CN110797158B - 一种用于特异性提取渔业水体中汞离子的纳米材料及其应用 - Google Patents

一种用于特异性提取渔业水体中汞离子的纳米材料及其应用 Download PDF

Info

Publication number
CN110797158B
CN110797158B CN201911126021.7A CN201911126021A CN110797158B CN 110797158 B CN110797158 B CN 110797158B CN 201911126021 A CN201911126021 A CN 201911126021A CN 110797158 B CN110797158 B CN 110797158B
Authority
CN
China
Prior art keywords
nano material
magnetic nano
thymine
superparamagnetic magnetic
mercury ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911126021.7A
Other languages
English (en)
Other versions
CN110797158A (zh
Inventor
宋超
汪倩
陈家长
陈曦
裘丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences
Original Assignee
Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences filed Critical Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences
Priority to CN201911126021.7A priority Critical patent/CN110797158B/zh
Publication of CN110797158A publication Critical patent/CN110797158A/zh
Application granted granted Critical
Publication of CN110797158B publication Critical patent/CN110797158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • C02F1/482Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets located on the outer wall of the treatment device, i.e. not in contact with the liquid to be treated, e.g. detachable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种用于特异性提取渔业水体中汞离子的纳米材料及其应用,属于渔业水域环境保护领域。首先反应制备超顺磁磁性纳米材料;随后采用胸腺嘧啶对超顺磁磁性纳米材料的功能化修饰,制得分散在缓冲液中的胸腺嘧啶功能化修饰的超顺磁磁性纳米材料。将所得纳米材料添加入待处理的渔业水体中,搅拌静置后用磁铁收集纳米材料,重新分散在去离子水中后完成汞离子的收集。本发明通过制备一种具有30个胸腺嘧啶链长的稳定共价键的超顺磁磁性纳米材料,其表面羧基基团形成氨基活化酯,能够结合汞离子,从而有效地将汞离子从含多种重金属的水溶液中分离出来,为后续的快速检测技术研发提供技术基础。

Description

一种用于特异性提取渔业水体中汞离子的纳米材料及其应用
技术领域
本发明涉及一种用于特异性提取渔业水体中汞离子的纳米材料及其应用,属于渔业水域环境保护领域。
背景技术
汞,俗称水银,是广泛存在于环境中的一种毒害重金属。2017年,世界卫生组织国际癌症研究机构将汞和无机汞化合物列入3类致癌物清单中,2019年汞及汞化合物被列入有毒有害水污染物名录(第一批)。在渔业水体中,水中的微生物把无机汞转化为甲基汞,鱼类吃下这些微生物会在体内积聚甲基汞,而大鱼吃小鱼后则会令甲基汞含量沿食物链不断增加。可见,汞在渔业水体中存在会通过生物浓缩和生物富集效应,影响水产品质量,进而影响人类膳食消费安全。因此,定量渔业水体中的汞离子对渔业水质状况做出预判断极其重要。
目前,汞离子的检测主要采取的方法是原子荧光光谱分析法、冷原子吸收光谱法和二硫腙比色法等。这些方法的虽然能够准确地检测渔业水体中汞离子的含量,但缺点也十分明显,例如需要相关的大型仪器、繁琐的检测步骤和有毒有害的检测试剂等。通过快速检测的方法可以有效避免这些缺点,让汞离子的检测更加方便、准确和快捷。
针对渔业水体中汞离子的快速检测方法鲜有报道,开发具有良好性能的渔业水体汞离子快速检测试剂盒成为当前我国渔业环境保护领域的当务之急。同一般的快速检测试剂盒开发类似,检测结果的假阳性是快速检测的通病。因此,在开发渔业水体中汞离子快速检测方法时,第一步就是能够找到一种方法,将汞离子特异性地从渔业水体中识别和提取出来,从根本上解决汞离子在后续快速检测上存在的结果假阳性问题。
发明内容
本发明的目的是克服上述不足之处,提供一种用于特异性提取渔业水体中汞离子的纳米材料及其应用,为开发汞离子快速检测方法提供技术依据。
本发明的技术方案,一种用于特异性提取渔业水体中汞离子的纳米材料,首先通过FeSO4·7H2O、聚乙烯吡咯烷酮和KMnO4溶液反应制备超顺磁磁性纳米材料;随后采用胸腺嘧啶对超顺磁磁性纳米材料的功能化修饰,使超顺磁磁性纳米材料表面的羧基基团进一步形成氨基活化酯,制得分散在缓冲液中的胸腺嘧啶功能化修饰的超顺磁磁性纳米材料。
汞离子能够与胸腺嘧啶高度特异性结合形成T-Hg2+-T的配位化合物,根据此原理设计出能高特异性地识别和高灵敏度地结合汞离子的胸腺嘧啶功能化修饰的超顺磁磁性纳米材料。
进一步地,步骤如下:
(1)超顺磁磁性纳米材料的制备:
a、取10mL的2-3mmol/L的FeSO4·7H2O和10mL的3-4mmol/L的聚乙烯吡咯烷酮溶于100mL去离子水中并加热至90- 95℃;然后滴加2mL的5- 8mol/L NaOH溶液,溶液中生成了绿色沉淀,静置12-14h;
b、加入5-7mL的0.1mol/L KMnO4溶液,沉淀由绿色变为了深棕色;在90℃下静置5-7h,过滤得到固体沉淀;
c、将所得固体沉淀用去离子水和无水乙醇分别清洗2-4遍,120-150℃烘干至恒重,即制得超顺磁磁性纳米材料;
(2)胸腺嘧啶的功能化修饰:
d、将包被缓冲液调节pH至5-5.5,用调节pH后的包被缓冲液洗涤步骤(1)制备所得的超顺磁磁性纳米材料,使其表面羧基基团离子化;
e、取羟基硫代琥珀酰亚胺Sulfo-NHS缓冲液继续对步骤d所得超顺磁磁性纳米材料进行洗涤;
f、加入1-2mL的2-3mmol/L的胸腺嘧啶,搅拌反应进行包被1-2h,制得分散在ulfo-NHS缓冲液中的胸腺嘧啶功能化修饰的超顺磁磁性纳米材料,即用于特异性提取渔业水体中汞离子的纳米材料。
进一步地,步骤(2)中包被缓冲液具体为碳酸钠-碳酸氢钠缓冲液。
进一步地,所述胸腺嘧啶功能化修饰的超顺磁磁性纳米材料具有30个胸腺嘧啶链长的稳定共价键。
本发明的另一目的,用于特异性提取渔业水体中汞离子的纳米材料的应用,将胸腺嘧啶功能化修饰的超顺磁磁性纳米材料加入到容器中待处理的渔业水体中,添加比例为0.2%-0.25%;混合均匀,静置4-6min;将磁铁放置在容器周边,静置5-15min,将容器中的渔业水体移出,加入等体积的去离子水,移开磁铁,得到含有结合有汞离子的纳米材料悬浊液。
本发明的有益效果:本发明通过制备一种具有30个胸腺嘧啶链长的稳定共价键的超顺磁磁性纳米材料,其表面羧基基团形成氨基活化酯,能够结合汞离子,从而有效地将汞离子从含多种重金属的水溶液中分离出来,为后续的快速检测技术研发提供技术基础。
附图说明
图1是实施例2中磁性纳米材料加入金属溶液示意图。
图2是实施例2中磁铁吸附纳米材料示意图。
具体实施方式
实施例1 胸腺嘧啶功能化修饰的超顺磁磁性纳米材料的制备
1、制备超顺磁磁性纳米材料:
a、取10mL的2.5mmol/L的FeSO4·7H2O和10mL的3.4mmol/L的聚乙烯吡咯烷酮溶于100mL去离子水中并加热至90℃;然后滴加2mL的5mol/L NaOH溶液,溶液中生成了绿色沉淀,静置12 h;
b、加入5.6mL的0.1mol/L KMnO4溶液,沉淀由绿色变为了深棕色;在90℃下静置6h,过滤得到固体沉淀;
c、将所得固体沉淀用去离子水和无水乙醇分别清洗2-4遍,120℃烘干至恒重,即制得超顺磁磁性纳米材料;
2、胸腺嘧啶(T)对超顺磁磁性纳米材料的功能化修饰:
d、将包被缓冲液调节pH至5,用调节pH后的包被缓冲液洗涤步骤(1)制备所得的超顺磁磁性纳米材料,使其表面羧基基团离子化;
e、取羟基硫代琥珀酰亚胺Sulfo-NHS缓冲液继续对步骤d所得超顺磁磁性纳米材料进行洗涤,使纳米材料表面的羧基基团进一步形成氨基活化酯;
f、加入1.2mL的2.8mmol/L的胸腺嘧啶,搅拌进行包被1h,形成具有30个胸腺嘧啶链长的稳定共价键,制得分散在ulfo-NHS缓冲液中的胸腺嘧啶功能化修饰的超顺磁磁性纳米材料,即用于特异性提取渔业水体中汞离子的纳米材料。
实施例2 胸腺嘧啶功能化修饰的超顺磁磁性纳米材料的应用
将功能化修饰后的纳米材料10µL加入含有多种重金属(镉、汞、铁、锰、铬、砷、铅、铜等,浓度均为50µg/L)的水溶液中,加入后状态如图1(左)所示,其中图1(右)为作为对比液的纯水;混匀,静置5min。
将磁铁放置在盛水溶液的容器周边,静置10min。发现纳米材料与水溶液分离,被吸附在磁铁一边,状态如图2(左)所示,其中图2(右)为作为对比液的纯水。移出水溶液,加入去离子水;拿走磁铁,纳米材料重新混匀于去离子水体中。
利用电感耦合等离子体质谱仪对去离子水进行检测,结果表明,汞离子的浓度仍然为 50µg/L,其它重金属离子未检出,表明合成的纳米材料可有效地将汞离子从含多种重金属的水溶液中分离出来。
实施例3胸腺嘧啶功能化修饰的超顺磁磁性纳米材料的应用
采集某地养殖水体,经电感耦合等离子体质谱仪检测,得知该水体中含有重金属汞(3µg/L)、铜(20µg/L)、锌(35µg/L)、铁(28µg/L)、铅(12.3µg/L)和铬(2.5µg/L)等。
采用与实施例2相同的方法对水体进行汞离子提取,随后再次对所得溶液进行电感耦合等离子体质谱仪测定。溶液中,汞离子的浓度仍为3µg/L,其它重金属离子未检出。

Claims (3)

1.一种用于特异性提取渔业水体中汞离子的纳米材料,其特征是:首先通过FeSO4·7H2O、聚乙烯吡咯烷酮和KMnO4溶液反应制备超顺磁磁性纳米材料;随后采用胸腺嘧啶对超顺磁磁性纳米材料的功能化修饰,使超顺磁磁性纳米材料表面的羧基基团进一步形成氨基活化酯,制得分散在缓冲液中的胸腺嘧啶功能化修饰的超顺磁磁性纳米材料;
步骤如下:
(1)超顺磁磁性纳米材料的制备:
a、取10mL的2-3mmol/L的FeSO4·7H2O和10mL的3-4mmol/L的聚乙烯吡咯烷酮溶于100mL去离子水中并加热至90- 95℃;然后滴加2mL的5- 8mol/L NaOH溶液,溶液中生成了绿色沉淀,静置12-14h;
b、加入5-7mL的0.1mol/L KMnO4溶液,沉淀由绿色变为了深棕色;在90℃下静置5-7h,过滤得到固体沉淀;
c、将所得固体沉淀用去离子水和无水乙醇分别清洗2-4遍,120-150℃烘干至恒重,即制得超顺磁磁性纳米材料;
(2)胸腺嘧啶的功能化修饰:
d、将包被缓冲液调节pH至5-5.5,用调节pH后的包被缓冲液洗涤步骤(1)制备所得的超顺磁磁性纳米材料,使其表面羧基基团离子化;
e、取羟基硫代琥珀酰亚胺Sulfo-NHS缓冲液继续对步骤d所得超顺磁磁性纳米材料进行洗涤;
f、加入1-2mL的2-3mmol/L的胸腺嘧啶,搅拌反应进行包被1-2h,制得分散在ulfo-NHS缓冲液中的胸腺嘧啶功能化修饰的超顺磁磁性纳米材料,即用于特异性提取渔业水体中汞离子的纳米材料;
所述胸腺嘧啶功能化修饰的超顺磁磁性纳米材料具有30个胸腺嘧啶链长的稳定共价键。
2.如权利要求1所述用于特异性提取渔业水体中汞离子的纳米材料,其特征是步骤(2)中包被缓冲液具体为碳酸钠-碳酸氢钠缓冲液。
3.权利要求1所述用于特异性提取渔业水体中汞离子的纳米材料的应用,其特征是:将胸腺嘧啶功能化修饰的超顺磁磁性纳米材料加入到容器中待处理的渔业水体中,添加比例为0.2%-0.25%;混合均匀,静置4-6min;将磁铁放置在容器周边,静置5-15min,将容器中的渔业水体移出,加入等体积的去离子水,移开磁铁,得到含有结合有汞离子的纳米材料悬浊液。
CN201911126021.7A 2019-11-18 2019-11-18 一种用于特异性提取渔业水体中汞离子的纳米材料及其应用 Active CN110797158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911126021.7A CN110797158B (zh) 2019-11-18 2019-11-18 一种用于特异性提取渔业水体中汞离子的纳米材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911126021.7A CN110797158B (zh) 2019-11-18 2019-11-18 一种用于特异性提取渔业水体中汞离子的纳米材料及其应用

Publications (2)

Publication Number Publication Date
CN110797158A CN110797158A (zh) 2020-02-14
CN110797158B true CN110797158B (zh) 2021-02-23

Family

ID=69445007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911126021.7A Active CN110797158B (zh) 2019-11-18 2019-11-18 一种用于特异性提取渔业水体中汞离子的纳米材料及其应用

Country Status (1)

Country Link
CN (1) CN110797158B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109666110A (zh) * 2018-12-14 2019-04-23 湖南农业大学 四环素磁性分子印迹纳米粒子的制备方法及应用
KR20190096148A (ko) * 2018-02-08 2019-08-19 주식회사 시선테라퓨틱스 엔도좀 탈출능을 갖는 펩티드 핵산 복합체 및 이의 용도

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296337B1 (en) * 2001-09-25 2007-01-10 Luxon Energy Devices Corporation Electrochemical capacitor and method for forming the same
CN102085381B (zh) * 2011-01-25 2012-08-01 上海师范大学 一种四氧化三铁-二氧化硅-胸腺嘧啶纳米粒子及其制备方法和应用
CN104209082B (zh) * 2014-10-10 2016-06-01 哈尔滨工业大学 利用Fe3O4-MnO2复合吸附剂去除水中镉(Ⅱ)的方法
CN106044865B (zh) * 2016-05-20 2017-11-03 安徽建筑大学 一种花状四氧化三铁纳米材料及其制备方法
CN106525790B (zh) * 2016-10-28 2019-08-20 厦门信德科创生物科技有限公司 一种汞离子荧光检测纳米探针的制备及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190096148A (ko) * 2018-02-08 2019-08-19 주식회사 시선테라퓨틱스 엔도좀 탈출능을 갖는 펩티드 핵산 복합체 및 이의 용도
CN109666110A (zh) * 2018-12-14 2019-04-23 湖南农业大学 四环素磁性分子印迹纳米粒子的制备方法及应用

Also Published As

Publication number Publication date
CN110797158A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
Tuzen et al. Column solid-phase extraction of nickel and silver in environmental samples prior to their flame atomic absorption spectrometric determinations
CN109696430B (zh) 一种测定微囊藻毒素浓度的方法
Zhou et al. Speciation analysis of silver sulfide nanoparticles in environmental waters by magnetic solid-phase extraction coupled with ICP-MS
CN110118759B (zh) 一种基于表面钝化和共价偶联的土霉素荧光检测方法
CN107688011B (zh) 磁固相微萃取结合碳量子点荧光增敏检测牛奶中氧氟沙星方法
CN110940648B (zh) 一种绿色荧光碳量子点的合成方法及在检测亚硝酸盐中的应用
CN107558208B (zh) 变色纤维apf-par的制备及应用
CN112033949B (zh) 一种水产品腐败菌的sers生物传感器快速检测方法
Mohammadi et al. Simultaneous extraction of trace amounts of cobalt, nickel and copper ions using magnetic iron oxide nanoparticles without chelating agent
CN108051520A (zh) 一种检测茶叶中黄曲霉毒素b1的方法
CN107907522B (zh) 一种全氟化合物分子印迹荧光探针及其使用方法和应用
CN110797158B (zh) 一种用于特异性提取渔业水体中汞离子的纳米材料及其应用
CN106546730B (zh) 一种铅离子可视化检测方法
Li et al. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles
CN103217416B (zh) 检测二价汞离子的检测组合物、方法与试剂盒
CN113087651A (zh) 一种含有吲哚基团的化合物及其制备方法和应用
Habila et al. 1-nitroso-2-naphthol impregnated multiwalled carbon nanotubes (NNMWCNTs) for the separation-enrichment and flame atomic absorption spectrometric detection of copper and lead in hair, water, and food samples
CN110763850B (zh) 一种非标记均相阴极光电化学检测17β-雌二醇的方法
CN110702760B (zh) 一种检测铀酰离子的纳米金-dna网状结构电化学生物传感器及其制备方法和应用
Akcin et al. Determination of zinc, nickel and cadmium in natural water samples by flame atomic absorption spectrometry after preconcentration with ion exchange and flotation techniques
CN107677661A (zh) 一种基于适配体测定银离子的化学发光传感器的检测方法
Lu et al. Colorimetric detection of cephradine in pharmaceutical formulations via fluorosurfactant-capped gold nanoparticles
CN115656072A (zh) 一种基于模拟漆酶纳米酶快速检测食品中亚硝酸盐的方法
CN113984726B (zh) 一种氨基苯硼酸功能化磁珠/乙二醛修饰dna检测汞离子的方法
CN104311888A (zh) 氧化亚铜/壳聚糖复合材料、敏感膜、生物传感器、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant