计算甲胎蛋白的最低检测限为3.16 µg/mL。
4.实际样本中GPC3的检测
通过加标法在最佳条件下检测人血清样品中的GPC3。三种不同浓度(40 µg/mL,60 µg/mL,100 µg/mL)的标准液GPC3,分别加入血清样品中进行测定。测定方法使用电化学工作站的DPV测量。通过标准工作曲线计算人血清样品中GPC3的浓度,并与临床医院仪器测量的值进行比较。结果记录在表1中,其显示已知样品的良好回收率在101.25-122.25%范围内,RSD值为1.33-5.27%。这些结果表明,所开发的GPC3适配体传感器在医学诊断中有望具有良好的应用前景。
表1 实际血清样本中GPC3的检测结果
Figure DEST_PATH_IMAGE002

Claims (9)

1.一种HGNs-Apt信号探针,其特征在于:包括如下步骤,
(1)HGNs的制备:在室温下将GO分散于超纯水中,超声形成GO溶液,离心去除沉淀中颗粒较大的石墨烯粒子,取上清液;将Hemin溶于超纯水和氨水中;将GO溶液和Hemin的氨水溶液混溶,再加入水合肼,震荡,将其置于水浴锅中反应,冷却离心,再次溶于超纯水得到HGNs溶液;
(2)HGNs-Apt的制备:将GPC3适配体和HGNs溶液超声混合,室温孵育,缓慢加入NaCl溶液,进行老化,产物经离心洗涤后重新分散在Tris-EDTA缓冲液中,去除游离的适配体,即得HGNs-Apt信号探针溶液。
2.一种用权利要求1所述HGNs-Apt信号探针修饰丝网印刷电极检测GPC3的方法,包含以下步骤:
步骤1:丝网印刷电极的活化
将丝网印刷电极置于H2SO4溶液中进行循环伏安扫描,得到活化后的丝网印刷电极,用纯水冲洗干净;
步骤2:电极的修饰与生物传感界面的构建
(1)将活化后的丝网印刷电极进行纳米金的恒电位沉积,冲洗干净;
(2)移取GPC3-Apt的悬浮液,加在预处理好的电极表面,然后将电极放到孵育箱中孵育,即得到GPC3-Apt/Au NPs/SPCE修饰的工作电极;
(3)在GPC3-Apt/Au NPs/SPCE修饰的电极表面滴加GPC3标准液溶液,置于25℃孵育,即得到GPC3/GPC3-Apt/Au NPs/SPCE修饰的工作电极;
(4)在GPC3/GPC3-Apt/Au NPs/SPCE修饰的电极表面继续滴加HGNs-Apt探针溶液,孵育,纯水清洗,晾干得到HGNs-Apt/GPC3/GPC3-Apt/Au NPs/SPCE复合材料修饰的工作电极;
(5)最后在HGNs-Apt/GPC3/GPC3-Apt/Au NPs/SPCE电极表面滴加 H2O2和AgNO3溶液,避光反应30 min,然后用甘氨酸-NaOH溶液将电极表面多余的AgNO3冲洗干净,晾干备用;
步骤3:GPC3的工作曲线绘制
(1)在步骤2构建的1,5-AG电化学生物传感界面滴加GPC3标准溶液,放到孵育箱中孵育,得到GPC3电化学生物传感器;
(2)将上述的工作电极浸入到HNO3-KNO3溶液里面,用电化学工作站,采用差分脉冲伏安法进行扫描,记录传感器的响应电流值;
(3)根据传感器的电流响应值与GPC3浓度的关系,绘制工作曲线,计算出该方法的最低检测限;
步骤4:待测样品中GPC3的检测
(1)在步骤2构建的GPC3电化学生物传感界面滴加的待测实际样品,放到孵育箱中孵育,用PBS溶液清洗,得到工作电极,晾干备用;
(2)将工作电极放入HNO3-KNO3溶液中,采用电化学工作站的DPV扫描,记录其峰电流(3)根据步骤3所述标准曲线,得到所述待测实际样品中GPC3的浓度。
3.按照权利要求2所述的方法,其特征在于:步骤1中所述H2SO4溶液浓度为0.5 mol/L;所述扫描电压为-0.2 V ~ 1.0 V,扫描圈数为10。
4.按照权利要求2所述的方法,其特征在于:步骤2中所述用于纳米金的沉积溶液为浓度为0.01%的HAuCl4,沉积电位为-0.5 V,沉积时间120 s。
5.按照权利要求2所述的方法,其特征在于:步骤2中所述HGNs-Apt复合纳米材料浓度为1.0 mg/mL。
6.按照权利要求2所述的方法,其特征在于:步骤2中所述GPC3-Apt浓度为10.0µmol/L。
7.按照权利要求2所述的方法,其特征在于:步骤3和步骤4中所述工作电极的孵育温度为37°C,孵育时间1h。
8.按照权利要求2所述的方法,其特征在于:所述步骤3和步骤4中所述DPV扫描所用HNO3-KNO3溶液中HNO3浓度为0.1mol/L,KNO3浓度为0.6mol/L。
9.所述的DPV的扫描范围为-0.1 V ~ 0.6 V,扫描速率为100 mV/s。
CN201911169922.4A 2019-11-26 2019-11-26 一种基于类过氧化酶催化银沉积检测gpc3的方法 Active CN110823980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911169922.4A CN110823980B (zh) 2019-11-26 2019-11-26 一种基于类过氧化酶催化银沉积检测gpc3的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911169922.4A CN110823980B (zh) 2019-11-26 2019-11-26 一种基于类过氧化酶催化银沉积检测gpc3的方法

Publications (2)

Publication Number Publication Date
CN110823980A true CN110823980A (zh) 2020-02-21
CN110823980B CN110823980B (zh) 2022-06-14

Family

ID=69559243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911169922.4A Active CN110823980B (zh) 2019-11-26 2019-11-26 一种基于类过氧化酶催化银沉积检测gpc3的方法

Country Status (1)

Country Link
CN (1) CN110823980B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307908A (zh) * 2020-04-28 2020-06-19 桂林电子科技大学 一种基于H-rGO-Pt@Pd NPs纳米复合材料检测GPC3的方法
CN111413384A (zh) * 2020-04-26 2020-07-14 桂林电子科技大学 一种基于RGO-CS-Hemin/Au NPs纳米复合材料检测GPC3的方法
CN111413385A (zh) * 2020-04-26 2020-07-14 桂林电子科技大学 一种基于RGO-CS-Fc/Pt-Pd NPs纳米复合材料检测GPC3的方法
CN111505077A (zh) * 2020-04-26 2020-08-07 桂林电子科技大学 一种基于RGO-Hemin/Au NPs纳米复合材料检测GPC3的方法
CN111693571A (zh) * 2020-06-23 2020-09-22 桂林电子科技大学 一种基于光寻址电位传感器检测gpc3的方法
CN113203718A (zh) * 2021-05-13 2021-08-03 桂林电子科技大学 一种基于荧光共振能量转移的gpc3检测方法
CN113203781A (zh) * 2021-05-13 2021-08-03 桂林电子科技大学 一种基于RGO-CS-Hemin@Pt NPs纳米材料和适配体检测GPC3的方法
CN113203859A (zh) * 2021-05-13 2021-08-03 桂林电子科技大学 一种基于H-rGO-Pt@Pd NPs纳米酶可视化检测GPC3的方法
CN113238040A (zh) * 2021-05-18 2021-08-10 桂林电子科技大学 一种基于纳米复合材料的laps传感器检测gpc3方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597240A (zh) * 2015-02-02 2015-05-06 广西医科大学 石墨烯/类过氧化物酶双信号放大检测白血病的生物传感方法
CN105842457A (zh) * 2016-03-23 2016-08-10 福州市传染病医院 一种检测磷脂酰肌醇蛋白聚糖3的试剂盒及检测方法
CN106636108A (zh) * 2017-01-25 2017-05-10 复旦大学附属中山医院 一种特异性结合gpc3的核酸适配体及其应用
CN108445063A (zh) * 2018-03-23 2018-08-24 广西医科大学 一种生物分子的电化学检测方法
US20190136239A1 (en) * 2016-03-07 2019-05-09 Postech Academy-Industry Foundation Glypican-3 specific aptamer and use thereof
KR20190052522A (ko) * 2017-11-08 2019-05-16 주식회사 에이치피바이오 Gpc3 단백질에 특이적으로 결합하는 dna 앱타머 및 이의 용도

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597240A (zh) * 2015-02-02 2015-05-06 广西医科大学 石墨烯/类过氧化物酶双信号放大检测白血病的生物传感方法
US20190136239A1 (en) * 2016-03-07 2019-05-09 Postech Academy-Industry Foundation Glypican-3 specific aptamer and use thereof
CN105842457A (zh) * 2016-03-23 2016-08-10 福州市传染病医院 一种检测磷脂酰肌醇蛋白聚糖3的试剂盒及检测方法
CN106636108A (zh) * 2017-01-25 2017-05-10 复旦大学附属中山医院 一种特异性结合gpc3的核酸适配体及其应用
KR20190052522A (ko) * 2017-11-08 2019-05-16 주식회사 에이치피바이오 Gpc3 단백질에 특이적으로 결합하는 dna 앱타머 및 이의 용도
CN108445063A (zh) * 2018-03-23 2018-08-24 广西医科大学 一种生物分子的电化学检测方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JIU-JUN YANG 等: "Sandwich-like electrochemiluminescence aptasensor based on dual quenching effect from hemin-graphene nanosheet and enzymatic biocatalytic precipitation for sensitive detection of carcinoembryonic antigen", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *
LINGLING XU 等: "A sandwich-type electrochemical aptasensor for the carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites", 《MICROCHIMICA ACTA》 *
YING LIANG 等: "An ATP Aptasensor Based on the Peroxidase-like Activity of Hemin/Graphene Oxide Nanosheets", 《ANALYTICAL SCIENCES》 *
ZHANG J 等: "Detection of hepatoma serum marker CD105 with graphene/hemin/aptamer nanoprobe", 《EUROPEAN JOURNAL OF IMMUNOLOGY 》 *
ZHENTING YANG 等: "A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide", 《BIOSENSORS ANDBIOELECTRONICS》 *
ZHIDE ZHOU 等: "Glypican-3 electrochemical aptamer nanobiosensor based on hemin/graphene nanohybrids peroxidase-like catalytic silver deposition", 《MICROCHIMICA ACTA》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413385B (zh) * 2020-04-26 2023-09-19 桂林电子科技大学 一种基于RGO-CS-Fc/Pt-Pd NPs纳米复合材料检测GPC3的方法
CN111413384A (zh) * 2020-04-26 2020-07-14 桂林电子科技大学 一种基于RGO-CS-Hemin/Au NPs纳米复合材料检测GPC3的方法
CN111413385A (zh) * 2020-04-26 2020-07-14 桂林电子科技大学 一种基于RGO-CS-Fc/Pt-Pd NPs纳米复合材料检测GPC3的方法
CN111505077A (zh) * 2020-04-26 2020-08-07 桂林电子科技大学 一种基于RGO-Hemin/Au NPs纳米复合材料检测GPC3的方法
CN111413384B (zh) * 2020-04-26 2024-03-15 桂林电子科技大学 一种基于RGO-CS-Hemin/Au NPs纳米复合材料检测GPC3的方法
CN111307908B (zh) * 2020-04-28 2022-04-22 桂林电子科技大学 一种基于H-rGO-Pt@Pd NPs纳米复合材料检测GPC3的方法
CN111307908A (zh) * 2020-04-28 2020-06-19 桂林电子科技大学 一种基于H-rGO-Pt@Pd NPs纳米复合材料检测GPC3的方法
CN111693571B (zh) * 2020-06-23 2023-03-03 桂林电子科技大学 一种基于光寻址电位传感器检测gpc3的方法
CN111693571A (zh) * 2020-06-23 2020-09-22 桂林电子科技大学 一种基于光寻址电位传感器检测gpc3的方法
CN113203781A (zh) * 2021-05-13 2021-08-03 桂林电子科技大学 一种基于RGO-CS-Hemin@Pt NPs纳米材料和适配体检测GPC3的方法
CN113203859A (zh) * 2021-05-13 2021-08-03 桂林电子科技大学 一种基于H-rGO-Pt@Pd NPs纳米酶可视化检测GPC3的方法
CN113203718B (zh) * 2021-05-13 2022-05-31 桂林电子科技大学 一种基于荧光共振能量转移的gpc3检测方法
CN113203718A (zh) * 2021-05-13 2021-08-03 桂林电子科技大学 一种基于荧光共振能量转移的gpc3检测方法
CN113238040A (zh) * 2021-05-18 2021-08-10 桂林电子科技大学 一种基于纳米复合材料的laps传感器检测gpc3方法
CN113238040B (zh) * 2021-05-18 2022-05-31 桂林电子科技大学 一种非诊断目的基于纳米复合材料的laps传感器检测gpc3方法

Also Published As

Publication number Publication date
CN110823980B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN110823980B (zh) 一种基于类过氧化酶催化银沉积检测gpc3的方法
Chen et al. A gold nanoparticles/sol–gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay
CN111307908B (zh) 一种基于H-rGO-Pt@Pd NPs纳米复合材料检测GPC3的方法
CN111505077B (zh) 一种基于RGO-Hemin/Au NPs纳米复合材料检测GPC3的方法
CN106525943B (zh) 一种表面蛋白压印自供能生物燃料电池传感器的构建方法及其应用
CN113203781B (zh) 一种非诊断目的基于RGO-CS-Hemin@Pt NPs纳米材料和适配体检测GPC3的方法
Yang et al. Hollow platinum decorated Fe3O4 nanoparticles as peroxidase mimetic couple with glucose oxidase for pseudobienzyme electrochemical immunosensor
Yang et al. Electrochemical immunosensor for detecting carcinoembryonic antigen using hollow Pt nanospheres-labeled multiple enzyme-linked antibodies as labels for signal amplification
CN108051491B (zh) 一种用于检测lag-3蛋白的电化学免疫传感器
CN110376380B (zh) 一种电化学酶联免疫传感器及其制备与检测抗原的应用
CN112964763B (zh) 电活性物质修饰mof复合材料的电化学免疫传感器及其制备与应用
CN106442994A (zh) 一种基于Ag@Au纳米复合材料的电化学免疫传感器的制备方法及应用
CN109613244B (zh) 一种Ag@Pt-CuS标记的免疫传感器的制备方法及应用
CN111413384A (zh) 一种基于RGO-CS-Hemin/Au NPs纳米复合材料检测GPC3的方法
Qu et al. A signal-off electrochemical sensing platform based on Fe3S4-Pd and pineal mesoporous bioactive glass for procalcitonin detection
Song et al. Dual amplification strategy for the fabrication of highly sensitive amperometric immunosensor based on nanocomposite functionalized interface
CN113155930A (zh) 一种多重信号放大技术检测白血病干细胞肿瘤标志物cd123的电化学免疫传感方法
Li et al. Electrochemical sensors applied for in vitro diagnosis
Zhu et al. A novel amperometric immunosensor constructed with gold–platinum nanoparticles and horseradish peroxidase nanoparticles as well as nickel hexacyanoferrates nanoparticles
Yuan et al. A Reagentless Amperometric Immunosensor for Alpha‐Fetoprotein Based on Gold Nanoparticles/TiO2 Colloids/Prussian Blue Modified Platinum Electrode
Xiao et al. Electrochemiluminescence immunosensor using poly (l-histidine)-protected glucose dehydrogenase on Pt/Au bimetallic nanoparticles to generate an in situ co-reactant
Li et al. Highly sensitive immunosensor for hepatitis B surface antigen detection based on a novel signal amplification system of gold nanorods and mesoporous Au@ Pd@ Pt core-shell nanospheres
CN105866221B (zh) 可催化还原血红蛋白的电化学传感器
Chen et al. Gold Nanoparticles Doped Three‐Dimensional Sol‐gel Matrix for Amperometric Human Chorionic Gonadotrophin Immunosensor
Habibi et al. Development of a sensitive label-free electrochemical immunosensor for detection of chickpea chlorotic dwarf virus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200221

Assignee: Guangxi Silizhao Biotechnology Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2023980045668

Denomination of invention: A Method for Detecting GPC3 Based on Peroxygenase like Catalyzed Silver Deposition

Granted publication date: 20220614

License type: Common License

Record date: 20231102