CN113238040A - 一种基于纳米复合材料的laps传感器检测gpc3方法 - Google Patents
一种基于纳米复合材料的laps传感器检测gpc3方法 Download PDFInfo
- Publication number
- CN113238040A CN113238040A CN202110537812.XA CN202110537812A CN113238040A CN 113238040 A CN113238040 A CN 113238040A CN 202110537812 A CN202110537812 A CN 202110537812A CN 113238040 A CN113238040 A CN 113238040A
- Authority
- CN
- China
- Prior art keywords
- solution
- laps
- gpc3
- chip
- rgo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 102100032530 Glypican-3 Human genes 0.000 title claims abstract description 62
- 101001014668 Homo sapiens Glypican-3 Proteins 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 11
- 239000000463 material Substances 0.000 title abstract description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 33
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 239000002086 nanomaterial Substances 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 10
- 230000008859 change Effects 0.000 claims abstract description 8
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims abstract description 7
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000010168 coupling process Methods 0.000 claims abstract description 6
- 238000005859 coupling reaction Methods 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 78
- 238000005406 washing Methods 0.000 claims description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000004140 cleaning Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000011259 mixed solution Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 8
- 239000012498 ultrapure water Substances 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 claims description 5
- 229940025294 hemin Drugs 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- 239000007853 buffer solution Substances 0.000 claims description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- 229910003244 Na2PdCl4 Inorganic materials 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010992 reflux Methods 0.000 claims description 3
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 2
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 2
- 239000006228 supernatant Substances 0.000 claims description 2
- 238000003260 vortexing Methods 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims description 2
- GFLJTEHFZZNCTR-UHFFFAOYSA-N 3-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OCCCOC(=O)C=C GFLJTEHFZZNCTR-UHFFFAOYSA-N 0.000 claims 2
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 claims 2
- 239000000523 sample Substances 0.000 claims 2
- 239000000203 mixture Substances 0.000 claims 1
- 239000012488 sample solution Substances 0.000 claims 1
- 230000009467 reduction Effects 0.000 abstract description 5
- 230000003993 interaction Effects 0.000 abstract description 4
- 230000003213 activating effect Effects 0.000 abstract description 3
- 239000007822 coupling agent Substances 0.000 abstract description 3
- 230000002194 synthesizing effect Effects 0.000 abstract description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 238000011534 incubation Methods 0.000 description 8
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910021389 graphene Inorganic materials 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 150000003278 haem Chemical class 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 238000002444 silanisation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 1
- 102000010956 Glypican Human genes 0.000 description 1
- 108050001154 Glypican Proteins 0.000 description 1
- 108050007237 Glypican-3 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FTCIOUYXOOXMBV-UHFFFAOYSA-N OC(=O)c1ccccc1C(O)=O.C=CC(=O)OCCOCCOC(=O)C=C Chemical compound OC(=O)c1ccccc1C(O)=O.C=CC(=O)OCCOCCOC(=O)C=C FTCIOUYXOOXMBV-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- ABKQFSYGIHQQLS-UHFFFAOYSA-J sodium tetrachloropalladate Chemical compound [Na+].[Na+].Cl[Pd+2](Cl)(Cl)Cl ABKQFSYGIHQQLS-UHFFFAOYSA-J 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/536—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
- G01N33/537—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54326—Magnetic particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54353—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
一种基于纳米复合材料的LAPS传感器检测GPC3的方法,通过一步还原法设计合成H‑rGO‑Pt@Pd NPs纳米复合材料;用NaOH和APTES对LAPS芯片进行活化,戊二醛作为偶联剂,分别将复合纳米材料和GPC3Apt偶联在活化的LAPS芯片,形成LAPS敏感单元,将GPC3溶液置于LAPS敏感单元上,得到LAPS传感器。利用GPC3Apt与GPC3之间的特异性识别作用引起LAPS敏感单元中的电势之间的变化,实现对GPC3的检测,最低检测限达0.212 ng/mL。
Description
技术领域
本发明属于生物检测技术领域,具体涉及一种基于LAPS传感器检测GPC3的方法。
背景技术
目前,磷脂酰肌醇蛋白聚糖-3(GPC3)的检测方法主要有酶联免疫吸附法、放射免疫分析、电化学分析方法、时间分辨荧光免疫分析法等。公开号CN112210018A的发明专利,公开了一种靶向GPC3的嵌合抗原受体及其应用;所述嵌合抗原受体包括抗原结合结构域、铰链区、跨膜结构域和信号转导结构域,但该方法操作手段和技术要求高。公开号为CN112014577A的发明专利,公开了一种提高GPC3检测灵敏度的试剂盒及其制备方法;但方法操作繁琐复杂,且试剂盒费用昂贵。需要建立成本低、高灵敏度检测GPC3的方法。
发明内容
本发明所要解决的技术问题是提供一种血红素/还原型氧化石墨烯/铂@钯(H-rGO-Pt@Pd NPs)纳米复合材料、构建LAPS传感器、实现最低检测限为0.212 ng/mL 的GPC3检测方法。
为解决该技术问题,采用LAPS 芯片、光源驱动电路、信号放大电路和 LabVIEW 平台组成了LAPS 实时测试系统。通过一步还原法设计合成 H-rGO-Pt@Pd NPs纳米复合材料;用NaOH溶液和APTES溶液对LAPS芯片进行活化,采用戊二醛为偶联剂,分别将H-rGO-Pt@PdNPs复合纳米材料和GPC3Apt偶联在活化的LAPS芯片,形成LAPS敏感单元,然后将GPC3溶液置于至LAPS敏感单元上,得到LAPS传感器。在外加偏置电压作用下,由于GPC3Apt与GPC3之间的特异性识别作用引起LAPS敏感单元中的电势之间的变化,使得LAPS传感器的(I-V)曲线产生相应的偏移,采用LabVIEW 平台记录不同GPC3浓度的LAPS传感器的电压偏移值,该偏移量与 GPC3 浓度在 0.0001-3.0μg/mL表现出良好的线性关系,实现对GPC3的检测。本发明按照以下步骤进行:
步骤1:H-rGO-Pt@Pd NPs材料的制备
(1)还原性氧化石墨烯(rGO)的制备:氧化石墨烯(GO)倒入蒸馏水中,超声破碎溶解,加入抗坏血酸(AA)还原,得rGO;
(2)血红素/还原性氧化石墨烯(H-rGO)的制备:在固体血红素(Hemin)中加入氨水和超纯水中溶解后,与rGO溶液搅拌混合,得H-rGO溶液;
(3)血红素/还原型氧化石墨烯/铂@钯 (H-rGO-Pt@Pd NPs)复合材料的制备:将邻苯二甲酸二乙二醇二丙烯酸酯(PDDA)和氯化钠(NaCl)加入到H-rGO溶液中,搅拌反应,将氯铂酸钠(Na2PtCl6)和四氯钯酸钠(Na2PdCl4)加入到PDDA修饰的H-rGO溶液中反应,加入乙二醇(EG)溶液进行混合,用氢氧化钠(NaOH)调节混合溶液的pH值,回流反应,离心得到H-rGO-Pt@Pd NPs复合纳米材料。
步骤2:LAPS敏感单元的构建
(1)将LAPS芯片放置乙醇、丙酮、超纯水溶液中各超声洗涤,吹干备用;
(2)将上述LAPS芯片表面滴加NaOH溶液,然后滴加氨基硅烷化试剂(APTES)溶液活化,静置12-24小时;然后滴加戊二醛溶液至芯片表面,偶联30min;
(3)在上述条件下活化的芯片上滴加H-rGO-Pt@Pd NPs溶液孵育,控制温度为20-30℃,时间为30-90 min;
(4)在上述芯片基础上滴加GPC3Apt溶液(序列为5'-TAACGCTGACCTTAGCTGCATGGCTTTACATGTTCCA-NH2-3'),孵育一定时间之后,清洗,然后滴加质量分数为1%的BSA溶液,30min后清洗,得到LAPS 敏感单元,晾干备用。
步骤3:GPC3的工作曲线绘制
(1)在LAPS 敏感单元滴加GPC3标准溶液,在孵育温度为4-35℃,时间为40-120min的条件下孵育,孵育结束后形成 LAPS 传感器;将LAPS 传感器浸入到PBS 缓冲液里面,在外加偏置电压作用下,LAPS传感器的(I-V)曲线产生相应的偏移,采用LabVIEW 平台记录LAPS传感器的偏移电压值;
(2)根据LAPS传感器的偏移电压值与GPC3浓度的关系,绘制工作曲线。并计算出该方法的最低检测限。
步骤4:待测样品中GPC3的检测
(1)在步骤2得到的在LAPS 芯片敏感单元滴加用待测样品,在孵育温度为4-35℃,时间为40-120min的条件下孵育,孵育结束后制备LAPS传感器;将LAPS 传感器浸入到PBS缓冲液里面,在外加偏置电压作用下,LAPS传感器的(I-V)曲线产生相应的偏移,采用LabVIEW 平台记录LAPS传感器的电压偏移值;
(2)根据步骤3所得到的GPC3的工作曲线,计算待测样品中GPC3的浓度。
作为优选:
步骤1中所述H-rGO-Pt@Pd NPs溶液浓度为1.0 mg/mL;
步骤1中所述的PDDA溶液的质量分数为0.2%;
步骤1中所述的NaCl溶液浓度为0.2 mol/L;
步骤1中所述Na2PtCl6溶液和Na2PdCl4溶液的浓度均为20 mmol/L;
步骤2中所述NaOH溶液浓度为1.0 mol/L;
步骤2中所述APTES溶液质量分数为1.0 %;
步骤2中所述戊二醛溶液质量分数为2.5%;
步骤2中所述的GPC3Apt溶液浓度为5.0 μmol/L;孵育时间为2h;
步骤3和步骤4中所述的孵育温度为25℃,孵育时间为60 min;
步骤3和步骤4中所述的PBS溶液的pH值为6.5,浓度为2.0 mol/L。
其中,步骤1通过一步还原法合成了 H-rGO-Pt@Pd NPs纳米复合材料,为步骤2提供了一个良好的载体,提高GPC3Apt 的负载量和电子传递效率。步骤2中构建了 LAPS敏感单元,通过GPC3与GPC3Apt之间的特异性识别作用来引起LAPS敏感单元的电势变化,GPC3浓度的变化由LAPS传感器的I-V曲线的偏移量来表示,实现GPC3的检测。步骤2中LAPS 敏感单元的构建为步骤3和步骤4中GPC3的检测中必不可少的关键步骤。步骤3的GPC3的工作曲线为步骤4的实际样本中GPC3浓度的测定提供计算依据。可见步骤1-4相互支撑,共同作用,才能实现GPC3的检测。
本发明与现有技术相比具有如下优点:
1、H-rGO-Pt@Pd NPs纳米复合材料的纳米结构能够提高比表面积和质量传输,促进电子传递,增加被固定的生物分子的负载量, 提高生物传感器的响应速度和检测灵敏度。
2、GPC3Apt作为识别分子,与GPC3之间的特异性识别能够在外加偏置电压作用下,引起LAPS敏感单元电势之间的变化,通过监测GPC3与GPC3Apt的特异性反应引起的电压偏移量实现对GPC3的检测,最低检测限(LOD)能达到0.212 ng/mL。
附图说明
图1 基于LAPS传感器检测GPC3的原理图;
图2 H-rGO-Pt@Pd NPs复合纳米材料的透射电镜图(TEM);
图3 LAPS芯片表面不同修饰过程的扫描电子显微镜表征图(SEM);
图4 不同GPC3浓度下的LAPS传感器的I-V曲线。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
图1为一种基于LAPS传感器检测GPC3的原理图:通过一步还原法合成 H-rGO-Pt@Pd NPs纳米复合材料;用NaOH溶液和APTES溶液进行活化,采用戊二醛作为偶联剂,分别将H-rGO-Pt@Pd NPs复合纳米材料和GPC3Apt偶联在LAPS芯片,形成LAPS敏感单元,然后将GPC3溶液置于至LAPS敏感单元上,得到LAPS传感器。在外加偏置电压作用下,由于GPC3Apt与GPC3之间的特异性识别作用引起LAPS敏感单元中的电势之间的变化,使得LAPS传感器的(I-V)曲线产生相应的偏移,采用LabVIEW 平台记录不同GPC3浓度的LAPS传感器的电压偏移值,从而实现GPC3的检测。
具体实施步骤如下:
步骤一:H-rGO-Pt@Pd NPs纳米材料的制备
(1)称取30mg GO置于烧杯中,加入30mL的超纯水,超声破碎使其充分溶解均匀,得到浓度为1.0 mg/mL的溶液,然后加入10 mg AA,搅拌12h,即可得到rGO;
(2)将30mg Hemin溶解于10μL氨水中,再加入30mL超纯水,得到浓度为1.0 mg/mL的溶液;将Hemin溶液和rGO溶液按照1:1的体积比混合,加入8μL的水合肼溶液,涡旋10min;将混合溶液在60 °C的水浴锅中水浴4h,然后以12000 r/min的转速离心10min,去掉上清液,洗涤烘干,得到H-rGO复合纳米材料。图2(A)为H-rGO材料的透射电镜图(TEM),呈随机褶皱的薄膜结构。
(3)将2mL 0.2% 的PDDA溶液和5mL 0.2M 的NaCl溶液加入到10mL 0.5mg/mL 的H-rGO溶液中,搅拌反应12h,离心、清洗,得到PDDA修饰的H-rGO溶液。将2mL 20 mM的 Na2PtCl6溶液和2mL 20 mM 的Na2PdCl4溶液加入到PDDA修饰的0.5 mg/mL 的H-rGO溶液中,搅拌反应12h;然后向溶液中加入10mL EG溶液进行混合,用1M 的NaOH溶液调节混合溶液的pH值到12,140℃回流反应4h。离心、清洗,即可得到H-rGO-Pt@Pd NPs复合纳米材料。图2(B)为H-rGO-Pt@Pd NPs材料的TEM图,在褶皱的平面上出现褐色和黑色的均匀颗粒,证明Pt、Pd NPs已成功的附着在H-rGO材料上。
步骤二:LAPS敏感单元的构建
(1)将LAPS芯片放置乙醇溶液中洗涤10min,然后放置在丙酮溶液中超声洗涤10min,再放置超纯水中超声洗涤10min,用洗耳球吹干,保鲜膜密封放置冰箱备用。
(2)将预处理后的芯片表面滴加6μL 1.0 mol/L 的NaOH溶液,30min中后用纯水清洗干净,然后滴加6μL质量分数为1%的APTES溶液,在4°C冰箱放置过夜,用纯水洗涤三次。然后滴加6μL质量分数为2.5%戊二醛溶液至芯片表面,偶联30min。
(3)在上述条件下制备的芯片上滴加6μL H-rGO-Pt@Pd NPs溶液,在25°C孵育箱中孵育3h,用纯水清洗干净。
(4)在上述芯片上滴加6μL 浓度为5.0 μmol/L GPC3Apt溶液,在25°C孵育箱孵育2h后清洗干净,然后滴加6μL质量分数为1%的BSA溶液,30min后清洗,晾干备用。
步骤三:GPC3工作曲线的绘制
(1)在步骤二构建的LAPS 芯片敏感单元界面分别滴加6μL 不同浓度的GPC3溶液,在25°C孵育箱孵育1h后取出,制备成LAPS传感器。通过扫描电镜(SEM)表征来观察LAPS传感器构建过程的变化,如图3所示。图3A为裸芯片,光滑平整。图3B为氨基硅烷化修饰后的芯片,表面呈条行线状结构。图3C为H-rGO-Pt@Pd NPs修饰的芯片,有不同的颗粒状物质分布在条形线状结构上。图3D为GPC3Apt修饰形成的LAPS敏感单元,可以看到有一层模糊的膜状结构覆盖在均匀分布的颗粒表面。图E为加入GPC3之后形成LAPS传感器,可以看到有花状结构出现在表面,归因于GPC3和GPC3Apt特异性结合形成一个稳定的结构。
(2)将上述的LAPS传感器浸入到pH值为6.5的PBS缓冲液里面,在外加偏置电压作用下,由于GPC3Apt与GPC3之间的特异性识别作用引起LAPS敏感单元中的电势之间的变化,使得LAPS传感器的(I-V)曲线产生相应的偏移,采用LabVIEW 平台记录不同GPC3浓度的LAPS传感器的电压偏移量。该电位位移与 GPC3 浓度在 0.0001-3.0 μg/mL表现出良好的线性关系,工作曲线为Y=32.6562X+115.1579 (Y为电压偏移量,X为GPC3浓度),相关系数为0.9881,LOD为0.212 ng/mL。
步骤四:实际样本中GPC3的检测
采取加标法对三种不同浓度的正常人血清样本(样品1, 样品2和样品3)中GPC3进行检测。将三种不同浓度(0.1 µg/mL,0.5 µg/mL,2.0 µg/mL)的GPC3溶液与血清样品按照1:1的比例混合,形成混合待测液。然后将6μL混合待测液滴加在步骤二构建的LAPS 芯片敏感单元界面上,在25°C孵育箱孵育1h后取出,制备成LAPS传感器,按照步骤三进行GPC3检测,而后按照步骤3所得的工作曲线计算实际样品中的GPC3浓度,结果记录在表1中,LAPS传感器的回收率在 92.06% ~ 118.30%之间,相对标准偏差在0.73% ~ 3.04%,表明所提出的方法适用于实际血清样品的检测。
表1 实际血清样本中GPC3的检测结果
(注:血清样本由中国人民解放军联勤保障部队第九二四医院提供)。
Claims (1)
1.一种基于纳米复合材料的LAPS传感器检测GPC3的方法,其特征在于,按以下步骤进行:
步骤一:H-rGO-Pt@Pd NPs纳米材料的制备
(1)称取30mg GO,加入30mL超纯水,超声破碎;然后加入10 mg AA,搅拌12h,得到rGO;
(2)将30mg Hemin溶解于10μL氨水,加入30mL超纯水;将Hemin溶液和rGO溶液混合,然后加入8μL水合肼溶液,涡旋10min;将混合溶液在60℃水浴4h,然后以12000 r/min离心10min,去掉上清液,洗涤、烘干,得到H-rGO复合纳米材料;
(3) 将2mL 0.2% 的PDD溶液和5mL 0.2mol/L 的NaCl溶液加入到10mL 0.5mg/mL的 H-rGO溶液中,搅拌反应12h,离心、清洗,得到PDDA修饰的H-rGO溶液;将2mL 20 mmol/L的Na2PtCl6溶液和2mL 20 mmol/L 的Na2PdCl4溶液加入到PDDA修饰的0.5 mg/mL的H-rGO溶液中,搅拌反应12h;然后向溶液中加入10mL EG溶液进行混合,用1mol/L 的NaOH溶液调节混合溶液的pH值到12,140℃回流反应4h;离心、清洗,得到H-rGO-Pt@Pd NPs复合纳米材料;
步骤二:LAPS敏感单元的构建
(1)将LAPS芯片放置乙醇溶液中洗涤10min,放置在丙酮溶液中超声洗涤10min,再放置超纯水中超声洗涤10min,吹干;
(2)将预处理后的芯片表面滴加6μL 1.0 mol/L 的NaOH溶液,30min后用纯水清洗;然后滴加6μL质量分数为1%的APTES溶液,在4°C冰箱放置12-24h,用纯水洗涤三次;然后滴加6μL质量分数为2.5%戊二醛溶液至芯片表面,偶联30min;
(3)在上述条件下制备的芯片上滴加6μL H-rGO-Pt@Pd NPs溶液,25°C孵育3h,用纯水清洗干净;
(4)在上述芯片上滴加6μL 浓度为5.0 μmol/L GPC3Apt溶液,25°C孵育2h后清洗干净,然后滴加6μL质量分数为1%的BSA溶液,30min后清洗,晾干,得到LAPS 芯片敏感单元界面;
步骤三:GPC3工作曲线的绘制
(1)在LAPS 芯片敏感单元界面滴加6μL GPC3溶液,25°C孵育1h后取出,制成LAPS传感器;
(2)将上述的LAPS传感器浸入到pH值为6.5,浓度为2.0mol/L的PBS缓冲液里面,在外加偏置电压作用下,由于GPC3Apt与GPC3之间的特异性识别作用引起LAPS敏感单元中的电势之间的变化,使得LAPS传感器的I-V曲线产生相应的偏移,采用LabVIEW 平台记录不同GPC3浓度的LAPS传感器的电压偏移量,绘制工作曲线;
步骤四:待测样本中GPC3的检测
(1)在步骤二得到的LAPS 芯片敏感单元滴加6μL待测样品溶液,25°C孵育1h后取出,制成LAPS传感器;然后将LAPS传感器浸入到pH值为6.5,浓度为2.0mol/L的PBS缓冲液,在外加偏置电压作用下,LAPS传感器的I-V曲线产生相应的偏移,采用LabVIEW 平台记录LAPS传感器的电压偏移值;
(2)根据步骤三所得到的GPC3的工作曲线,计算待测样品中GPC3的浓度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110537812.XA CN113238040B (zh) | 2021-05-18 | 2021-05-18 | 一种非诊断目的基于纳米复合材料的laps传感器检测gpc3方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110537812.XA CN113238040B (zh) | 2021-05-18 | 2021-05-18 | 一种非诊断目的基于纳米复合材料的laps传感器检测gpc3方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113238040A true CN113238040A (zh) | 2021-08-10 |
CN113238040B CN113238040B (zh) | 2022-05-31 |
Family
ID=77134904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110537812.XA Active CN113238040B (zh) | 2021-05-18 | 2021-05-18 | 一种非诊断目的基于纳米复合材料的laps传感器检测gpc3方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113238040B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114965637A (zh) * | 2022-04-24 | 2022-08-30 | 桂林电子科技大学 | 一种基于纳米复合材料构建夹心型适配体传感器检测gpc3的方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100153016A1 (en) * | 2008-12-16 | 2010-06-17 | Bruno Stefanon | Diagnostic system for selecting nutrition and pharmacological products for animals |
WO2011133948A2 (en) * | 2010-04-22 | 2011-10-27 | Longevity Biotech, Inc. | Highly active polypeptides and methods of making and using the same |
EP2697368A2 (en) * | 2011-04-15 | 2014-02-19 | Genelux Corporation | Clonal strains of attenuated vaccinia viruses and methods of use thereof |
CN106075440A (zh) * | 2015-07-01 | 2016-11-09 | 哈尔滨医科大学 | 一种肝癌靶向光热治疗剂及其制备方法与应用 |
WO2018045811A1 (zh) * | 2016-09-09 | 2018-03-15 | 科济生物医药(上海)有限公司 | 融合蛋白及其应用 |
US20180135018A1 (en) * | 2012-10-08 | 2018-05-17 | Biotime, Inc. | Differentiated progeny of clonal progenitor cell lines |
WO2019099639A1 (en) * | 2017-11-15 | 2019-05-23 | Navartis Ag | Bcma-targeting chimeric antigen receptor, cd19-targeting chimeric antigen receptor, and combination therapies |
CN110146580A (zh) * | 2019-06-03 | 2019-08-20 | 桂林电子科技大学 | 一种基于柿单宁复合纳米材料检测l,5-脱水葡萄糖醇的方法 |
SG11201909728XA (en) * | 2017-04-26 | 2019-11-28 | Eureka Therapeutics Inc | Constructs specifically recognizing glypican 3 and uses thereof |
CN110823980A (zh) * | 2019-11-26 | 2020-02-21 | 桂林电子科技大学 | 一种基于类过氧化酶催化银沉积检测gpc3的方法 |
CN111307908A (zh) * | 2020-04-28 | 2020-06-19 | 桂林电子科技大学 | 一种基于H-rGO-Pt@Pd NPs纳米复合材料检测GPC3的方法 |
CN111413385A (zh) * | 2020-04-26 | 2020-07-14 | 桂林电子科技大学 | 一种基于RGO-CS-Fc/Pt-Pd NPs纳米复合材料检测GPC3的方法 |
CN111505077A (zh) * | 2020-04-26 | 2020-08-07 | 桂林电子科技大学 | 一种基于RGO-Hemin/Au NPs纳米复合材料检测GPC3的方法 |
CN111693571A (zh) * | 2020-06-23 | 2020-09-22 | 桂林电子科技大学 | 一种基于光寻址电位传感器检测gpc3的方法 |
CN112014577A (zh) * | 2020-09-04 | 2020-12-01 | 武汉生之源生物科技股份有限公司 | 一种提高gpc3检测灵敏度的试剂盒及其制备方法 |
-
2021
- 2021-05-18 CN CN202110537812.XA patent/CN113238040B/zh active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100153016A1 (en) * | 2008-12-16 | 2010-06-17 | Bruno Stefanon | Diagnostic system for selecting nutrition and pharmacological products for animals |
WO2011133948A2 (en) * | 2010-04-22 | 2011-10-27 | Longevity Biotech, Inc. | Highly active polypeptides and methods of making and using the same |
EP2697368A2 (en) * | 2011-04-15 | 2014-02-19 | Genelux Corporation | Clonal strains of attenuated vaccinia viruses and methods of use thereof |
US20180135018A1 (en) * | 2012-10-08 | 2018-05-17 | Biotime, Inc. | Differentiated progeny of clonal progenitor cell lines |
CN106075440A (zh) * | 2015-07-01 | 2016-11-09 | 哈尔滨医科大学 | 一种肝癌靶向光热治疗剂及其制备方法与应用 |
WO2018045811A1 (zh) * | 2016-09-09 | 2018-03-15 | 科济生物医药(上海)有限公司 | 融合蛋白及其应用 |
SG11201909728XA (en) * | 2017-04-26 | 2019-11-28 | Eureka Therapeutics Inc | Constructs specifically recognizing glypican 3 and uses thereof |
WO2019099639A1 (en) * | 2017-11-15 | 2019-05-23 | Navartis Ag | Bcma-targeting chimeric antigen receptor, cd19-targeting chimeric antigen receptor, and combination therapies |
CN110146580A (zh) * | 2019-06-03 | 2019-08-20 | 桂林电子科技大学 | 一种基于柿单宁复合纳米材料检测l,5-脱水葡萄糖醇的方法 |
CN110823980A (zh) * | 2019-11-26 | 2020-02-21 | 桂林电子科技大学 | 一种基于类过氧化酶催化银沉积检测gpc3的方法 |
CN111413385A (zh) * | 2020-04-26 | 2020-07-14 | 桂林电子科技大学 | 一种基于RGO-CS-Fc/Pt-Pd NPs纳米复合材料检测GPC3的方法 |
CN111505077A (zh) * | 2020-04-26 | 2020-08-07 | 桂林电子科技大学 | 一种基于RGO-Hemin/Au NPs纳米复合材料检测GPC3的方法 |
CN111307908A (zh) * | 2020-04-28 | 2020-06-19 | 桂林电子科技大学 | 一种基于H-rGO-Pt@Pd NPs纳米复合材料检测GPC3的方法 |
CN111693571A (zh) * | 2020-06-23 | 2020-09-22 | 桂林电子科技大学 | 一种基于光寻址电位传感器检测gpc3的方法 |
CN112014577A (zh) * | 2020-09-04 | 2020-12-01 | 武汉生之源生物科技股份有限公司 | 一种提高gpc3检测灵敏度的试剂盒及其制备方法 |
Non-Patent Citations (3)
Title |
---|
LI YUQIU: "Label-free electrochemical aptasensor for GPC3 detection based on RGO-CS-Fc/Pt NPs", 《IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING》, 10 February 2020 (2020-02-10), pages 012063 - 012063 * |
PRIYAL CHIKHALIWALA1: "Simultaneous voltammetric immunodetection of alpha-fetoprotein and glypican-3 using a glassy carbon electrode modified with magnetite-conjugated dendrimers", 《MICROCHIMICA ACTA》, 23 March 2019 (2019-03-23), pages 1 - 12, XP036766159, DOI: 10.1007/s00604-019-3354-4 * |
周福波: "磷脂酰肌醇蛋白聚糖-3在肝细胞癌中作用的研究进展", 《解放军医学院学报》, 1 March 2017 (2017-03-01), pages 354 - 356 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114965637A (zh) * | 2022-04-24 | 2022-08-30 | 桂林电子科技大学 | 一种基于纳米复合材料构建夹心型适配体传感器检测gpc3的方法 |
CN114965637B (zh) * | 2022-04-24 | 2023-08-18 | 桂林电子科技大学 | 一种基于纳米复合材料构建夹心型适配体传感器检测gpc3的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113238040B (zh) | 2022-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@ SiO2 nanomatrix and boronic acid functionalized CPS@ PANI@ Au probe | |
CN102262125B (zh) | 检测己烯雌酚的电化学免疫传感器及其制备方法和应用 | |
CN111307908B (zh) | 一种基于H-rGO-Pt@Pd NPs纳米复合材料检测GPC3的方法 | |
KR102209124B1 (ko) | Ti₃C₂2차원 금속 탄화물 촉매를 이용한 루미놀 전기화학발광 프로브 기반의 바이오 센서 및 그 제조 방법 | |
Dong et al. | An enzyme-free ultrasensitive electrochemical immunosensor for calprotectin detection based on PtNi nanoparticles functionalized 2D Cu-metal organic framework nanosheets | |
Shi et al. | A novel label-free amperometric immunosensor for carcinoembryonic antigen based on redox membrane | |
He et al. | A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Au/chitosan composite as immobilization matrix | |
Zhuo et al. | Glucose oxidase and ferrocene labels immobilized at Au/TiO2 nanocomposites with high load amount and activity for sensitive immunoelectrochemical measurement of ProGRP biomarker | |
CN110823980B (zh) | 一种基于类过氧化酶催化银沉积检测gpc3的方法 | |
CN113203781B (zh) | 一种非诊断目的基于RGO-CS-Hemin@Pt NPs纳米材料和适配体检测GPC3的方法 | |
CN108051491B (zh) | 一种用于检测lag-3蛋白的电化学免疫传感器 | |
Ye et al. | An electrochemical immunoassay for Escherichia coli O157: H7 using double functionalized Au@ Pt/SiO2 nanocomposites and immune magnetic nanoparticles | |
Yang et al. | Hollow platinum decorated Fe3O4 nanoparticles as peroxidase mimetic couple with glucose oxidase for pseudobienzyme electrochemical immunosensor | |
Ge et al. | Disposable electrochemical immunosensor for simultaneous assay of a panel of breast cancer tumor markers | |
CN109738496B (zh) | 一种用于检测单核细胞趋化蛋白-1新型电化学生物传感器制备方法 | |
CN106596942B (zh) | 一种夹心型乙型肝炎病毒标志物免疫传感器的构建方法及应用 | |
CN111505077A (zh) | 一种基于RGO-Hemin/Au NPs纳米复合材料检测GPC3的方法 | |
Huang et al. | Thi-Au-Fe3O4 confined in ZIF-8 nanoreactor as signal-amplifying tag for constructing high-efficiency electrochemical platform | |
CN114813872A (zh) | 一种基于H-rGO-Mn3O4纳米酶的电化学/比色双模式检测GP73的方法 | |
CN114252490A (zh) | 基于H-rGO-Mn3O4纳米酶的夹心型电化学传感器双信号检测GP73的方法 | |
Li et al. | Horseradish peroxidase-loaded nanospheres attached to hollow gold nanoparticles as signal enhancers in an ultrasensitive immunoassay for alpha-fetoprotein | |
CN113238040B (zh) | 一种非诊断目的基于纳米复合材料的laps传感器检测gpc3方法 | |
CN110702759B (zh) | 一种检测甲胎蛋白的zif-8复合材料电化学免疫传感器及其制备方法和应用 | |
Gan et al. | A signal-amplified piezoelectric sensor for the detection of hs-CRP using HRP doped magnetic core-shell Fe3O4@ SiO2@ Au nanostructures as labels | |
Xiao et al. | Electrochemiluminescence immunosensor using poly (l-histidine)-protected glucose dehydrogenase on Pt/Au bimetallic nanoparticles to generate an in situ co-reactant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210810 Assignee: Guangxi Silizhao Biotechnology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980045668 Denomination of invention: A Method for Detecting GPC3 Using LAPS Sensors Based on Nanocomposite Materials for Non Diagnostic Purposes Granted publication date: 20220531 License type: Common License Record date: 20231102 |