CN1108190C - 含磷催化剂及使用该催化剂进行石油加氢处理的方法 - Google Patents

含磷催化剂及使用该催化剂进行石油加氢处理的方法 Download PDF

Info

Publication number
CN1108190C
CN1108190C CN97199666A CN97199666A CN1108190C CN 1108190 C CN1108190 C CN 1108190C CN 97199666 A CN97199666 A CN 97199666A CN 97199666 A CN97199666 A CN 97199666A CN 1108190 C CN1108190 C CN 1108190C
Authority
CN
China
Prior art keywords
catalyst
weight
pore volume
content
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN97199666A
Other languages
English (en)
Other versions
CN1237919A (zh
Inventor
S·米尼亚尔
N·乔治-米沙尔
V·哈勒
S·卡斯兹特兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9497550&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1108190(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of CN1237919A publication Critical patent/CN1237919A/zh
Application granted granted Critical
Publication of CN1108190C publication Critical patent/CN1108190C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种基于氧化铝的催化剂,按氧化物的重量含量表示,它含有:2%-10%(重量)的CoO,10%-30%(重量)的MoO3和4%-10%(重量)的P2O5,该催化剂的BET表面积是100-300m2/g,ESH压碎值大于1.4MPa,平均孔直径为8-11nm,直径大于14nm的孔的孔体积小于0.08ml/g,直径小于8nm的孔的孔体积至多等于0.05ml/g,直径为8-14nm孔的体积为0.20-0.8ml/g。本发明还涉及应用该催化剂的加氢处理方法,尤其是加氢脱硫。

Description

含磷催化剂及使用该催化剂 进行石油加氢处理的方法
本发明涉及烃类石油进料的加氢处理催化剂,该催化剂含钴、钼和磷。
石油馏分的加氢处理在石油炼制工业中愈来愈重要,这一方面是因为对更重馏分进行转化的需求不断增长,另一方面是因为对终产品的特定性要求愈来愈严格。
这一现状是由最大限度地利用进口原油的经济利益导致的。而进口原油中重馏分的含量愈来愈高,这一方面表现为重馏分和由重馏分生产的较轻馏分相对贫氢,另一方面表现为重馏分中例如硫或氮的杂原子含量较高。
一般而言,加氢处理是对石油烃馏分的纯化处理,其中对馏分的碳原子骨架结构没有明显的改性。故此它包括:脱除例如硫或氮的杂原子;脱除金属;同时进行部分或全部的氢化。当这些操作是必需的时候,石油馏分被加氢处理,然后脱除形成的产品,从而可以收集到纯化的产品。
加氢处理“深度(profondeur)”与操作条件直接相关。所谓“操作条件”,必须理解为进料性质、反应区内总压、各种成分的分压、反应温度、每小时空速及氢气流率。一般说来,进料越重和/或越难于转化,其操作条件越苛刻,换言之,如果每小时空速保持恒定,则压力、温度和氢气流率必须提高。
申请人针对大量载体,用多种组成进行了研究,结果令人惊异地发现了一种催化剂,其加氢处理活性比之现有技术的催化剂优越许多。所述催化剂基于氧化铝,并按氧化物的重量含量表示,含有2%-10%的CoO,10%-30%的MoO3和4%-10%的P2O5,且该催化剂优选地具有颗粒状的理化特征。
所用的基质基于氧化铝(至少50%(重量)氧化铝),优选基本由氧化铝构成。
该催化剂的特征在于,其中以五氧化二磷(P2O5)相对于最终催化剂的重量百分比表示的磷含量,为4.0%-10.0%,优选4.5%-8.0%,更优选5.6-8.0%,甚至更优选5.6-6.5%。该催化剂的特征在于,其中以氧化钴(CoO)相对于最终催化剂的重量百分比表示的钴含量,为2.0%-10.0%,优选3.5%-7.0%,更优选3.5%-5.5%。该催化剂的特征还在于,其中以氧化钼(MoO3)相对于最终催化剂的重量百分比表示的钼含量,为10%-30%,有利地为10.0%-18.9%,优选15.0-18.9%,更优选16.0-18.5%。
该催化剂表征如下:
BET表面积:对最终催化剂测量的BET表面积为100-300平方米/克,优选120-250平方米/克,更优选为130-240平方米/克。
ESH:Shell压碎值(l′écrasement  Shell),称作ESH。对最终催化剂测量,为大于1.4MPa,优选大于1.6MPa。
平均孔径:使用汞孔径仪得到孔分布,由此测得平均孔径。从孔分布曲线计算得到其微分曲线(1a courbe  dérivé)。微分曲线有一个或几个极大值,其纵坐标代表孔径。要求保护的催化剂为,这些极大值对应的孔径为80-110(10=1nm),优选为95-110,甚至更优选为100-110。
小于80孔的孔体积:直径小于80的孔的孔体积至多等于0.05毫升/克,优选至多等于0.035毫升/克,甚至更优选至多等于0.025毫升/克。
大于140孔的孔体积:直径大于140的孔的孔体积为小于0.08毫升/克,优选小于0.06毫升/克,甚至更优选小于0.05毫升/克。几乎没有大于250的孔,更一般地,其孔体积小于总孔体积的10%,小于8%更好。
80-140孔的孔体积:直径为80-140的孔的孔体积为0.20-0.80毫升/克,优选为0.30-0.70毫升/克,且20%-60%的孔体积包含直径100-130的孔。
本发明的催化剂可按本领域技术人员已知的任何方法制备。
加氢元素可加入到混合物中或在成形后加入(优选方案)。
成形后继以煅烧,加氢元素在煅烧之前或之后加入。任何情况下,在250℃-600℃下煅烧后,制备结束。
本发明中一种优选的方法在于,将氧化铝的含水凝胶捏和几十分钟,使得到的糊状物通过一个漏斗形成直径优选为0.4-4毫米的挤出物。
该催化剂还具有加氢功能。加氢功能是由钼或钴提供的。它们可以在不同制备阶段以不同方式加入。
可以在捏和被选择作为基质的氧化物凝胶的时候仅仅部分加入或全部加入这些成分,剩余的加氢元素在捏和之后加入,更一般地是在煅烧后加入。
无论采用何种加入方式,优选地在加入钴的同时或加完钴之后再加入钼。
加氢元素的加入优选借助含这些金属的盐前体溶液,对被煅烧载体进行一次或几次离子交换操作完成。
如果氧化钼前体已经事先在捏和载体时加入,那么可以通过用一种或多种氧化钴前体溶液浸渍载体一次或多次,借此将其加入。
如果用相应的盐前体溶液浸渍一次或多次借以加入这些元素,则必须进行催化剂的中间煅烧步骤,煅烧温度为250-600℃。
可以在制备的任何阶段加入磷。它可单独加入,也可与钴和/或钼混合加入,例如可以在氧化铝胶溶化之前加入。它可以例如加入到挤出物形式的氧化铝中,辅以中间煅烧或不进行中间煅烧。它还可以与钴或钼全部或部分混合,加入到挤出物形式的氧化铝中,辅以中间煅烧或不进行中间煅烧。它也可以全部或部分地与钴或钼加入到挤出物形式的氧化铝中,辅以中间煅烧或不进行中间煅烧。它也可以最后单独加入。最后应当注意的是,这一列举仅供说明之用,因为还可以设想到许多变通方案。
金属元素以其氧化物的形式加入。为保证活性,它必须被硫化,应注意所有的就地硫化和异地硫化方法均可采用。
本发明还涉及使用该催化剂的加氢处理方法。
被处理进料是多种多样的,可以是从石脑油(起始沸点80℃)到真空蒸馏馏分,到真空蒸馏残余物。
总压为0.5-20MPa,温度为200-480℃,优选260-450℃,每小时空速为20-0.05h-1,而相对于每升进料的氢气流率是100-3,000升。氢气分压优选较低,为0.5-6MPa,0.5-5.5MPa更佳。在两种极限的情况下,对石脑油的加氢脱硫在1.5MPa压力、300℃、每小时空速10h-1和氢气流率100升/升进料的条件下进行;对脱除了沥青的真空蒸馏残余物的加氢脱硫处理在20MPa压力、390℃、每小时空速0.5h-1和氢气流率为1500升/升进料的条件下进行。
下面的实施例说明本发明,而不对其范围构成限制。
大量制备了一种基于氧化铝的载体。为此,采用Condea公司销售的SB3凝胶。该凝胶与水和硝酸混合,然后捏和15分钟。捏和结束之后,所得的糊状物通过一圆柱形漏斗以制得直径为1.2毫米的挤出物。挤出物然后在120℃干燥过夜,在550℃煅烧2小时,煅烧气氛是含7.5%(体积)水的湿空气。实施例1:催化剂C1(不按照本发明)
向挤出的载体中加入钴、钼和磷。用浸渍载体至干的方式同时加入这三种元素的盐。所用钴盐是硝酸钴Co(NO3)2·6H2O,钼盐用七钼酸铵Mo7O24(NH4)6·4H2O,磷按H3PO4的形式加入。浸渍至干后,挤出物在120℃干燥过夜,然后在含7.5%(体积)水的湿空气中于550℃煅烧2小时。金属氧化物的最终含量及主要的理化特征如下:
MoO3(%(重量)):  18.2
CoO(%(重量)):    4.1
P2O5(%(重量)): 1.9
SBET(m2/g):      205
ESH(MPa):          1.3实施例2:催化剂C2(按照本发明)
向挤出的载体中加入钴、钼和磷。用浸渍至干的方法同时向挤出载体中加入这三种元素的盐。所用的钴盐是硝酸钴Co(NO3)2·6H2O。钼盐是七钼酸铵Mo7O24(NH4)6·4H2O,磷以H3PO4的形式加入。浸渍至干后,挤出物在120℃干燥过夜,然后在含7.5%(体积)水的空气中于550℃煅烧2小时。金属氧化物的最终含量及主要的理化特征如下:
MoO3(%(重量)):   18.2
CoO(%(重量)):     4.1
P2O5(%(重量)):  5.7
SBET(m2/g):       170
ESH(MPa):           1.8实施例3:催化剂C3(不按照本发明,对比)
向挤出载体中加入钴和钼。用浸渍至干的方法同时向载体中加入这三种元素的盐。所用的钴盐是硝酸钴Co(NO3)2·6H2O,所用钼盐是七钼酸铵Mo7O24(NH4)6·4H2O。浸渍至干后,挤出物在120℃干燥过夜,然后在含7.5%(体积)水的空气中于550℃煅烧2小时。金属氧化物的最终含量及主要的理化特征如下:
MoO3(%(重量)):     18.2
CoO(%(重量)) :     4.1
P2O5(%(重量)):    0
SBET(m2/g):        235
ESH(MPa):            1.2实施例4:对比实验:甲苯加氢
对比了上述三种催化剂对甲苯加氢的活性。使用前对催化剂就地硫化。反应在3MPa、300℃下进行。进料为甲苯,其中加有2%(重量)的DMDS。其相对活性报告于下表。选择不含磷的催化剂C3作为对照。
   催化剂                    活性
    C1:             :      126
    C2:             :      152
    C3:             :      100
可观察到含磷的两种催化剂活性高于不含磷催化剂。另外可观察到含高比例磷的催化剂比含少量磷的催化剂活性明显高得多。实施例5:对比试验:GDSR的HDS
对比了上述三种催化剂对真实进料的活性。使用前对催化剂进行就地硫化。测量了直接蒸馏汽油(GOSR)的加氢脱硫(HDS)活性。其主要的理化性质列于下表:
15℃的密度    :  0.856
20℃的折射率  :  1.4564
50℃的粘度    :  3.72cSt=3.72×10-6m2/s
硫            :  1.57%(重量)
模拟蒸馏:
起始产物:        153℃
5%:       222℃
50%:      315℃
95%:      415℃
终产物:    448℃
汽油的HDS试验在固定床内进行,其操作条件如下:
总压        :  3MPa
每小时空速  :  2h-1
温度        :  310,340和360℃
氢气流率    :  250升/升进料
三种反应温度下三种催化剂的催化性能列于下表。它表示为活性,以每一温度下不含磷催化剂C3的活性作为对比。
催化剂       310℃   340℃    360℃
  C1         117     115      118
  C2         123     128      129
  C3         100     100      100
可见,本发明催化剂C2活性显著要高。
因此本发明的催化剂尤其适用于加氢脱硫。

Claims (12)

1.基于氧化铝的催化剂,按氧化物的重量含量表示,此催化剂含有:2-10%重量的CoO,10-30%重量的MoO3和4-10%重量的P2O5,其BET表面积为100-300m2/g,ESH压碎值大于1.4MPa,平均孔径为8-11nm,孔直径大于14nm的孔的孔体积小于0.08ml/g,孔直径小于8nm的孔的孔体积最多等于0.05ml/g,孔直径8-14nm的孔的孔体积为0.20-0.8ml/g,直径250的孔体积小于总体积的10%,而直径100-130的孔体积为总孔体积的20-60%。
2.权利要求1的催化剂,其中P2O5含量为4.5-8.0%重量。
3.权利要求2的催化剂,其中P2O5的含量为5.6-8.0%重量。
4.权利要求1的催化剂,其中CoO的含量为3.5-7.0%重量,MoO3含量为10.0-18.9%重量。
5.上述权利要求中任一项的催化剂,该催化剂是按如下方法制备:用含钴、含钼溶液和磷酸溶液浸渍基于氧化铝的被煅烧基质,继以干燥和在湿空气中煅烧。
6.使用权利要求1-5中任一项的催化剂对石油进料进行加氢处理的方法,其操作条件是:200-480℃、0.5-20MPa压力、每小时空速0.05-20h-1、氢气流率为100-3000升/升进料。
7.权利要求6的方法,其操作压力为0.5-6MPa。
8.权利要求6或7的方法,其中加氢处理是加氢脱硫。
9.权利要求6的方法,其中加氢处理包括对石脑油的加氢脱硫的操作条件:温度300℃、压力为1.5Mpa、每小时空速为10h-1、氢气流率为100升/升,以及对脱除了沥青的真空蒸馏残余物的加氢脱硫处理条件:20MPa压力、390℃、每小时空速0.5h-1和氢气流率为1500升/升进料。
10.权利要求6的方法,其中进料是真空蒸馏馏份。
11.权利要求6的方法,其中进料是直接蒸馏汽油。
12.权利要求6的方法,其中进料是石脑油。
CN97199666A 1996-11-13 1997-11-07 含磷催化剂及使用该催化剂进行石油加氢处理的方法 Expired - Lifetime CN1108190C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9613797A FR2755625B1 (fr) 1996-11-13 1996-11-13 Catalyseur contenant du phosphore et procede d'hydrotraitement de charges petrolieres avec ce catalyseur
FR96/13797 1996-11-13

Publications (2)

Publication Number Publication Date
CN1237919A CN1237919A (zh) 1999-12-08
CN1108190C true CN1108190C (zh) 2003-05-14

Family

ID=9497550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97199666A Expired - Lifetime CN1108190C (zh) 1996-11-13 1997-11-07 含磷催化剂及使用该催化剂进行石油加氢处理的方法

Country Status (14)

Country Link
EP (1) EP0952888B1 (zh)
JP (1) JP2001503328A (zh)
KR (1) KR100473668B1 (zh)
CN (1) CN1108190C (zh)
AT (1) ATE249276T1 (zh)
AU (1) AU731209B2 (zh)
BR (1) BR9713345A (zh)
CA (1) CA2270590A1 (zh)
DE (1) DE69724820T2 (zh)
DK (1) DK0952888T3 (zh)
FR (1) FR2755625B1 (zh)
NZ (1) NZ335179A (zh)
RU (1) RU2192923C2 (zh)
WO (1) WO1998020969A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428214B (zh) * 2007-11-07 2011-01-19 中国科学院大连化学物理研究所 氧化铝负载类贵金属催化剂在纤维素加氢水解中的应用
CN101428213B (zh) * 2007-11-07 2011-04-20 中国科学院大连化学物理研究所 炭载类贵金属催化剂在纤维素加氢水解反应中的应用
FR2998488B1 (fr) * 2012-11-29 2015-02-06 Ifp Energies Now Catalyseur d hydrotraitement a partir d alumine gel et methode de preparation d un tel catalyseur
FR3022156B1 (fr) * 2014-06-13 2018-02-23 Ifp Energies Now Catalyseur mesoporeux et macroporeux a phase active comalaxee, son procede de preparation et son utilisation en hydrotraitement de residus
RU2616601C1 (ru) * 2016-03-10 2017-04-18 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор гидрооблагораживания вакуумного газойля и способы его приготовления (варианты)
RU2620267C1 (ru) * 2016-03-17 2017-05-24 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор гидрооблагораживания вакуумного газойля и способ его приготовления
US20180230389A1 (en) 2017-02-12 2018-08-16 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
RU2712446C1 (ru) * 2019-07-30 2020-01-29 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Способ приготовления носителя для катализаторов на основе оксида алюминия

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338788A1 (en) * 1988-04-21 1989-10-25 Sumitomo Metal Mining Company Limited Catalyst for hydrotreating hydrocarbons
EP0469675A1 (en) * 1990-08-03 1992-02-05 Akzo Nobel N.V. Hydrodesulphurization process
EP0526988A2 (en) * 1991-07-10 1993-02-10 Texaco Development Corporation Hydrotreatment process employing a mono-modal catalyst with specified pore size distribution
US5498586A (en) * 1993-02-19 1996-03-12 Texaco Inc. Catalyst with specified pore size distribution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752376A (en) * 1985-09-25 1988-06-21 Intevep, S.A. Multiple stepped process for the demetallization and desulfuration of heavy oil feedstocks
US4941964A (en) * 1988-03-14 1990-07-17 Texaco Inc. Hydrotreatment process employing catalyst with specified pore size distribution
US4940530A (en) * 1989-02-21 1990-07-10 Amoco Corporation Two-stage hydrocarbon conversion process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338788A1 (en) * 1988-04-21 1989-10-25 Sumitomo Metal Mining Company Limited Catalyst for hydrotreating hydrocarbons
EP0469675A1 (en) * 1990-08-03 1992-02-05 Akzo Nobel N.V. Hydrodesulphurization process
EP0526988A2 (en) * 1991-07-10 1993-02-10 Texaco Development Corporation Hydrotreatment process employing a mono-modal catalyst with specified pore size distribution
US5498586A (en) * 1993-02-19 1996-03-12 Texaco Inc. Catalyst with specified pore size distribution

Also Published As

Publication number Publication date
DE69724820T2 (de) 2004-04-08
CA2270590A1 (fr) 1998-05-22
KR20000053177A (ko) 2000-08-25
BR9713345A (pt) 2000-05-09
JP2001503328A (ja) 2001-03-13
FR2755625B1 (fr) 1998-12-11
NZ335179A (en) 2000-12-22
DK0952888T3 (da) 2004-01-05
FR2755625A1 (fr) 1998-05-15
RU2192923C2 (ru) 2002-11-20
WO1998020969A1 (fr) 1998-05-22
EP0952888B1 (fr) 2003-09-10
AU5058598A (en) 1998-06-03
ATE249276T1 (de) 2003-09-15
KR100473668B1 (ko) 2005-03-07
EP0952888A1 (fr) 1999-11-03
DE69724820D1 (de) 2003-10-16
AU731209B2 (en) 2001-03-29
CN1237919A (zh) 1999-12-08

Similar Documents

Publication Publication Date Title
US5215955A (en) Resid catalyst with high metals capacity
EP0469675B1 (en) Hydrodesulphurization process
CN1102862C (zh) 含镍加氢催化剂
JP6092234B2 (ja) 低コストで高活性の水素化処理触媒
CN101822994A (zh) 加氢脱金属和加氢脱硫催化剂,以及在级联过程中的单个配制剂中的使用
CN104673373B (zh) 采用催化剂串联的减压馏分油加氢处理法
US9908107B2 (en) Hydrogenation treatment catalyst for heavy hydrocarbon oil, and method for hydrogenation treatment of heavy hydrocarbon oil
TWI551347B (zh) Hydrogenation catalyst and its manufacturing method
CN1108190C (zh) 含磷催化剂及使用该催化剂进行石油加氢处理的方法
CN1110304A (zh) 一种重油加氢处理催化剂
CN1735678A (zh) 使用催化剂混合物的烃的加氢处理方法
WO2015053087A1 (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
CN101085933B (zh) 一种煤液化油沸腾床加氢工艺
CN1045462C (zh) 一种重质馏份油中压加氢裂化方法
JP6084798B2 (ja) 潤滑油用基油の製造方法
CN1015638B (zh) 一种石油馏份油的低压加氢脱氮催化剂
CN101085934B (zh) 一种煤液化油沸腾床加氢处理催化剂及其制备方法
CN1508224A (zh) 一种加氢裂化后处理催化剂及其制备方法
CN109833891B (zh) 一种重质馏分油加氢处理催化剂及其应用
CN1060097C (zh) 一种馏分油加氢处理催化剂及其制备方法
CN100580058C (zh) 一种煤液化油沸腾床加氢催化剂载体及其制备方法
CN1261541C (zh) 一种重质馏分油加氢裂化催化剂
JP4519379B2 (ja) 重質炭化水素油の水素化処理触媒
JPH0254396B2 (zh)
WO2023033172A1 (ja) 重質炭化水素油の水素化処理用触媒およびその製造方法、ならびに重質炭化水素油の水素化処理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20030514