CN110800376B - 等离子体处理装置 - Google Patents

等离子体处理装置 Download PDF

Info

Publication number
CN110800376B
CN110800376B CN201780092519.9A CN201780092519A CN110800376B CN 110800376 B CN110800376 B CN 110800376B CN 201780092519 A CN201780092519 A CN 201780092519A CN 110800376 B CN110800376 B CN 110800376B
Authority
CN
China
Prior art keywords
electrode
terminal
balanced terminal
balun
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780092519.9A
Other languages
English (en)
Other versions
CN110800376A (zh
Inventor
井上忠
田名部正治
关谷一成
笹本浩
佐藤辰宪
土屋信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to CN202210269625.2A priority Critical patent/CN114666965A/zh
Publication of CN110800376A publication Critical patent/CN110800376A/zh
Application granted granted Critical
Publication of CN110800376B publication Critical patent/CN110800376B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/36Circuit arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • H01J37/32706Polarising the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/425Balance-balance networks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation
    • H01J2237/20235Z movement or adjustment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

等离子体处理装置包括:巴伦,具有第一不平衡端子、第二不平衡端子、第一平衡端子和第二平衡端子;被接地的真空容器;被电连接至第一平衡端子的第一电极;被电连接至第二平衡端子的第二电极;阻抗匹配电路;第一电源,经由阻抗匹配电路连接至巴伦,并被配置为经由阻抗匹配电路和巴伦向第一电极供给高频;低通滤波器;以及第二电源,被配置为经由低通滤波器向第一电极供给电压。

Description

等离子体处理装置
技术领域
本发明涉及等离子体处理装置。
背景技术
提供有通过在两个电极之间施加高频来产生等离子体并通过等离子体来处理基板的等离子体处理装置。如此的等离子体处理装置可以通过两个电极的面积比和/或偏压来作为蚀刻装置或溅射装置操作。被配置作为溅射装置的等离子体处理装置包括保持标靶的第一电极以及保持基板的第二电极。在第一电极与第二电极之间(在标靶与基板之间)施加高频,并且在标靶与阳极之间产生等离子体。当等离子体被产生时,在标靶的表面产生自偏置电压。这导致离子与标靶碰撞,并且构成标靶的材料的粒子会从标靶放出。
专利文献1描述了等离子体处理装置,其包括被接地的腔室、经由阻抗匹配电路系统连接至RF源的标靶电极以及经由基板电极调谐电路接地的基板保持电极。
在专利文献1中描述的溅射装置中,除了基板保持电极以外,腔室还可用作阳极。自偏置电压可以取决于可用作阴极的部分的状态及可用作阳极的部分的状态。因此,如果除了基板保持部电极以外,腔室还用作阳极,那么自偏置电压可以取决于腔室的用作阳极的部分的状态而变化。自偏置电压的变化改变等离子体电位,并且等离子体电位的变化可以影响要被形成的膜的特性。
若使用溅射装置在基板上形成膜,则在腔室的内表面上也会形成膜。这可以改变腔室的可用作阳极的部分的状态。因此,若继续使用溅射装置,则自偏置电压取决于被形成在腔室的内表面上的膜而变化,并且等离子体电位也会变化。因此,如果长期使用溅射装置,那么以往难以将被形成在基板上的膜的特性维持于一定。
类似地,如果长期使用蚀刻装置,那么自偏置电压取决于被形成在腔室的内表面上的膜而变化,并且这会改变等离子体电位。因此,难以将基板的蚀刻特性维持于一定。
专利文献1中描述的溅射装置须调整高频功率来控制自偏置电压。但,若使高频功率变化来调整自偏置电压,则等离子体密度也变化。因此,以往是无法单独调整自偏置电压及等离子体密度。类似地,蚀刻装置以往无法单独调整自偏置电压及等离子体密度。
先前技术文献
专利文献
专利文献1:日本专利公开No.55-35465
发明内容
发明所欲解决的问题
本发明是基于上述问题的认识而做出的,并且以提供一种有利于使等离子体电位稳定和有利于单独调整施加于电极的电压及等离子体密度的技术为目的。
根据本发明的一个方面,提供了一种等离子体处理装置,包括:巴伦(balun),包括第一不平衡端子、第二不平衡端子、第一平衡端子和第二平衡端子;被接地的真空容器;被电连接至第一平衡端子的第一电极;被电连接至第二平衡端子的第二电极;阻抗匹配电路;第一电源,经由阻抗匹配电路连接至巴伦,并被配置为经由阻抗匹配电路和巴伦向第一电极供给高频;低通滤波器;以及经由低通滤波器向第一电极供给电压的第二电源。
根据本发明,提供了一种有利于使等离子体电位稳定和有利于单独调整施加于电极的电压及等离子体密度的技术。
附图说明
图1是示意性地示出根据本发明的第一实施例的等离子体处理装置的布置的电路图。
图2A是示出巴伦的布置的示例的电路图。
图2B是示出巴伦的布置的另一示例的电路图。
图3是说明巴伦103的功能的电路图。
图4是例示电流I1(=I2)、I2’和I3、ISO以及α(=X/Rp)之间的关系的表。
图5A是示出模拟满足1.5≤X/Rp≤5000时的等离子体电位及阴极电位的结果的时间图。
图5B是示出模拟满足1.5≤X/Rp≤5000时的等离子体电位及阴极电位的结果的时间图。
图5C是示出模拟满足1.5≤X/Rp≤5000时的等离子体电位及阴极电位的结果的时间图。
图5D是示出模拟满足1.5≤X/Rp≤5000时的等离子体电位及阴极电位的结果的时间图。
图6A是示出模拟不满足1.5≤X/Rp≤5000时的等离子体电位及阴极电位的结果的时间图。
图6B是示出模拟不满足1.5≤X/Rp≤5000时的等离子体电位及阴极电位的结果的时间图。
图6C是示出模拟不满足1.5≤X/Rp≤5000时的等离子体电位及阴极电位的结果的时间图。
图6D是示出模拟不满足1.5≤X/Rp≤5000时的等离子体电位及阴极电位的结果的时间图。
图7是例示确认Rp-jXp的方法的电路图。
图8是示意性地示出根据本发明的第二实施例的等离子体处理装置的布置的电路图。
图9是示意性地示出根据本发明的第三实施例的等离子体处理装置的布置的电路图。
图10是示意性地示出根据本发明的第四实施例的等离子体处理装置的布置的电路图。
图11是示意性地示出根据本发明的第五实施例的等离子体处理装置的布置的电路图。
图12是示意性地示出根据本发明的第六实施例的等离子体处理装置的布置的电路图。
具体实施方式
以下参照附图借助示例性实施例来描述本发明。
图1示意性地示出根据本发明的第一实施例的等离子体处理装置1的布置。等离子体处理装置1包括:巴伦(平衡/不平衡转换电路)103、真空容器110、第一电极106、第二电极111、低通滤波器115和电源116(第二电源)。可替代地,可理解的是,等离子体处理装置1包括巴伦103和主体10,并且主体10包括真空容器110、第一电极106、第二电极111、低通滤波器115和电源116(第二电源)。主体10包括第一端子251和第二端子252。电源116可以是例如直流电源或交流电源。该直流电源可产生含交流成分的直流电压。主体10可以包括被连接至真空容器110的第三端子253。等离子体处理装置1还可以包括阻抗匹配电路102和高频电源101(第一电源)。
巴伦103包括第一不平衡端子201、第二不平衡端子202、第一平衡端子211和第二平衡端子212。不平衡电路连接到巴伦103的第一不平衡端子201和第二不平衡端子202,并且平衡电路连接到巴伦103的第一平衡端子211和第二平衡端子212。真空容器110由导体形成并且被接地。巴伦103还可以包括中点端子213。巴伦103可以被配置为使得中点端子213的电压被设置为第一平衡端子211的电压与第二平衡端子212的电压之间的中点。中点端子213可以被电连接至主体10的第三端子253。
在第一实施例中,第一电极106用作阴极,并且保持标靶109。标靶109可以是例如绝缘体材料或导体材料。此外,在第一实施例中,第二电极111用作阳极,并且保持基板112。根据第一实施例的等离子体处理装置1可以作为通过溅射标靶109在基板112上形成膜的溅射装置操作。第一电极106被电连接至第一平衡端子211,并且第二电极111被电连接至第二平衡端子212。当第一电极106与第一平衡端子211彼此电连接时,这指示在第一电极106与第一平衡端子211之间形成电流路径,使得电流在第一电极106与第一平衡端子211之间流动。类似地,在本说明书中,当a与b电连接时,这指示在a与b之间形成电流路径,使得电流在a与b之间流动。
上述布置亦可理解为第一电极106被电连接至第一端子251、第二电极111被电连接至第二端子252、第一端子251被电连接至第一平衡端子211并且第二端子252被电连接至第二平衡端子212的布置。
在第一实施例中,第一电极106与第一平衡端子211(第一端子251)经由阻塞电容器104电连接。阻塞电容器104在第一平衡端子211与第一电极106之间(或在第一平衡端子211与第二平衡端子212之间)阻塞直流电流。替代提供阻塞电容器104的是,(后面要描述的)阻抗匹配电路102可以被配置为阻塞在第一不平衡端子201与第二不平衡端子202之间流动的直流电流。第一电极106可以经由绝缘体107通过真空容器110来支撑。第二电极111可以经由绝缘体108通过真空容器110来支撑。可替代地,可以在第二电极111与真空容器110之间布置绝缘体108。
高频电源101(第一电源)经由阻抗匹配电路102在巴伦103的第一不平衡端子201与第二不平衡端子202之间供给高频(高频电流、高频电压和高频功率)。换言之,高频电源101经由阻抗匹配电路102、巴伦103和阻塞电容器104在第一电极106与第二电极111之间供给高频(高频电流、高频电压和高频功率)。可替代地,亦可理解为高频电源101经由阻抗匹配电路102和巴伦103在主体10的第一端子251与第二端子252之间供给高频。
电源116(第二电源)可以被配置为经由低通滤波器115向第一电极106供给负的直流电压(偏置电压)或交流电压。低通滤波器115阻塞从巴伦103供给的高频,以使得其不被传输至电源116。通过从电源116向第一电极106供给负的直流电压或交流电压,可控制(决定)标靶109的表面的电压或与标靶109的表面碰撞的离子能量。当标靶109为以导电材料所构成时,可通过从电源116向第一电极106供给负的直流电压来控制标靶109的表面的电压。当标靶109为以绝缘材料所构成时,可通过从电源116向第一电极106供给交流电压来控制与标靶109的表面碰撞的离子能量。
如果标靶109为以绝缘材料所构成,并且电源116(第二电源)向第一电极106供给交流电压,那么从电源116供给至第一电极106的电压的频率可以被设置为比高频电源101(第一电源)所产生的高频的频率低。在此情况下,从电源116供给至第一电极106的电压的频率被优选地设置在数百KHz至数MHz的范围内。
气体(例如,Ar、Kr或Xe气体)通过设置在真空容器110中的气体供给部(未示出)被供给到真空容器110的内部空间。另外,高频电源101(第一电源)经由阻抗匹配电路102、巴伦103和阻塞电容器104在第一电极106与第二电极111之间供给高频。另外,直流电源116经由低通滤波器115向第一电极106供给负的直流电压或交流电压。这在第一电极106与第二电极111之间产生等离子体,并且标靶109的表面被控制成负电压,或者与标靶109的表面碰撞的离子能量被控制。然后,等离子体中的离子与标靶109的表面碰撞,并且构成标靶109的材料的粒子从标靶109放出。粒子在基板112上形成膜。
图2A示出巴伦103的布置的示例。图2A所示的巴伦103包括连接第一不平衡端子201与第一平衡端子211的第一线圈221以及连接第二不平衡端子202与第二平衡端子212的第二线圈222。第一线圈221和第二线圈222是具有相同匝数的线圈,并共享铁芯。
图2B示出巴伦103的布置的另一示例。图2B所示的巴伦103包括连接第一不平衡端子201与第一平衡端子211的第一线圈221以及连接第二不平衡端子202与第二平衡端子212的第二线圈222。第一线圈221和第二线圈222是具有相同匝数的线圈,并共享铁芯。图2B所示的巴伦103还包括都被连接在第一平衡端子211与第二平衡端子212之间的第三线圈223和第四线圈224,第三线圈223和第四线圈224被配置为使得第三线圈223与第四线圈224的连接节点被设置为第一平衡端子211的电压与第二平衡端子212的电压之间的中点。该连接节点被连接至中点端子213。第三线圈223和第四线圈224是具有相同匝数的线圈,并共享铁芯。中点端子213可以被接地,可以被连接至真空容器110,或者可以被浮置。
参照图3描述巴伦103的功能。将流动通过第一不平衡端子201的电流设为I1,将流动通过第一平衡端子211的电流设为I2,将流动通过第二不平衡端子202的电流设为I2’,将电流I2中的流至地的电流设为I3。当I3=0时,亦即,当在平衡电路侧没有电流流至地时,平衡电路相对于地的隔离性能最高。当I3=I2时,亦即,当流动通过第一平衡端子211的全部电流I2流至地时,平衡电路相对于地的隔离性能最低。表示隔离性能的程度的指标ISO由以下给出:
ISO[dB]=20log(I3/I2’)
在此定义之下,在指标ISO的绝对值越大时,隔离性能越高。
在图3中,Rp-jXp表示在真空容器110的内部空间中产生等离子体的状态下,从第一平衡端子211和第二平衡端子212的侧来看第一电极106和第二电极111的侧(主体10的侧)时的阻抗(包含阻塞电容器104的电抗)。注意,此阻抗是高频电源101所产生的高频的频率处的阻抗,并且低通滤波器115和直流电源116的阻抗是可忽略的。Rp表示电阻成分,并且-Xp表示电抗成分。此外,在图3中,X表示巴伦103的第一线圈221的阻抗的电抗成分(电感成分)。ISO与X/Rp具有相关性。
为了阐明高频电源101经由巴伦103在第一电极106与第二电极111之间供给高频的布置的优点,将描述在电源116(和低通滤波器115)从等离子体处理装置1(主体10)卸下的状态下等离子体处理装置1的操作。图4例示了在电源116(和低通滤波器115)从等离子体处理装置1(主体10)卸下的状态下电流I1(=I2)、I2’和I3、ISO以及α(=X/Rp)之间的关系。
本发明人发现,在满足1.5≤X/Rp≤5000时,被形成在真空容器110的内部空间(第一电极106与第二电极111之间的空间)中的等离子体的电位(等离子体电位)对于真空容器110的内表面的状态是不敏感的。当等离子体电位对于真空容器110的内表面的状态不敏感时,这指示即使长期使用等离子体处理装置1也可使等离子体电位稳定。1.5≤X/Rp≤5000对应于-10.0dB≥ISO≥-80dB。
图5A至图5D各自示出了模拟满足1.5≤X/Rp≤5000时的等离子体电位和第一电极106的电位(阴极电位)的结果。图5A示出在真空容器110的内表面上没有形成膜的状态下的等离子体电位和阴极电位。图5B示出在真空容器110的内表面上形成电阻性的膜(1000Ω)的状态下的等离子体电位和阴极电位。图5C示出在真空容器110的内表面上形成电感性的膜(0.6μH)的状态下的等离子体电位和阴极电位。图5D示出在真空容器110的内表面上形成电容性的膜(0.1nF)的状态下的等离子体电位和阴极电位。参考图5A至图5D可理解,当满足1.5≤X/Rp≤5000时,在真空容器110的内表面的各种状态下等离子体电位都是稳定的。
图6A至图6D各自示出了模拟不满足1.5≤X/Rp≤5000时的等离子体电位和第一电极116的电位(阴极电位)的结果。图6A示出在真空容器110的内表面上没有形成膜的状态下的等离子体电位和阴极电位。图6B示出在真空容器110的内表面上形成电阻性的膜(1000Ω)的状态下的等离子体电位和阴极电位。图6C示出在真空容器110的内表面上形成电感性的膜(0.6μH)的状态下的等离子体电位和阴极电位。图6D示出在真空容器110的内表面上形成电容性的膜(0.1nF)的状态下的等离子体电位和阴极电位。参考图6A至图6D可理解,当不满足1.5≤X/Rp≤5000时,等离子体电位取决于真空容器110的内表面的状态而变化。
在满足X/Rp>5000(例如,X/Rp=∞)的情况与满足X/Rp<1.5(例如X/Rp=1.0或X/Rp=0.5)的情况下,等离子体电位都容易取决于真空容器110的内表面的状态而变化。如果满足X/Rp>5000,那么在真空容器110的内表面上没有形成膜的状态下,只在第一电极106与第二电极111之间发生放电。但是,如果满足X/Rp>5000,那么当膜开始形成在真空容器110的内表面上时,等离子体电位对此会敏感地作出反应,并且获得如图6A至图6D所例示的结果。另一方面,当满足X/Rp<1.5时,经由真空容器110流至地的电流大。因此,真空容器110的内表面的状态(形成在内表面上的膜的电学特性)的影响是显著的,并且等离子体电位取决于膜的形成而变化。因此,如前述般,等离子体处理装置1应被配置为满足1.5≤X/Rp≤5000。
参照图7将例示决定Rp-jXp(实际所欲得知的是仅Rp)的方法。从等离子体处理装置1卸下巴伦103,并且将阻抗匹配电路102的输出端子230连接至主体10的第一端子251(阻塞电容器104)。此外,将主体10的第二端子252(第二电极111)接地。在此状态下,高频电源101经由阻抗匹配电路102向主体10的第一端子251供给高频。在图7所示的示例中,阻抗匹配电路102等效地由线圈L1和L2以及可变电容器VC1和VC2形成。可通过调整可变电容器VC1和VC2的电容值来使等离子体产生。在等离子体稳定的状态下,阻抗匹配电路102的阻抗与等离子体产生时主体10的侧(第一电极106和第二电极111的侧)上的阻抗Rp-jXp匹配。此时的阻抗匹配电路102的阻抗由Rp+jXp给出。因此,可以基于阻抗匹配时的阻抗匹配电路102的阻抗Rp+jXp来获得Rp-jXp(实际所欲得知的是仅Rp)。可替代地,例如,Rp-jXp可以通过基于设计数据的模拟来获得。
基于以这种方式获得的Rp,决定巴伦103的第一线圈221的阻抗的电抗成分(电感成分)X,以便满足1.5≤X/Rp≤5000。通过如以上般决定巴伦103的电抗成分,即使不提供电源116也可使等离子体电位(和自偏置电压(标靶109的表面电压))稳定。
此外,在电源116经由低通滤波器115向第一电极106供给负的直流电压的布置中,可通过此直流电压来控制标靶109的表面电压。另一方面,在电源116经由低通滤波器115向第一电极106供给交流电压的布置中,可通过此交流电压来控制与标靶109的表面碰撞的离子能量。因此,可与标靶109的表面电压独立地调整从高频电源101供给在第一电极106与第二电极111之间的高频的功率。此外,在电源116经由低通滤波器115向第一电极106供给负的直流电压或交流电压的布置中,可使等离子体电位对于真空容器110的内表面的状态不敏感。因此,不总是一定要满足1.5≤X/Rp≤5000。即使不满足1.5≤X/Rp≤5000,也可提供实用的性能。
第一电极106的尺寸与第二电极111的尺寸之间的关系不受限制。但是,第一电极106与第二电极111优选地具有类似的尺寸。在此情况下,可使得自偏置电压低,并且可通过电源116来自由控制标靶109的表面电压或与标靶109的表面碰撞的离子能量。
图8示意性地示出根据本发明的第二实施例的等离子体处理装置1的布置。根据第二实施例的等离子体处理装置1可以作为蚀刻基板112的蚀刻装置操作。在第二实施例中,第一电极106用作阴极,并且保持基板112。在第二实施例中,第二电极111用作阳极。在根据第二实施例的等离子体处理装置1中,第一电极106与第一平衡端子211经由阻塞电容器104电连接。换言之,在根据第二实施例的等离子体处理装置1中,阻塞电容器104被布置在第一电极106与第一平衡端子211之间的电气连接路径中。
图9示意性地示出根据本发明的第三实施例的等离子体处理装置1的布置。根据第三实施例的等离子体处理装置1是根据第一实施例的等离子体处理装置1的修改,并且还包括用于垂直移动第二电极111的机构和用于使第二电极111旋转的机构中的至少一个。在图9所示的示例中,等离子体处理装置1包括驱动机构114,驱动机构114具备用于垂直移动第二电极111的机构和用于使第二电极111旋转的机构两者。在真空容器110与驱动机构114之间可以提供形成真空隔壁(vacuum partition)的波纹管113。类似地,根据第二实施例的等离子体处理装置1还可包括用于垂直移动第二电极111的机构和用于使第二电极111旋转的机构中的至少一个。
在第三实施例中,第一电极106的尺寸与第二电极111的尺寸之间的关系也不受限制。但是,第一电极106与第二电极111优选地具有类似的尺寸。
图10示意性地示出根据本发明的第四实施例的等离子体处理装置1的布置。关于根据第四实施例的等离子体处理装置1未言及的事项可以按照第一至第三实施例。等离子体处理装置1包括巴伦103、真空容器110、第一电极106、第二电极135、第三电极151、低通滤波器115和303、电源116以及直流电源304。可替代地,可理解的是等离子体处理装置1包括巴伦103和主体10,并且主体10包括真空容器110、第一电极106、第二电极135、第三电极151、低通滤波器115和303、电源116以及直流电源304。主体10包括第一端子251和第二端子252。等离子体处理装置1还可以包括阻抗匹配电路102和302,以及高频电源101和301。电源116可以例如是直流电源或交流电源。直流电源可以产生含交流成分的直流电压。
巴伦103包括第一不平衡端子201、第二不平衡端子202、第一平衡端子211和第二平衡端子212。不平衡电路连接到巴伦103的第一不平衡端子201和第二不平衡端子202,并且平衡电路连接到巴伦103的第一平衡端子211和第二平衡端子212。巴伦103还可以包括如前述般的中点端子。该中点端子可以被电连接至真空容器110。
第一电极106保持标靶109。标靶109例如可以是绝缘体材料或导体材料。第二电极135被布置在第一电极106的周围。第一电极106被电连接至巴伦103的第一平衡端子211,并且第二电极135被电连接至巴伦103的第二平衡端子212。第三电极151保持基板112。可以经由阻抗匹配电路302从高频电源301为第三电极151供给高频。
上述布置可理解为第一电极106被电连接至第一端子251、第二电极135被电连接至第二端子252、第一端子251被电连接至巴伦103的第一平衡端子211并且第二端子252被电连接至巴伦103的第二平衡端子212的布置。
第一电极106与第一平衡端子211(第一端子251)可以经由阻塞电容器104电连接。阻塞电容器104在巴伦103的第一平衡端子211与第一电极106之间(或在巴伦103的第一平衡端子211与第二平衡端子212之间)阻塞来自电源116的直流电流或交流电流。替代提供阻塞电容器104的是,阻抗匹配电路102可以被配置为阻塞在第一不平衡端子201与第二不平衡端子202之间流动的来自电源116的直流电流或交流电流。可替代地,阻塞电容器104可以被布置在第二电极135与第二平衡端子212(第二端子252)之间。第一电极106和第二电极135经由绝缘体132通过真空容器110来支撑。
高频电源101经由阻抗匹配电路102在巴伦103的第一不平衡端子201与第二不平衡端子202之间供给高频。换言之,高频电源101经由第一阻抗匹配电路102、巴伦103和阻塞电容器104在第一电极106与第二电极135之间供给高频。可替代地,高频电源101经由阻抗匹配电路102和巴伦103在主体10的第一端子251与第二端子252之间供给高频。高频电源301经由阻抗匹配电路302向第三电极151供给高频。
电源116经由低通滤波器115向第一电极106供给负的直流电压(偏置电压)或交流电压。低通滤波器115阻塞从巴伦103供给的高频,以使得其不被传输至电源116。通过从电源116向第一电极106供给负的直流电压,可控制标靶109的表面的电压。通过从电源116向第一电极106供给交流电压,可控制与标靶109的表面碰撞的离子能量。直流电源304经由低通滤波器303向第三电极151供给直流电压(偏置电压)。低通滤波器303阻塞从高频电源301供给的高频,以使得其不被传输至直流电源304。当直流电源304向第三电极151供给直流电压时,可控制基板112的表面电位。
在第四实施例中,也通过从电源116向第一电极106供给负的直流电压或交流电压,可控制标靶109的表面的电压或与标靶109碰撞的离子能量,从而通过高频电源101和高频电源301来控制等离子体密度。另外,在第四实施例中,也是满足1.5≤X/Rp≤5000有利于使等离子体电位更稳定。
在第四实施例中,第一电极106的尺寸与第二电极135的尺寸之间的关系也不受限制。但是,第一电极106与第二电极135优选地具有类似的尺寸。
图11示意性地示出了根据本发明的第五实施例的等离子体处理装置1的布置。根据第五实施例的等离子体处理装置1具有通过向根据第四实施例的等离子体处理装置1添加驱动机构114而获得的布置。驱动机构114可以包括用于垂直移动第三电极151的机构和用于使第三电极151旋转的机构中的至少一个。
在第五实施例中,第一电极106的尺寸与第二电极135的尺寸之间的关系也不受限制。但是,第一电极106与第二电极135优选地具有类似的尺寸。
图12示意性地示出了根据本发明的第六实施例的等离子体处理装置1的布置。关于第六实施例未言及的事项可以按照第一至第五实施例。根据第六实施例的等离子体处理装置1包括多个第一高频供给部以及至少一个第二高频供给部。将描述多个第一高频供给部由两个高频供给部形成的示例。另外,使用下标a和b来互相区别两个高频供给部及其相关联的构成元件。类似地,使用下标a和b来互相区别两个标靶。
多个第一高频供给部中的一个可以包括第一电极106a、第二电极135a、巴伦103a、电源116a、低通滤波器115a、高频电源101a、阻抗匹配电路102a和阻塞电容器104a。多个第一高频供给部中的另一个可以包括第一电极106b、第二电极135b、巴伦103b、电源116b、低通滤波器115b、高频电源101b、阻抗匹配电路102b和阻塞电容器104b。第二高频供给部可以包括高频电源301、阻抗匹配电路302、直流电源304和低通滤波器303。电源116a、116b中的每一个例如可以是直流电源或交流电源。直流电源可以产生含交流成分的直流电压。
从另一角度看,等离子体处理装置1可以包括:巴伦103a、103b,真空容器110,第一电极106a、106b,第二电极135a、135b,第三电极151,低通滤波器115a、115b、303,电源116a、116b,直流电源304,以及高频电源101a、101b、301。
巴伦103a包括第一不平衡端子201a、第二不平衡端子202a、第一平衡端子211a和第二平衡端子212a。不平衡电路连接到巴伦103a的第一不平衡端子201a和第二不平衡端子202a,并且平衡电路连接到巴伦103a的第一平衡端子211a和第二平衡端子212a。巴伦103b包括第一不平衡端子201b、第二不平衡端子202b、第一平衡端子211b和第二平衡端子212b。不平衡电路连接到巴伦103b的第一不平衡端子201b和第二不平衡端子202b,并且平衡电路连接到第一巴伦103b的第一平衡端子211b和第二平衡端子212b。
第一电极106a、106b分别保持标靶109a、109b。标靶109a、109b中的每一个例如可以是绝缘体材料或导体材料。第二电极135a、135b分别被布置在第一电极106a、106b的周围。第一电极106a、106b分别被电连接至巴伦103a、103b的第一平衡端子211a、211b,并且第二电极135a、135b分别被电连接至巴伦103a、103b的第二平衡端子212a、212b。高频电源101a经由阻抗匹配电路102a在巴伦103a的第一不平衡端子201a与第二不平衡端子202a之间供给高频(高频电流、高频电压和高频功率)。高频电源101b经由阻抗匹配电路102b在巴伦103b的第一不平衡端子201b与第二不平衡端子202b之间供给高频(高频电流、高频电压和高频功率)。第三电极151保持基板112。可以经由阻抗匹配电路302从高频电源301为第三电极151供给高频。
电源116a、116b分别经由低通滤波器115a、115b向第一电极106a、106b供给负的直流电压(偏置电压)或交流电压。低通滤波器115a、115b分别阻塞从巴伦103a、103b供给的高频,以使得其不被传输至电源116a、116b。分别通过从电源116a、116b向第一电极106a、106b供给负的直流电压,可控制标靶109a、109b的表面的电压。分别通过从电源116a、116b向第一电极106a、106b供给交流电压,可控制与标靶109a、109b的表面碰撞的离子能量。直流电源304经由低通滤波器303向第三电极151供给直流电压(偏置电压)。低通滤波器303阻塞从高频电源301供给的高频,以使得其不被传输至直流电源304。当直流电源304向第三电极151供给直流电压时,可控制基板112的表面电位。
第一高频供给部和第二高频供给部中的每一个可以分别由与图3所示的等效电路类似的等效电路来表示。在第六实施例中,也是优选地满足1.5≤X/Rp≤5000。
在第六实施例中,第一电极106a的尺寸与第二电极135a的尺寸之间的关系也不受限制。但是,第一电极106a与第二电极135a优选地具有类似的尺寸。类似地,第一电极106b的尺寸与第二电极135b的尺寸之间的关系不受限制。但是,第一电极106b与第二电极135b优选地具有类似的尺寸。
本发明不限于上述实施例,并且在不脱离本发明的精神和范围的情况下可以进行各种变化和修改。因此,为了将本发明的范围公诸于世,附上以下权利要求。
符号说明
1:等离子体处理装置,10:主体,101:高频电源,102:阻抗匹配电路,103:巴伦,104:阻塞电容器,106:第一电极,107、108:绝缘体,109:标靶,110:真空容器,111:第二电极,112:基板,115:低通滤波器,116:电源,201:第一不平衡端子,202:第二不平衡端子,211:第一平衡端子,212:第二平衡端子,213:中点端子,251:第一端子,252:第二端子,253:第三端子,221:第一线圈,222:第二线圈,223:第三线圈,224:第四线圈。

Claims (24)

1.一种溅射装置,其特征在于,包括:
巴伦,包括第一不平衡端子、第二不平衡端子、未被接地的第一平衡端子、未被接地的第二平衡端子、连接所述第一不平衡端子与所述第一平衡端子的第一线圈以及连接所述第二不平衡端子与所述第二平衡端子的第二线圈;
被接地的真空容器;
第一电极,被电连接至所述第一平衡端子,保持标靶;
第二电极,被电连接至所述第二平衡端子,保持基板;
阻抗匹配电路;
第一电源,经由所述阻抗匹配电路连接至所述巴伦的所述第一不平衡端子,并被配置为经由所述阻抗匹配电路和所述巴伦向所述第一电极供给高频;
低通滤波器;以及
第二电源,被配置为经由所述低通滤波器向所述第一电极供给电压,
所述第一平衡端子与所述第一电极经由阻塞电容器电连接,
所述第二平衡端子与所述第二电极不经由阻塞电容器而电连接,所述第二电极未被接地。
2.如权利要求1所述的溅射装置,其特征在于,所述巴伦还包括被连接在所述第一平衡端子与所述第二平衡端子之间的第三线圈和第四线圈,并且所述第三线圈和所述第四线圈被配置为将所述第三线圈与所述第四线圈的连接节点的电压设置为所述第一平衡端子的电压与所述第二平衡端子的电压之间的中点。
3.如权利要求2所述的溅射装置,其特征在于,所述连接节点被连接至所述真空容器。
4.如权利要求1所述的溅射装置,其特征在于,
所述第二电源包括交流电源,以及
从所述交流电源供给至所述第一电极的电压的频率比所述第一电源所产生的高频的频率低。
5.如权利要求1所述的溅射装置,其特征在于,所述第一电极经由绝缘体通过所述真空容器来支撑。
6.如权利要求1所述的溅射装置,其特征在于,绝缘体被布置在所述第二电极与所述真空容器之间。
7.如权利要求1所述的溅射装置,其特征在于,还包括被配置为垂直移动所述第二电极的机构和被配置为使所述第二电极旋转的机构中的至少一个。
8.如权利要求1所述的溅射装置,其特征在于,所述第二电极被布置在所述第一电极的周围。
9.如权利要求1所述的溅射装置,其特征在于,
提供多个高频供给部,并且所述多个高频供给部中的每一个包括所述巴伦、所述第一电极和所述第二电极,以及
所述多个高频供给部中的每一个的所述第一电极保持标靶,并且在所述多个高频供给部中的每一个中,所述第二电极被布置在所述第一电极的周围。
10.如权利要求9所述的溅射装置,其特征在于,所述第一电极和所述第二电极经由绝缘体通过所述真空容器来支撑。
11.如权利要求9所述的溅射装置,其特征在于,还包括:
第三电极,被配置为保持基板;以及
第二高频电源,被配置为经由第二阻抗匹配电路向所述第三电极供给高频。
12.如权利要求11所述的溅射装置,其特征在于,还包括:
第二直流电源,被配置为经由第二低通滤波器向所述第三电极供给直流电压。
13.如权利要求11所述的溅射装置,其特征在于,绝缘体被布置在所述第三电极与所述真空容器之间。
14.如权利要求11所述的溅射装置,其特征在于,还包括被配置为垂直移动所述第三电极的机构和被配置为使所述第三电极旋转的机构中的至少一个。
15.如权利要求1至14中任一项所述的溅射装置,其特征在于,当Rp表示从所述第一平衡端子和所述第二平衡端子的侧来看所述第一电极和所述第二电极的侧时的所述第一平衡端子与所述第二平衡端子之间的电阻成分,并且X表示所述第一不平衡端子与所述第一平衡端子之间的电感时,满足1.5≤X/Rp≤5000。
16.一种蚀刻装置,其特征在于,包括:
巴伦,包括第一不平衡端子、第二不平衡端子、未被接地的第一平衡端子、未被接地的第二平衡端子、连接所述第一不平衡端子与所述第一平衡端子的第一线圈以及连接所述第二不平衡端子与所述第二平衡端子的第二线圈;
被接地的真空容器;
第一电极,被电连接至所述第一平衡端子,保持基板;
第二电极,被电连接至所述第二平衡端子;
阻抗匹配电路;
第一电源,经由所述阻抗匹配电路连接至所述巴伦的所述第一不平衡端子,并被配置为经由所述阻抗匹配电路和所述巴伦向所述第一电极供给高频;
低通滤波器;以及
第二电源,被配置为经由所述低通滤波器向所述第一电极供给电压,
所述第一平衡端子与所述第一电极经由阻塞电容器电连接,
所述第二平衡端子与所述第二电极不经由阻塞电容器而电连接,所述第二电极未被接地。
17.如权利要求16所述的蚀刻装置,其特征在于,所述巴伦还包括被连接在所述第一平衡端子与所述第二平衡端子之间的第三线圈和第四线圈,并且所述第三线圈和所述第四线圈被配置为将所述第三线圈与所述第四线圈的连接节点的电压设置为所述第一平衡端子的电压与所述第二平衡端子的电压之间的中点。
18.如权利要求17所述的蚀刻装置,其特征在于,所述连接节点被连接至所述真空容器。
19.如权利要求16所述的蚀刻装置,其特征在于,
所述第二电源包括交流电源,以及
从所述交流电源供给至所述第一电极的电压的频率比所述第一电源所产生的高频的频率低。
20.如权利要求16所述的蚀刻装置,其特征在于,所述第一电极经由绝缘体通过所述真空容器来支撑。
21.如权利要求16所述的蚀刻装置,其特征在于,绝缘体被布置在所述第二电极与所述真空容器之间。
22.如权利要求16所述的蚀刻装置,其特征在于,还包括被配置为垂直移动所述第二电极的机构和被配置为使所述第二电极旋转的机构中的至少一个。
23.如权利要求16所述的蚀刻装置,其特征在于,
提供多个高频供给部,并且所述多个高频供给部中的每一个包括所述巴伦、所述第一电极和所述第二电极,以及
所述多个高频供给部中的每一个的所述第一电极保持基板,并且在所述多个高频供给部中的每一个中,所述第二电极被布置在所述第一电极的周围。
24.如权利要求16至23中任一项所述的蚀刻装置,其特征在于,当Rp表示从所述第一平衡端子和所述第二平衡端子的侧来看所述第一电极和所述第二电极的侧时的所述第一平衡端子与所述第二平衡端子之间的电阻成分,并且X表示所述第一不平衡端子与所述第一平衡端子之间的电感时,满足1.5≤X/Rp≤5000。
CN201780092519.9A 2017-06-27 2017-06-27 等离子体处理装置 Active CN110800376B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210269625.2A CN114666965A (zh) 2017-06-27 2017-06-27 等离子体处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023603 WO2019003309A1 (ja) 2017-06-27 2017-06-27 プラズマ処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210269625.2A Division CN114666965A (zh) 2017-06-27 2017-06-27 等离子体处理装置

Publications (2)

Publication Number Publication Date
CN110800376A CN110800376A (zh) 2020-02-14
CN110800376B true CN110800376B (zh) 2022-04-01

Family

ID=64742949

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780092519.9A Active CN110800376B (zh) 2017-06-27 2017-06-27 等离子体处理装置
CN202210269625.2A Pending CN114666965A (zh) 2017-06-27 2017-06-27 等离子体处理装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202210269625.2A Pending CN114666965A (zh) 2017-06-27 2017-06-27 等离子体处理装置

Country Status (9)

Country Link
US (1) US11961710B2 (zh)
EP (1) EP3648551B1 (zh)
JP (1) JP6595002B2 (zh)
KR (1) KR102280323B1 (zh)
CN (2) CN110800376B (zh)
PL (1) PL3648551T3 (zh)
SG (1) SG11201912564VA (zh)
TW (1) TWI699140B (zh)
WO (1) WO2019003309A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003309A1 (ja) 2017-06-27 2019-01-03 キヤノンアネルバ株式会社 プラズマ処理装置
JP6458206B1 (ja) * 2017-06-27 2019-01-23 キヤノンアネルバ株式会社 プラズマ処理装置
KR20220031132A (ko) * 2017-06-27 2022-03-11 캐논 아네르바 가부시키가이샤 플라스마 처리 장치
TWI693860B (zh) * 2017-06-27 2020-05-11 日商佳能安內華股份有限公司 電漿處理裝置
SG11202009122YA (en) * 2018-06-26 2020-10-29 Canon Anelva Corp Plasma processing apparatus, plasma processing method, program, and memory medium
KR20240052988A (ko) * 2021-09-08 2024-04-23 램 리써치 코포레이션 하이브리드 주파수 플라즈마 소스 (hybrid frequency plasma source)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871421A (en) * 1988-09-15 1989-10-03 Lam Research Corporation Split-phase driver for plasma etch system
US4887005A (en) * 1987-09-15 1989-12-12 Rough J Kirkwood H Multiple electrode plasma reactor power distribution system
JPH02156081A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JP2005026540A (ja) * 2003-07-04 2005-01-27 Masayoshi Murata プラズマ表面処理装置およびプラズマ表面処理方法
JP2008294465A (ja) * 2008-07-31 2008-12-04 Masayoshi Murata 電流導入端子と、該電流導入端子を備えたプラズマ表面処理装置及びプラズマ表面処理方法
JP2009021634A (ja) * 2008-10-10 2009-01-29 Masayoshi Murata 高周波プラズマcvd装置と高周波プラズマcvd法及び半導体薄膜製造法
JP2009302566A (ja) * 2009-09-16 2009-12-24 Masayoshi Murata トランス型平衡不平衡変換装置を備えたプラズマ表面処理装置
JP2010255061A (ja) * 2009-04-27 2010-11-11 Canon Anelva Corp スパッタリング装置及びスパッタリング処理方法
JP2012142332A (ja) * 2010-12-28 2012-07-26 Canon Anelva Corp 電子部品の製造方法
CN103094042A (zh) * 2011-10-31 2013-05-08 细美事有限公司 基板处理设备以及阻抗匹配方法
JP2013139642A (ja) * 2013-04-02 2013-07-18 Canon Anelva Corp スパッタ成膜応用のためのプラズマ処理装置
CN104024471A (zh) * 2011-12-27 2014-09-03 佳能安内华股份有限公司 溅射装置

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025339A (en) 1974-01-18 1977-05-24 Coulter Information Systems, Inc. Electrophotographic film, method of making the same and photoconductive coating used therewith
US4014779A (en) 1974-11-01 1977-03-29 Coulter Information Systems, Inc. Sputtering apparatus
JPS53141937U (zh) * 1977-04-15 1978-11-09
US4170475A (en) 1977-05-12 1979-10-09 Coulter Information Systems, Inc. High speed electrophotographic method
JPS53141937A (en) 1977-05-18 1978-12-11 Mitsubishi Electric Corp Liquid fuel burner
US4131533A (en) 1977-12-30 1978-12-26 International Business Machines Corporation RF sputtering apparatus having floating anode shield
JPS5535465A (en) 1978-09-05 1980-03-12 Hitachi Cable Method of coloring insulated wire
US4284490A (en) 1978-09-28 1981-08-18 Coulter Systems Corporation R.F. Sputtering apparatus including multi-network power supply
US4284489A (en) 1978-09-28 1981-08-18 Coulter Systems Corporation Power transfer network
US4584079A (en) 1983-10-11 1986-04-22 Honeywell Inc. Step shape tailoring by phase angle variation RF bias sputtering
JPH0639693B2 (ja) 1985-12-05 1994-05-25 日電アネルバ株式会社 誘電体バイアススパツタリング装置
US5121067A (en) 1987-10-06 1992-06-09 Board Of Regents Of Leland Stanford University Directional sampling bridge
US4802080A (en) 1988-03-18 1989-01-31 American Telephone And Telegraph Company, At&T Information Systems Power transfer circuit including a sympathetic resonator
US4956582A (en) 1988-04-19 1990-09-11 The Boeing Company Low temperature plasma generator with minimal RF emissions
JPH02156080A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH02156083A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH02156082A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JP3016821B2 (ja) * 1990-06-15 2000-03-06 東京エレクトロン株式会社 プラズマ処理方法
US5316645A (en) * 1990-08-07 1994-05-31 Canon Kabushiki Kaisha Plasma processing apparatus
DE4106770C2 (de) 1991-03-04 1996-10-17 Leybold Ag Verrichtung zum reaktiven Beschichten eines Substrats
US5330578A (en) * 1991-03-12 1994-07-19 Semiconductor Energy Laboratory Co., Ltd. Plasma treatment apparatus
JPH04317325A (ja) 1991-04-17 1992-11-09 Nec Corp 半導体装置の製造装置
US5415757A (en) * 1991-11-26 1995-05-16 Leybold Aktiengesellschaft Apparatus for coating a substrate with electrically nonconductive coatings
US5286297A (en) 1992-06-24 1994-02-15 Texas Instruments Incorporated Multi-electrode plasma processing apparatus
US5698082A (en) 1993-08-04 1997-12-16 Balzers Und Leybold Method and apparatus for coating substrates in a vacuum chamber, with a system for the detection and suppression of undesirable arcing
JP2642849B2 (ja) 1993-08-24 1997-08-20 株式会社フロンテック 薄膜の製造方法および製造装置
AU2003195A (en) 1994-06-21 1996-01-04 Boc Group, Inc., The Improved power distribution for multiple electrode plasma systems using quarter wavelength transmission lines
US5830331A (en) 1994-09-23 1998-11-03 Seagate Technology, Inc. Apparatus and method for sputtering carbon
DE19537212A1 (de) 1994-10-06 1996-04-11 Leybold Ag Vorrichtung zum Beschichten von Substraten im Vakuum
US5989999A (en) 1994-11-14 1999-11-23 Applied Materials, Inc. Construction of a tantalum nitride film on a semiconductor wafer
DE4441206C2 (de) 1994-11-19 1996-09-26 Leybold Ag Einrichtung für die Unterdrückung von Überschlägen in Kathoden-Zerstäubungseinrichtungen
DE69637696D1 (de) 1995-06-05 2008-11-13 Musashino Kikai Co Ltd Leistungsversorgung für multielektroden-entladung
DE19540543A1 (de) 1995-10-31 1997-05-07 Leybold Ag Vorrichtung zum Beschichten eines Substrats mit Hilfe des Chemical-Vapor-Deposition-Verfahrens
DE19540794A1 (de) 1995-11-02 1997-05-07 Leybold Ag Vorrichtung zum Beschichten eines Substrats von einem elektrisch leitfähigen Target
US5830272A (en) 1995-11-07 1998-11-03 Sputtered Films, Inc. System for and method of providing a controlled deposition on wafers
US6017221A (en) 1995-12-04 2000-01-25 Flamm; Daniel L. Process depending on plasma discharges sustained by inductive coupling
US6252354B1 (en) 1996-11-04 2001-06-26 Applied Materials, Inc. RF tuning method for an RF plasma reactor using frequency servoing and power, voltage, current or DI/DT control
DE19651811B4 (de) 1996-12-13 2006-08-31 Unaxis Deutschland Holding Gmbh Vorrichtung zum Belegen eines Substrats mit dünnen Schichten
KR100252210B1 (ko) 1996-12-24 2000-04-15 윤종용 반도체장치 제조용 건식식각장치
JP3598717B2 (ja) 1997-03-19 2004-12-08 株式会社日立製作所 プラズマ処理装置
DE19713637C2 (de) 1997-04-02 1999-02-18 Max Planck Gesellschaft Teilchenmanipulierung
GB9714142D0 (en) 1997-07-05 1997-09-10 Surface Tech Sys Ltd An arrangement for the feeding of RF power to one or more antennae
JP3356043B2 (ja) 1997-12-26 2002-12-09 三菱電機株式会社 レーザ加工装置用距離検出器
US6273022B1 (en) 1998-03-14 2001-08-14 Applied Materials, Inc. Distributed inductively-coupled plasma source
JP3148177B2 (ja) * 1998-04-27 2001-03-19 ニチメン電子工研株式会社 プラズマ処理装置
JP2000030896A (ja) 1998-07-10 2000-01-28 Anelva Corp プラズマ閉込め装置
US6046641A (en) 1998-07-22 2000-04-04 Eni Technologies, Inc. Parallel HV MOSFET high power stable amplifier
JP3166745B2 (ja) 1998-12-25 2001-05-14 日本電気株式会社 プラズマ処理装置ならびにプラズマ処理方法
US20020022836A1 (en) 1999-03-05 2002-02-21 Gyrus Medical Limited Electrosurgery system
JP2000294543A (ja) 1999-04-08 2000-10-20 Hitachi Ltd エッチング方法およびエッチング装置ならびに半導体装置の製造方法
WO2000068985A1 (fr) * 1999-05-06 2000-11-16 Tokyo Electron Limited Appareil de traitement au plasma
EP1235947A4 (en) 1999-10-15 2009-04-15 Advanced Energy Ind Inc METHOD AND DEVICE FOR POLARIZING SUBSTRATE IN MULTIPLE ELECTRODE SPUTTERING SYSTEMS
US6818103B1 (en) 1999-10-15 2004-11-16 Advanced Energy Industries, Inc. Method and apparatus for substrate biasing in multiple electrode sputtering systems
JP2001122690A (ja) * 1999-10-26 2001-05-08 Toyo Kohan Co Ltd マイクロ波プラズマcvd装置及びダイヤモンド薄膜を形成する方法
MXPA02004936A (es) 1999-11-16 2003-06-30 Centre D'innovation Sur Le Transport D'energie Du Quebec Metodo y aparato para facilitar el reencendido en un horno de arco.
JP4601104B2 (ja) 1999-12-20 2010-12-22 キヤノンアネルバ株式会社 プラズマ処理装置
KR100554426B1 (ko) 2000-05-12 2006-02-22 동경 엘렉트론 주식회사 플라즈마 처리시스템에서의 전극의 두께 조정방법
JP4656697B2 (ja) * 2000-06-16 2011-03-23 キヤノンアネルバ株式会社 高周波スパッタリング装置
US7294563B2 (en) 2000-08-10 2007-11-13 Applied Materials, Inc. Semiconductor on insulator vertical transistor fabrication and doping process
JP3911555B2 (ja) 2000-08-15 2007-05-09 独立行政法人産業技術総合研究所 シリコン系薄膜の製造法
JP3807598B2 (ja) 2001-07-23 2006-08-09 東京エレクトロン株式会社 エッチング方法
DE10154229B4 (de) 2001-11-07 2004-08-05 Applied Films Gmbh & Co. Kg Einrichtung für die Regelung einer Plasmaimpedanz
JP2003155556A (ja) 2001-11-16 2003-05-30 Canon Inc ウエッジ形状膜の製造法
AU2002354459A1 (en) * 2001-12-10 2003-07-09 Tokyo Electron Limited High-frequency power source and its control method, and plasma processor
US7298091B2 (en) 2002-02-01 2007-11-20 The Regents Of The University Of California Matching network for RF plasma source
US6703080B2 (en) 2002-05-20 2004-03-09 Eni Technology, Inc. Method and apparatus for VHF plasma processing with load mismatch reliability and stability
DE10326135B4 (de) 2002-06-12 2014-12-24 Ulvac, Inc. Entladungsplasma-Bearbeitungsanlage
US7445690B2 (en) 2002-10-07 2008-11-04 Tokyo Electron Limited Plasma processing apparatus
US7032536B2 (en) 2002-10-11 2006-04-25 Sharp Kabushiki Kaisha Thin film formation apparatus including engagement members for support during thermal expansion
US7309998B2 (en) 2002-12-02 2007-12-18 Burns Lawrence M Process monitor for monitoring an integrated circuit chip
DE10306347A1 (de) 2003-02-15 2004-08-26 Hüttinger Elektronik GmbH & Co. KG Leistungszufuhrregeleinheit
US6876205B2 (en) 2003-06-06 2005-04-05 Advanced Energy Industries, Inc. Stored energy arc detection and arc reduction circuit
US6972079B2 (en) 2003-06-25 2005-12-06 Advanced Energy Industries Inc. Dual magnetron sputtering apparatus utilizing control means for delivering balanced power
JP2005130376A (ja) 2003-10-27 2005-05-19 Sony Corp バラン
US7126346B2 (en) 2003-12-18 2006-10-24 Agilent Technologies, Inc. Method, apparatus, and article of manufacture for manufacturing high frequency balanced circuits
US7241361B2 (en) 2004-02-20 2007-07-10 Fei Company Magnetically enhanced, inductively coupled plasma source for a focused ion beam system
JP4658506B2 (ja) 2004-03-31 2011-03-23 浩史 滝川 パルスアークプラズマ生成用電源回路及びパルスアークプラズマ処理装置
US20050258148A1 (en) * 2004-05-18 2005-11-24 Nordson Corporation Plasma system with isolated radio-frequency powered electrodes
JP2005303257A (ja) 2004-10-01 2005-10-27 Masayoshi Murata 高周波プラズマ生成用平衡不平衡変換装置と、該平衡不平衡変換装置により構成されたプラズマ表面処理装置およびプラズマ表面処理方法
JP4909523B2 (ja) 2005-03-30 2012-04-04 株式会社ユーテック スパッタリング装置及びスパッタリング方法
EP1720195B1 (de) 2005-05-06 2012-12-12 HÜTTINGER Elektronik GmbH + Co. KG Arcunterdrückungsanordnung
JP2006336084A (ja) * 2005-06-03 2006-12-14 Canon Inc スパッタ成膜方法
CN2907173Y (zh) 2006-02-24 2007-05-30 苏州大学 大面积并联高密度感应耦合等离子体源
US7517437B2 (en) 2006-03-29 2009-04-14 Applied Materials, Inc. RF powered target for increasing deposition uniformity in sputtering systems
US8932430B2 (en) 2011-05-06 2015-01-13 Axcelis Technologies, Inc. RF coupled plasma abatement system comprising an integrated power oscillator
US10083817B1 (en) 2006-08-22 2018-09-25 Valery Godyak Linear remote plasma source
US8920600B2 (en) 2006-08-22 2014-12-30 Mattson Technology, Inc. Inductive plasma source with high coupling efficiency
JP4768699B2 (ja) 2006-11-30 2011-09-07 キヤノンアネルバ株式会社 電力導入装置及び成膜方法
US7777567B2 (en) 2007-01-25 2010-08-17 Mks Instruments, Inc. RF power amplifier stability network
JP5199595B2 (ja) * 2007-03-27 2013-05-15 東京エレクトロン株式会社 プラズマ処理装置及びそのクリーニング方法
US20170213734A9 (en) 2007-03-30 2017-07-27 Alexei Marakhtanov Multifrequency capacitively coupled plasma etch chamber
US8450635B2 (en) 2007-03-30 2013-05-28 Lam Research Corporation Method and apparatus for inducing DC voltage on wafer-facing electrode
JP2008300322A (ja) 2007-06-04 2008-12-11 Canon Anelva Corp プラズマ処理装置、プラズマ処理方法、整合器、及び整合器の動作方法
US20090075597A1 (en) 2007-09-18 2009-03-19 Ofir Degani Device, system, and method of low-noise amplifier
TWI440405B (zh) 2007-10-22 2014-06-01 New Power Plasma Co Ltd 電容式耦合電漿反應器
JP2009135448A (ja) 2007-11-01 2009-06-18 Semiconductor Energy Lab Co Ltd 半導体基板の作製方法及び半導体装置の作製方法
CN104174049B (zh) 2007-11-06 2017-03-01 克里奥医药有限公司 可调施放器组件以及等离子体灭菌设备
JP5371238B2 (ja) 2007-12-20 2013-12-18 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
CN101478857A (zh) 2008-01-04 2009-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体处理装置
JP5294669B2 (ja) 2008-03-25 2013-09-18 東京エレクトロン株式会社 プラズマ処理装置
JP2010045664A (ja) 2008-08-14 2010-02-25 Tokyo Electron Ltd マッチング装置、マッチング方法、プラズマ処理装置、及び記憶媒体
JP2008300873A (ja) 2008-08-26 2008-12-11 Masayoshi Murata プラズマ表面処理方法及びプラズマ表面処理装置
US8438990B2 (en) * 2008-09-30 2013-05-14 Applied Materials, Inc. Multi-electrode PECVD source
JP5305287B2 (ja) 2008-10-30 2013-10-02 芝浦メカトロニクス株式会社 半導体製造装置
CN102203317A (zh) 2008-11-12 2011-09-28 株式会社爱发科 电极电路、成膜装置、电极单元以及成膜方法
US8992723B2 (en) 2009-02-13 2015-03-31 Applied Material, Inc. RF bus and RF return bus for plasma chamber electrode
KR200476124Y1 (ko) 2009-09-29 2015-01-30 어플라이드 머티어리얼스, 인코포레이티드 Rf­전력공급 샤워헤드를 위한 편심 접지 복귀
US8755204B2 (en) 2009-10-21 2014-06-17 Lam Research Corporation RF isolation for power circuitry
US8501631B2 (en) 2009-11-19 2013-08-06 Lam Research Corporation Plasma processing system control based on RF voltage
EP2326151A1 (fr) 2009-11-24 2011-05-25 AGC Glass Europe Procédé et dispositif de polarisation d'une électrode DBD
JP2011144450A (ja) 2009-12-16 2011-07-28 Canon Anelva Corp スパッタリング装置及びスパッタリング方法
JP5606063B2 (ja) 2009-12-28 2014-10-15 東京エレクトロン株式会社 プラズマ処理装置
DE102010031568B4 (de) 2010-07-20 2014-12-11 TRUMPF Hüttinger GmbH + Co. KG Arclöschanordnung und Verfahren zum Löschen von Arcs
CN102479657A (zh) 2010-11-26 2012-05-30 沈阳拓荆科技有限公司 一种多段式匹配器
JP5642531B2 (ja) * 2010-12-22 2014-12-17 東京エレクトロン株式会社 基板処理装置及び基板処理方法
WO2012095961A1 (ja) 2011-01-12 2012-07-19 日新電機株式会社 プラズマ装置
KR101839776B1 (ko) 2011-02-18 2018-03-20 삼성디스플레이 주식회사 플라즈마 처리장치
US10553406B2 (en) 2011-03-30 2020-02-04 Jusung Engineering Co., Ltd. Plasma generating apparatus and substrate processing apparatus
US20130017315A1 (en) 2011-07-15 2013-01-17 Applied Materials, Inc. Methods and apparatus for controlling power distribution in substrate processing systems
CN103091042B (zh) 2011-11-07 2016-11-16 泰州市宏华冶金机械有限公司 重心测量装置及重心测量方法
US10325759B2 (en) 2012-02-22 2019-06-18 Lam Research Corporation Multiple control modes
US10157729B2 (en) 2012-02-22 2018-12-18 Lam Research Corporation Soft pulsing
US9197196B2 (en) 2012-02-22 2015-11-24 Lam Research Corporation State-based adjustment of power and frequency
US9171699B2 (en) 2012-02-22 2015-10-27 Lam Research Corporation Impedance-based adjustment of power and frequency
WO2013136656A1 (ja) 2012-03-15 2013-09-19 東京エレクトロン株式会社 成膜装置
DE102012103938A1 (de) 2012-05-04 2013-11-07 Reinhausen Plasma Gmbh Plasmamodul für eine Plasmaerzeugungsvorrichtung und Plasmaerzeugungsvorrichtung
US20130337657A1 (en) * 2012-06-19 2013-12-19 Plasmasi, Inc. Apparatus and method for forming thin protective and optical layers on substrates
CN104488065B (zh) 2012-07-24 2017-09-05 Ev 集团 E·索尔纳有限责任公司 永久结合晶圆的方法及装置
JP2014049541A (ja) * 2012-08-30 2014-03-17 Mitsubishi Heavy Ind Ltd 薄膜製造装置及びその電極電圧調整方法
JP2014049667A (ja) 2012-09-03 2014-03-17 Tokyo Electron Ltd プラズマ処理装置及びこれを備えた基板処理装置
US9620337B2 (en) 2013-01-31 2017-04-11 Lam Research Corporation Determining a malfunctioning device in a plasma system
US9779196B2 (en) 2013-01-31 2017-10-03 Lam Research Corporation Segmenting a model within a plasma system
KR102168064B1 (ko) 2013-02-20 2020-10-20 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 플라즈마 처리 방법
CN105190842B (zh) 2013-03-14 2017-07-28 佳能安内华股份有限公司 成膜方法、半导体发光元件的制造方法、半导体发光元件和照明装置
JP6574547B2 (ja) 2013-12-12 2019-09-11 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
KR101768928B1 (ko) 2013-12-25 2017-08-17 캐논 아네르바 가부시키가이샤 기판 가공 방법 및 반도체 장치의 제조 방법
US10081869B2 (en) 2014-06-10 2018-09-25 Lam Research Corporation Defect control in RF plasma substrate processing systems using DC bias voltage during movement of substrates
US10410889B2 (en) 2014-07-25 2019-09-10 Applied Materials, Inc. Systems and methods for electrical and magnetic uniformity and skew tuning in plasma processing reactors
US10879043B2 (en) 2015-01-16 2020-12-29 Antonio Franco Selmo Device intrinsically designed to resonate, suitable for RF power transfer as well as group including such device and usable for the production of plasma
GB201502453D0 (en) 2015-02-13 2015-04-01 Spts Technologies Ltd Plasma producing apparatus
US10049862B2 (en) 2015-04-17 2018-08-14 Lam Research Corporation Chamber with vertical support stem for symmetric conductance and RF delivery
US10014084B2 (en) 2015-05-12 2018-07-03 Arc Saw Technologies, Llc Systems and methods for nuclear reactor vessel segmenting
JP6539113B2 (ja) 2015-05-28 2019-07-03 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
JP2017021144A (ja) 2015-07-09 2017-01-26 日本電気株式会社 翻訳システムおよび翻訳方法
US9960009B2 (en) 2015-07-17 2018-05-01 Lam Research Corporation Methods and systems for determining a fault in a gas heater channel
JP6630630B2 (ja) * 2016-05-18 2020-01-15 東京エレクトロン株式会社 プラズマ処理装置
US10403476B2 (en) 2016-11-09 2019-09-03 Lam Research Corporation Active showerhead
JP2018129224A (ja) 2017-02-09 2018-08-16 東京エレクトロン株式会社 プラズマ処理装置
US10544505B2 (en) 2017-03-24 2020-01-28 Applied Materials, Inc. Deposition or treatment of diamond-like carbon in a plasma reactor
GB2562110A (en) 2017-05-05 2018-11-07 Creo Medical Ltd Apparatus for sterilising an instrument channel of a surgical scoping device
WO2019004183A1 (ja) 2017-06-27 2019-01-03 キヤノンアネルバ株式会社 プラズマ処理装置
JP6516951B1 (ja) 2017-06-27 2019-05-22 キヤノンアネルバ株式会社 プラズマ処理装置
TWI693860B (zh) 2017-06-27 2020-05-11 日商佳能安內華股份有限公司 電漿處理裝置
WO2019003309A1 (ja) 2017-06-27 2019-01-03 キヤノンアネルバ株式会社 プラズマ処理装置
KR20220031132A (ko) 2017-06-27 2022-03-11 캐논 아네르바 가부시키가이샤 플라스마 처리 장치
JP6458206B1 (ja) 2017-06-27 2019-01-23 キヤノンアネルバ株式会社 プラズマ処理装置
JP6309683B1 (ja) * 2017-10-31 2018-04-11 キヤノンアネルバ株式会社 プラズマ処理装置
EP3785494A4 (en) 2018-06-14 2022-01-26 MKS Instruments, Inc. REMOTE PLASMA SOURCE RADICAL OUTPUT MONITOR AND METHOD OF USE
SG11202009122YA (en) 2018-06-26 2020-10-29 Canon Anelva Corp Plasma processing apparatus, plasma processing method, program, and memory medium
US10354838B1 (en) 2018-10-10 2019-07-16 Lam Research Corporation RF antenna producing a uniform near-field Poynting vector
US11013075B2 (en) 2018-12-20 2021-05-18 Nxp Usa, Inc. RF apparatus with arc prevention using non-linear devices
US11232931B2 (en) 2019-10-21 2022-01-25 Mks Instruments, Inc. Intermodulation distortion mitigation using electronic variable capacitor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887005A (en) * 1987-09-15 1989-12-12 Rough J Kirkwood H Multiple electrode plasma reactor power distribution system
US4871421A (en) * 1988-09-15 1989-10-03 Lam Research Corporation Split-phase driver for plasma etch system
JPH02156081A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JP2005026540A (ja) * 2003-07-04 2005-01-27 Masayoshi Murata プラズマ表面処理装置およびプラズマ表面処理方法
JP2008294465A (ja) * 2008-07-31 2008-12-04 Masayoshi Murata 電流導入端子と、該電流導入端子を備えたプラズマ表面処理装置及びプラズマ表面処理方法
JP2009021634A (ja) * 2008-10-10 2009-01-29 Masayoshi Murata 高周波プラズマcvd装置と高周波プラズマcvd法及び半導体薄膜製造法
JP2010255061A (ja) * 2009-04-27 2010-11-11 Canon Anelva Corp スパッタリング装置及びスパッタリング処理方法
JP2009302566A (ja) * 2009-09-16 2009-12-24 Masayoshi Murata トランス型平衡不平衡変換装置を備えたプラズマ表面処理装置
JP2012142332A (ja) * 2010-12-28 2012-07-26 Canon Anelva Corp 電子部品の製造方法
CN103094042A (zh) * 2011-10-31 2013-05-08 细美事有限公司 基板处理设备以及阻抗匹配方法
CN104024471A (zh) * 2011-12-27 2014-09-03 佳能安内华股份有限公司 溅射装置
JP2013139642A (ja) * 2013-04-02 2013-07-18 Canon Anelva Corp スパッタ成膜応用のためのプラズマ処理装置

Also Published As

Publication number Publication date
KR102280323B1 (ko) 2021-07-20
EP3648551A4 (en) 2020-06-24
EP3648551A1 (en) 2020-05-06
TWI699140B (zh) 2020-07-11
TW201906501A (zh) 2019-02-01
CN114666965A (zh) 2022-06-24
WO2019003309A1 (ja) 2019-01-03
JP6595002B2 (ja) 2019-10-23
CN110800376A (zh) 2020-02-14
PL3648551T3 (pl) 2021-12-06
KR20200018657A (ko) 2020-02-19
US20200126764A1 (en) 2020-04-23
JPWO2019003309A1 (ja) 2019-06-27
US11961710B2 (en) 2024-04-16
SG11201912564VA (en) 2020-01-30
EP3648551B1 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
CN110800376B (zh) 等离子体处理装置
CN110800375B (zh) 等离子体处理装置
CN110800379B (zh) 等离子体处理装置
JP6309683B1 (ja) プラズマ処理装置
TWI750525B (zh) 電漿處理裝置
JP6656478B2 (ja) プラズマ処理装置および方法
JP6785935B2 (ja) エッチング装置
JP6656481B2 (ja) プラズマ処理装置および方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant