CN110770201A - 作为天然可降解载体的l-乳酸钙骨架 - Google Patents

作为天然可降解载体的l-乳酸钙骨架 Download PDF

Info

Publication number
CN110770201A
CN110770201A CN201880040158.8A CN201880040158A CN110770201A CN 110770201 A CN110770201 A CN 110770201A CN 201880040158 A CN201880040158 A CN 201880040158A CN 110770201 A CN110770201 A CN 110770201A
Authority
CN
China
Prior art keywords
lactate
acetate
mof
composition
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880040158.8A
Other languages
English (en)
Other versions
CN110770201B (zh
Inventor
O·M·亚吉
杨晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN110770201A publication Critical patent/CN110770201A/zh
Application granted granted Critical
Publication of CN110770201B publication Critical patent/CN110770201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0216Solid or semisolid forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • C07C53/10Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/08Lactic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dentistry (AREA)
  • Toxicology (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Seasonings (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

多孔乳酸钙金属‑有机骨架(MOF)包含无毒金属离子‑(Ca(II))和无毒可再生且便宜的连接基‑乳酸根和乙酸根。MOF是无毒且环境友好的,并且可用作可降解载体。

Description

作为天然可降解载体的L-乳酸钙骨架
引言
金属有机骨架(MOF)是通过将金属离子与有机结构连接构成的多孔晶体材料1。可调整有机结构和金属离子的尺寸、几何形状和官能度的多种方式已导致多于20,000种MOF的发现2,其允许广泛的应用,最为显著的是在气体分离、存储和催化方面3。然而,迄今为止制备的绝大多数MOF都是基于过渡金属离子和源自石油化学来源的有机连接基,其固有的毒性已经排除了许多需要生态友好(环境友好)材料的重要应用,例如食品工业、生物医学应用和农业4
使用无毒天然存在的连接基由生态友好的金属离子-Ca2+制备MOF将允许更广泛的应用4,5。尽管大量的注意力已集中于该领域,但迄今没有多孔实例得到证实。挑战在于两个组分:配位几何形状定义不清和Ca2+金属离子的高配位数,以及天然存在的有机连接基的柔韧性,其一般地导致致密结构4,6
发明概述
公开了由无毒金属离子-Ca(II)和无毒的可再生且廉价的连接基-乳酸根和乙酸根制成的多孔乳酸钙金属-有机骨架(MOF)。MOF是环境友好的,并且我们证明了它们作为可降解固体载体的用途,包括用于农药如挥发性熏蒸剂,表明MOF不仅通过缓慢释放延长了熏蒸剂的有效时间,而且在实施后容易降解,在土壤中仅留下肥料(Ca)。
一方面,本发明提供基于Ca2+的金属-有机骨架(MOF)组合物,其包含螯合L-乳酸根和乙酸根,具有下式:
[Ca14(L-乳酸根)(16-24)(乙酸根)(12-4)]或[Ca6(L-乳酸根)(2-4)(乙酸根)(10-8)],
其中,乳酸根和乙酸根总计分别为28和12。
在实施方案中,本发明提供:
式为:[Ca14(L-乳酸根)(18)(乙酸根)(10)]、[Ca14(L-乳酸根)(21)(乙酸根)(7)]、[Ca6(L-乳酸根)(4)(乙酸根)(8)]或[Ca6(L-乳酸根)(2.5)(乙酸根)(9.5)];
-MOF是式[Ca14(L-乳酸根)(20)(乙酸根)(8)]的MOF-1201;
-MOF是式[Ca6(L-乳酸根)(3)(乙酸根)(9)]的MOF-1203;
-所述组合物包含封装在MOF中的试剂,如其中所述试剂选自:
作物保护产品如肥料(例如氮肥、磷肥、钾肥或钙肥)或农药(例如杀虫剂、除草剂、杀真菌剂),其可以是熏蒸剂或可喷雾制剂;
药物或治疗剂如抗微生物的(例如抗细菌的、抗病毒的或抗真菌的)试剂、皮肤病学试剂或者皮肤或头发护理剂等,
芳香化合物如增味剂、芳香剂、香料或香水,包括精油、提取物、合成增味剂;和
食品添加剂如酸化剂和酸度调节剂、抗结块剂、消泡剂和发泡剂、抗氧化剂如抗坏血酸、着色剂和保色剂、强化剂如维生素、矿物质和微量营养素、乳化剂、调味剂和风味增强剂、上光剂、防腐剂、稳定剂、增稠剂和胶凝剂、天然和人工甜味剂和增稠剂。
一方面,本发明提供输送或分配无毒的可生物降解载体中的试剂的方法,该方法包括输送或分配封装在主题组合物中的试剂。
本发明包括本文所述的具体实施方案的所有组合,如同每个组合已被费力地叙述。
附图简述
图1a.存在于MOF-1201中的所有不同的Ca2+中心,以及它们与乳酸根和乙酸根的配位。Ca(1)至Ca(14)的配位数分别为8、7、6、7、9、8、7、7、7、7、8、7、7和6。
图1b.存在于MOF-1203中的所有不同的Ca2+中心,以及它们与乳酸根和乙酸根的配位。Ca(1)至Ca(6)的配位数分别为7、8、7、8、7和9。
图1c.乳酸根[(i)-(vi)]和乙酸根[(vii)-(xi)]的配位模式。C以黑色表示,O以红色表示,Ca以青色表示,Ca2+氧化物多面体以青色表示,为清楚起见,省略了H。
图2a.左列:MOF-1201中的不对称单元,如球棒图所示;第二列:以氧化钙多面体表示的沿b轴观察的整体结构;右列:沿b轴(顶部)和a轴(底部)观察的通道。
图2b.第一列:MOF-1203中的不对称单元,如球棒图所示;第二列:以氧化钙多面体表示的沿a轴观察的总体结构;右列:沿a轴(顶部)和
Figure BDA0002320150020000031
方向(底部)观察的通道。
图3a.在77K下MOF-1201和1203的氮吸附等温线,实心圆和空心圆分别代表吸附和解吸分支。
图3b.与单晶结构的模拟图相比较的活化的(无溶剂)MOF-1201和1203样品的粉末X射线图。
图3c.在25℃下MOF-1201中的顺式1,3-二氯丙烯蒸气吸附等温线,实心圆和空心圆分别表示吸附和解吸分支。
图3d.在25℃下缓慢释放痕量纯液体顺式1,3-二氯丙烯和MOF-1201封装的顺式1,3-二氯丙烯。
图4.MOF-1201的单晶结构中的不对称单元(热椭圆体的概率为30%)。为清楚起见,省略了氢原子。配色方案:C,灰色;O,红色;钙,蓝色。
图5.MOF-1203的单晶结构中的不对称单元(热椭圆体的概率为30%)。为清楚起见,省略了氢原子。配色方案:C,灰色;O,红色;钙,蓝色。
图6.MOF-1201的实验PXRD图的比较:来自单晶X射线数据的活化图(红色)和模拟图(蓝色)。
图7.MOF-1203的实验PXRD图的比较:来自单晶X射线数据的活化图(红色)和模拟图(蓝色)。
图8.空气中MOF-1201的活化样品的TGA示踪。
图9.空气中MOF-1203的活化样品的TGA示踪。
图10.MOF1201的溶液的1H-NMR光谱。
图11.MOF-1203的溶液的1H-NMR光谱。
图12.MOF-1201的多点BET图,其比表面积为430m2/g。
图13.MOF-1203的多点BET图,其比表面积为162m2/g。
发明具体实施方案的描述
除非另有禁忌或另外说明,否则在这些描述和整个说明书中,术语“一”和“一个”表示一个或多个,术语“或”表示和/或,并且多肽序列理解为包括相反的链,以及本文所述的供选择的骨架。
应当理解,本文描述的实施例和实施方案仅用于说明性目的,并且鉴于其的各种修改或改变将被建议给本领域技术人员,并且将被包括在本申请的精神和范围和所附权利要求的范围之内。出于所有目的,通过引用将本文引用的所有公开、专利和专利申请,包括其中的引用整体并入本文。
我们举例说明了生态友好的MOF的合成,其包括:MOF-1201[Ca14(L-乳酸根)(20)(乙酸根)(8)](C2H5OH)(H2O)]和MOF-1203[Ca6(L-乳酸根)(3)(乙酸根)(9)](H2O)],基于Ca2+离子以及无害的乳酸根和乙酸根连接基7,两者都显示出永久多孔性。我们怀疑成功组装MOF-1201和1203的关键在于连接基-螯合乳酸根和乙酸根的选择,其允许形成刚性氧化钙连接的多面体(Ca2+作为节点,并且来自乳酸根或乙酸根的O作为桥),然后基于这些多面体构建3D拓展开放骨架。我们还证实使用MOF用作载体,例如用于缓慢释放熏蒸剂顺式1,3-二氯丙烯。易于降解为可在水中分解的熏蒸剂提供多孔载体的第一个实施例。
乙酸钙和L-乳酸在乙醇(甲醇)中的悬浮液在120℃(100℃)下的水热反应持续4(3)天时间,分别得到MOF-1201的无色棒状晶体(MOF-1203的针状晶体)。然后收获晶体用于单晶X射线衍射分析。通过1H-NMR光谱和无溶剂样品的元素微分析进一步确定MOF中乳酸根和乙酸根连接基的确切摩尔比[参见支持信息(SI),S1节]。
单晶X射线衍射分析表明,MOF-1201和1203两者都是由Ca2+作为节点并且乳酸根和乙酸根作为连接基构建的拓展骨架。MOF-1201以单斜晶P21空间群结晶,晶格常数为
Figure BDA0002320150020000041
β=90.33°。在此结构中,存在14个晶体学上独特的钙原子[Ca(1)至Ca(14)](图1a),所有这些钙原子都被来自乳酸根(羧基O或羟基O)、乙酸根(羧基O)或水的O原子封盖以形成氧化钙多面体。金属中心各处的连接基的配位模式不同-发现了四种不同的乳酸根模式[(i)、(ii)、(iii)和(vi)],和三种不同的乙酸根模式[(vii)、(ix)和(xi)](图1c),其中具有模式(vi)的乳酸根和具有模式(vii)的乙酸根作为末端配体,并且封盖仅一个Ca2+中心[分别为Ca(5)和Ca(11)],而其它的则作为连接两个或三个Ca2+的桥。在不对称单元中,Ca(1)、Ca(2)和Ca(3)通过具有配位模式(i)的乳酸根桥接-Ca(1)配位至羟基O和相邻的羧基O,Ca(2)配位至仅羧基O,而Ca(3)配位至其它羧基O(图2a,左列)。类似地,Ca(1)、Ca(2)和Ca(4)通过相同的模式桥接;Ca(4)、Ca(5)和Ca(7)通过模式(iii)桥接;Ca(7)、Ca(8)和Ca(9)通过模式(i)桥接;Ca(7)、Ca(8)和Ca(10)通过模式(i)桥接;Ca(10)、Ca(11)和Ca(12)通过模式(xi)桥接;Ca(6)、Ca(5)和Ca(7)通过模式(ii)桥接;Ca(6)、Ca(13)和Ca(14)通过模式(i)桥接,以连接所有Ca2+中心。
得到的MOF-1201拓展骨架沿b轴具有1D无限通道(图2a,中间列)。通道由右旋单链螺旋链(图2a,右列)构成,每圈有十六个Ca2+原子[按Ca(4)、Ca(2)、Ca(1)、Ca(11)、Ca(12)、Ca(13)、Ca(6)、Ca(5)、Ca(4)、Ca(2)、Ca(1)、Ca(11)、Ca(12)、Ca(13)、Ca(6)和Ca(5)的顺序]。孔为约
Figure BDA0002320150020000051
并且间距为约
Figure BDA0002320150020000052
两个相邻的圈通过额外的氧化钙多面体进一步交联。具体地,每个圈中的两个Ca(2)和两个Ca(13)中心由三个氧化钙多面体(按Ca(3)-Ca(2)-Ca(3)和Ca(14)-Ca(13)-Ca(14)的顺序)桥接。每个圈中的两个Ca(5)和两个Ca(11)由七个氧化钙多面体[按Ca(7)-Ca(8)-Ca(9)-Ca(8)-Ca(9)-Ca(8)-Ca(7)和Ca(10)-Ca(8)-Ca(9)-Ca(8)-Ca(9)-Ca(8)-Ca(10)]的顺序)桥接。与孔相比,弯曲的桥导致内部孔尺寸稍微更大(约)。
在图2a的第一列中,用球棒图显示了MOF-1201中的不对称单元,为清楚起见,省略了部分连接到对称生成的Ca2+中心的配体;同一组Ca2+中心可能存在多于一个桥;第二列:以氧化钙多面体表示的沿b轴观察的整体结构。高亮显示不对称单元,并示出开放通道;右列,沿b轴(顶部)和a轴(底部)观察的通道。高亮显示了属于孔的氧化钙多面体。如优先权申请中所示,在颜色上,C以黑色表示,O以红色表示,Ca以青色表示,Ca2+氧化物多面体以青色表示,为清楚起见,省略了H。
以正交晶I212121空间群结晶的另一个MOF-1203具有
Figure BDA0002320150020000054
Figure BDA0002320150020000055
的晶格常数。该结构中存在六个不同的Ca2+中心,并且六个不同的Ca2+中心通过乳酸根和乙酸根连接以形成连接的氧化钙多面体(图1b)。在乳酸根[(i)、(iv)和(v)]和在乙酸根[(viii)、(x)和(xi)]中发现了三种配位模式(图1c),所有连接基作为连接两个至四个Ca2+中心的桥。在不对称单元中,Ca(1)、Ca(2)、Ca(3)和Ca(6)通过具有配位模式(iv)的乳酸根桥接-Ca(6)配位至羟基O和相邻的羧基O,Ca(1)配位至仅羧基O,而Ca(2)和Ca(3)配位至其它羧基O(图2b,左列)。Ca(3)、Ca(4)和Ca(5)通过具有模式(xi)的乙酸根桥接。得到的拓展骨架揭示了另一种类型的1D开放通道,其具有由22个氧化钙多面体制成的孔。但是,由于其矩形形状,孔尺寸小于MOF-1201,并且两个向内弯曲的Ca(4)进一步将孔分为两个较小的孔(约
Figure BDA0002320150020000056
)。
在图2b第一列中:如球棒图中所示,MOF-1203中的不对称单元,为清楚起见,省略了部分连接至对称生成的Ca2+中心的配体;同一组Ca2+中心可能存在多于一个桥;第二列:以氧化钙多面体表示的沿a轴观察的总体结构。高亮显示不对称单元,并示出开放通道。右列,沿a轴(顶部)和
Figure BDA0002320150020000061
方向(底部)观察的通道。高亮显示了属于孔的氧化钙多面体。颜色上,如在优先权申请中所示,C以黑色表示,O以红色表示,Ca以青色表示,Ca2+氧化物多面体以青色表示,为清楚起见,省略了H。
将MOF-1201和MOF-1203的样品与乙醇(MOF-1201)和甲醇(MOF-1203)进行溶剂交换三天,然后在室温下在动态真空(0.04毫巴)下直接抽空12小时以得到不含溶剂的样品以检查永久多孔性。然后在77K下进行氮吸附测量。这两个骨架均显示出完全可逆的I型等温线,在低压区域有急剧的N2吸收(P/P0<0.05)(图3a),表明这些材料的永久多孔性8。由N2等温线估计MOF-1201和MOF-1203的Brunauer-Emmett-Teller(BET)表面积9为430和160m2g-1。它们的孔体积分别为0.18cm3g-1和0.06cm3g-1,与使用PLATON从单晶结构计算得出的孔体积相同10。然后用粉末X射线衍射(PXRD)检查无溶剂样品的结晶度。所获得的粉末图案与从单晶结构模拟的衍射图案非常吻合,确认了活化后的结构完整性和块状材料的相纯度(图3b,图6-7)。
MOF-1201的多孔性及其生态友好组成:Ca2+、乳酸根和乙酸根使我们能够探索金属有机骨架材料在农业和食品工业中的潜在应用,在农业和食品工业中,无毒以及人类友好和环境友好性是所用材料的最重要的要求4,5。这里,我们已证明了MOF-1201作为挥发性液体熏蒸剂的固体制剂的用途。
熏蒸剂是最重要的农药家族之一,其广泛用于防止植物,尤其是高价值植物(例如草莓和西红柿)受土壤传播的疾病的侵害,以提高质量和产量11。两种挥发性液体化合物,1,3-二氯丙烯(顺式和反式混合物)和三氯硝基甲烷是最广泛使用的熏蒸剂,每年都大量消耗11-12。的确,加利福尼亚农药法规部(CDPR)发布的农药使用报告指出,2014年加利福尼亚州1,3-二氯丙烯和三氯硝基甲烷的使用分别达到5.99×106kg和4.08×106kg,在所有使用的农药中排名第三和第五13
1,3-二氯丙烯或三氯硝基甲烷的商业制剂依赖于通过小腿注射或滴灌应用的液体形式
Figure BDA0002320150020000062
14。但是,直接使用液体需要高剂量,这由于液态化学品的高挥发性和流动性导致大量的空气和地下水污染,以及引起在操作和运输过程中对工人的重大安全隐患11,14-15。由于这些不利影响,这些化学品的使用受到高度管制,需要个人防护设备和缓冲区两者。
使用多孔固体吸附熏蒸剂然后缓慢释放的基于吸附的制剂已经出现,作为抑制化学品的挥发性和毒性以及减少污染的供选择方案16。多孔基体如活性炭、活性粘土、吸附树脂和活性氧化铝已被提出,并显示了延长的熏蒸剂有效寿命16,然而,这些载体材料都不是天然可降解的,这由于实施后的累积极大地增加了它们的环境影响。
这里,我们提出了为此目的使用MOF-1201。选择熏蒸剂顺式1,3-二氯丙烯为例。图3c中显示了在25℃下MOF-1201中顺式1,3-二氯丙烯的静态吸附等温线,在低分压范围内(P/P0=0.1)显示1.4mmolg-1(13wt%)的急剧吸收,归因于微孔内的吸附。该吸收量在其他多孔材料中达到的值范围内(5-40wt%)16d。在实验室中通过以1.0cm3 min-1的空气流吹扫装载有顺式1,3-二氯丙烯的MOF-1201或液体顺式1,3-二氯丙烯的样品证明了初步缓释性能,并通过热重仪监测样品重量。如图3d中所示,液体顺式1,3-二氯丙烯快速释放,以1000min g-1蒸发总重量的80%。相比之下,封装在MOF-1201中的顺式1,3-二氯丙烯的以慢得多的方式释放,以100,000min g-1释放总量的80%(10.5wt%),相当于在相同条件下与液体顺式1,3-二氯丙烯相比慢100倍。
然后测试了MOF-1201的可降解性。MOF-1201可以容易地溶解在水中,以提供其生态友好型组分:Ca2+离子、乳酸根和乙酸根(图10)。发现1L水可以溶解120±10g的MOF-1201,并且饱和溶液具有接近中性的pH值(7.6)。这种性质使MOF-1201有潜力克服其他多孔材料中的累积问题,因此最小化对环境的不利影响,但将肥料(钙)留至土壤17
总之,我们已证明由无毒可再生的乳酸根连接基构建的生态友好的Ca2+MOF的第一实施例。我们进一步证明MOF-1201作为可降解载体的用途。我们的结果证明生态友好的CaMOF的产生及其在农业中的用途两者。
参考文献
(1)(a)Yaghi,O.M.;O’Keeffe,M.;Ockwig,N.W.;Chae,H.K.;Eddaoudi,M.;Kim,J.,自然(Nature),2003,423,705–714。(b)Kaskel,S.金属有机骨架化学:合成、表征和应用(The Chemistry of Metal-Organic Frameworks:Synthesis,Characterization,andApplications);Wiley-VCH:Weinheim,2016。
(2)Furukawa,H.;Cordova,K.E.;O’Keeffe,M.;Yaghi,O.M.,科学(Science)2013,341,1230444。
(3)(a)M.,功能性有机金属骨架:气体存储、分离和催化(FunctionalMetal-Organic Frameworks:Gas Storage,Separation and Catalysis);Springer:Berlin,2010.(b)Li,J.-R.;Sculley,J.;Zhou,H.-C.,化学评论(Chem.Rev.),2012,112,869–932.
(4)Forgan,R.S.,金属有机骨架:可食用骨架(Metal-Organic Frameworks:Edible Frameworks),无机和生物无机化学百科全书(Encyclopedia of Inorganic andBioinorganic Chemistry);John Wiley&Sons:New York,2014。
(5)Imaz,I.;Rubio-Martínez,M.;An,J.;Solé-Font,I.;Rosi,N.L.;Maspoch,D.,化学通讯(Chem.Comm.),2011,47,7287–7302。
(6)Fromm,K.M.,配位化学评论(Coord.Chem.Rev.),2008,252,856-885。
(7)国家医学图书馆(National Library of Medicine),毒理学数据网络https://toxnet.nlm.nih.gov/index.html.,作为食品添加剂乳酸钙和乙酸钙两者均被公认为安全的(GRAS)。
(8)Thommes,M.;Kaneko,K.;Neimark,A.V.;Olivier,J.;Rodriguez-Reinoso,F.;Rouquerol,J.;Sing,K.S.,纯粹和应用化学(Pure and Appl.Chem.)2015,87,1051–1069。
(9)Walton,K.S.;Snurr,R.Q.,美国化学会志(J.Am.Chem.Soc.),2007,129,8552–8556。
(10)Spek,A.L.Acta Cryst.2009,D65,148–155。
(11)(a)Shorter,J.H.;Kolb,C.E.;Crill,P.M.;Kerwin,R.A.,自然,2002,377,717–719.(b)Martin,F.N.,植物病理学年鉴(Annu.Rev.Phytopathol.),2003,41,325–350。
(12)Ashworth,D.J.;Yates,S.R.;Wesenbeeck,I.J.V.;Stanghellini,M.J.,农业食品化学,2015,63,415–421。
(13)农药使用情况报告-2014年汇总数据(Pesticide Use reporting–2014Summary Data),Sacramento,CA,USA,2014;可在http://www.cdpr.ca.gov/docs/pur/pur14rep/14_pur.htm获取。
(14)Kim,J.-H.;Papiernik,S.K.;Farmer,W.J.;Gan,J.;Yates,S.R.J.,环境质量(Environ.Qual.),2003,32,2223–2229。
(15)(a)Yates,S.R.;Ashworth,D.J.;Zheng,W.;Zhang,Q.;Knuteson,J.;Wessenbeeck,I.J.V.J.,农业食品化学,2015,63,5354–5363。(b)Desaeger,J.A.Eger,J.E.J.;Csinos,A.S.;Gilreath,J.P.;Olson,S.M.;Webster,T.M.,害虫管理科学(PestManag.Sci.),2004,60,1220–1230。
(16)(a)Akira,S.;Mizuyoshi,F.;Hiroshi,A.;Shiyunnosuke,W.;Nobuji,T.,用于土壤消毒的颗粒状三氯硝基甲烷制剂及其制备,日本专利JPH01172302(A),1989年7月7日。(b)Solar,J.M.;Wilson,C.L.;Ghaouth,A.E.,收获农产品的控释熏蒸。美国专利US5958490 A,1999年9月28日。(c)Han,J.L.,三氯硝基甲烷和1.3-二氯丙烯的混合固体制剂及其制造工艺,中国专利CN 101627754B,2013年11月13日。(d)Han,J.L.;Yi,C.J.,1,3-二氯丙烯固体缓释制剂的制备方法和应用,中国专利申请CN 201310062631,2013年5月22日。
(17)Engelstad,O.P.,化肥技术与用途;美国土壤科学学会:麦迪逊,1985年。
合成过程。
乙酸钙一水合物(Ca(OAc)2·H2O)、L-(+)-乳酸、无水甲醇和乙醇购自商业来源,无需进一步纯化即直接使用。所有合成过程均在空气中进行。通过以下过程活化MOF:将合成后的MOF用新鲜的无水乙醇(MOF-1201)和甲醇(MOF-1203)洗涤1天,每天六次。然后将样品抽真空以在环境温度下在真空(0.01托)下除去客体分子12小时。除非另有说明,否则使用活化的MOF样品进行以下测量。
使用Perkin Elmer 2400Series II CHNS元素分析仪进行活化的MOF-1201和-3的元素分析(EA);在Bruker AVB-400NMR光谱仪上获得MOF消化溶液的1H NMR光谱,并通过与每个纯连接基的光谱进行比较鉴定连接基的化学位移。用超声处理将样品(每个约10mg)溶解在D2O(600μL)中。纯ZIF的衰减全反射傅立叶变换红外(ATR-FTIR)光谱在BrukerALPHA铂ATR-FTIR光谱仪上记录。
MOF-1201、Ca14(L-乳酸根)20(乙酸根)8(EtOH)(H2O)。在23mL Teflon高压釜中,将0.071g乙酸钙一水合物(Ca(OAc)2·H2O,0.4mmol)和0.072g L-(+)-乳酸(HL,0.8mmol)混合在6mL无水乙醇中。然后将高压釜密封并在120℃恒温烘箱中加热4天。冷却至室温后,将晶体用无水乙醇洗涤1天。(收率:基于Ca的26%)。EA:计算值,对于Ca14(C3H5O3)20(C2H3O2)8(C2H6O)(H2O):C,32.54;H,4.62.实测值:C,31.67;H,4.75.ATR-FTIR(4000-400cm-1):3250(br),2979(w),1563(s),1422(s),1314(m),1267(m),1122(s),1089(w),1044(m),930(w),858(m),773(m),664(m),616(m),550(m),469(w),442(w),423(w)。
MOF-1203,Ca6(L-乳酸根)3(乙酸根)9(H2O)。在23mL Teflon高压釜中,将0.071g乙酸钙一水合物(Ca(OAc)2·H2O,0.4mmol)和0.036g L-(+)-乳酸(HL,0.4mmol)混合在6mL无水乙醇中。然后将高压釜密封并在100℃恒温烘箱中加热3天。冷却至室温后,将晶体用无水甲醇洗涤1天。(收率:基于Ca的25%)。EA:计算值,对于Ca6(C3H5O3)3(C2H3O2)9:C,30.68;H,4.20.实测值:C,31.33;H,4.07.ATR-FTIR(4000-400cm-1):3300(br),2981(w),1540(s),1462(s),1417(s),1320(w),1271(m),1138(m),1123(m),1051(w),1024(m),956(w),934(w),860(m),774(m),662(s),649(m),617(s),561(m),468(m),419(w)。
使用合成后的晶体收集了两种MOF的单晶X射线衍射(SXRD)数据。MOF-1201和-3的数据是在0.7749(1)下在LBNL的ALS光束线11.3.1处收集的,其配备有使用同步辐射(10-17KeV)的Bruker Photon 100 CMOS面积检测器。将样品安装在
Figure BDA0002320150020000102
Kapton环上,并置于100(2)K氮气冷流中。
使用Bruker APEX2软件包(AXS公司,威斯康星州麦迪逊市,2010年;Sheldrick,GMActa Cryst.A 2008年,64,112-122)处理数据,使用SAINT v8.34A进行积分并通过SADABS2014/4例程针对吸收进行校正(不对消光或衰减进行校正)。通过固有定相(SHELXT)解析结构,并通过F2上的全矩阵最小二乘法(SHELXL-2014)精化。所有非氢原子均经过各向异性精化。除非另有说明,否则对氢原子进行几何计算并精化为骑乘原子(riding atom)。在两种结构中,高度无序的客体分子占据该结构的腔,其无法建模,并因此使用用Olex2软件包进行溶剂掩蔽的方法解析(Dolomanov等人,Appl.Cryst.2009,42,339-341;Rees等人,Acta.Cryst.D 2005,61,1299-13);更多详细信息参见CIF。
MOF-1201。快速从母液中拾取合成后的MOF-1201的无色棒状(100μm×20μm×20μm)晶体,将其置于巴拉通(paratone)油中以最小化晶体降解,并使用在100K下
Figure BDA0002320150020000103
的辐射将其固定在ALS的光束线11.3.1处。
表S1.MOF-1201的晶体数据和结构确定
Figure BDA0002320150020000111
aR1=Σ||Fo|-|Fc||/Σ|Fo|;bwR2=[Σw(Fo 2-Fc 2)2/Σw(Fo 2)2]1/2cS=[Σw(Fo 2-Fc 2)2/(Nref-Npar)]1/2
MOF-1203。快速从母液中拾取合成后的MOF-1203的无色针状(90μm×90μm×5μm)晶体,并使用的辐射将其固定在ALS的光束线11.3.1处。
表S2.MOF-1203的晶体数据和结构确定
Figure BDA0002320150020000121
aR1=Σ||Fo|-|Fc||/Σ|Fo|;bwR2=[Σw(Fo 2-Fc 2)2/Σw(Fo 2)2]1/2cS=[Σw(Fo 2-Fc 2)2/(Nref-Npar)]1/2
粉末X射线衍射(PXRD)分析是在具有Cu Kα辐射
Figure BDA0002320150020000122
的Bruker D8Advance衍射仪上进行的。通过比较实验和模拟的PXRD图检查材料的相纯度。
使用TA Q500热分析系统在空气流下记录热重分析(TGA)曲线。
熏蒸剂吸附和缓释测量。在BEL Japan BELSORP-aqua3上在室内测量25℃下的顺式1,3-二氯丙烯蒸气吸附等温线。在测量之前,将分析物在液氮中速冻,然后在动态真空下抽真空至少两次,以从储器(reservoir)中除去任何气体。用保持在25℃的水浴控制和监测测量温度。用氦气估计死角(dead space),用于蒸气吸附测量。
使用TA Q500热分析系统在1cm3 min-1的恒定空气流速下进行缓释实验。

Claims (11)

1.一种基于Ca2+的金属-有机骨架(MOF)组合物,其包含螯合L-乳酸根和乙酸根,具有下式:
[Ca14(L-乳酸根)(16-24)(乙酸根)(12-4)]或[Ca6(L-乳酸根)(2-4)(乙酸根)(10-8)],其中,乳酸根和乙酸根总计分别为28和12。
2.权利要求1的组合物,其具有式[Ca14(L-乳酸根)(16-24)(乙酸根)(12-4)],其中,乳酸根和乙酸根总计为28。
3.权利要求1的组合物,其具有式[Ca14(L-乳酸根)(18)(乙酸根)(10)]。
4.权利要求1的组合物,其具有式[Ca14(L-乳酸根)(21)(乙酸根)(7)]。
5.权利要求1的组合物,其具有式[Ca6(L-乳酸根)(2-4)(乙酸根)(10-8)],其中,乳酸根和乙酸根总计为12。
6.权利要求1的组合物,其具有式[Ca6(L-乳酸根)(4)(乙酸根)(8)]。
7.权利要求1的组合物,其具有式[Ca6(L-乳酸根)(2.5)(乙酸根)(9.5)]。
8.权利要求1的组合物,其为式[Ca14(L-乳酸根)(20)(乙酸根)(8)]的MOF-1201。
9.权利要求1的组合物,其为式[Ca6(L-乳酸根)(3)(乙酸根)(9)]的MOF-1203。
10.权利要求1、2、3、4、5、6、7、8或9的组合物,其包含封装在MOF中的试剂,其中所述试剂选自:
作物保护产品如肥料(例如氮肥、磷肥、钾肥或钙肥)或农药(例如杀虫剂、除草剂、杀真菌剂),其可以是熏蒸剂或可喷雾制剂;
药物或治疗剂如抗微生物的(例如抗细菌的、抗病毒的或抗真菌的)试剂,皮肤病学试剂或者皮肤或头发护理剂等,
芳香化合物如增味剂、芳香剂、香料或香水,包括精油、提取物、合成增味剂;和
食品添加剂如酸化剂和酸度调节剂、抗结块剂、消泡剂和发泡剂、抗氧化剂如抗坏血酸、着色剂和保色剂、强化剂如维生素、矿物质和微量营养素、乳化剂、调味剂和风味增强剂、上光剂、防腐剂、稳定剂、增稠剂和胶凝剂、天然和人工甜味剂和增稠剂。
11.一种输送或分配无毒的可生物降解载体中的试剂的方法,该方法包括输送或分配封装在权利要求1、2、3、4、5、6、7、8或9的组合物中的试剂。
CN201880040158.8A 2017-06-01 2018-05-31 作为天然可降解载体的l-乳酸钙骨架 Active CN110770201B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762513973P 2017-06-01 2017-06-01
US62/513973 2017-06-01
PCT/US2018/035237 WO2018222785A1 (en) 2017-06-01 2018-05-31 Calcium l-lactate frameworks as naturally degradable carriers

Publications (2)

Publication Number Publication Date
CN110770201A true CN110770201A (zh) 2020-02-07
CN110770201B CN110770201B (zh) 2022-03-11

Family

ID=64455586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880040158.8A Active CN110770201B (zh) 2017-06-01 2018-05-31 作为天然可降解载体的l-乳酸钙骨架

Country Status (7)

Country Link
US (1) US10766908B2 (zh)
EP (1) EP3630715B1 (zh)
JP (1) JP7066750B2 (zh)
KR (1) KR102561161B1 (zh)
CN (1) CN110770201B (zh)
ES (1) ES2884799T3 (zh)
WO (1) WO2018222785A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116515125A (zh) * 2023-04-28 2023-08-01 华中科技大学 一种废弃聚乳酸制备金属-有机框架材料的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255426B1 (ko) 2019-08-30 2021-05-24 한국과학기술원 아연-브롬 전지용 양극 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933591A (zh) * 2010-04-30 2013-02-13 联邦科学与工业研究组织 用于合成金属有机框架的结晶辅助剂
WO2016077875A1 (en) * 2014-11-17 2016-05-26 Commonwealth Scientific And Industrial Research Organisation Fertiliser composition
US20170101429A1 (en) * 2014-03-28 2017-04-13 The Regents Of The University Of California Metal organic frameworks comprising a plurality of sbus with different metal ions and/or a plurality of organic linking ligands with different functional groups

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532902B2 (ja) 1987-12-28 1996-09-11 アグロ・カネショウ株式会社 土壌殺菌用粒状クロルピクリン製剤およびその製造法
US5958490A (en) 1994-11-07 1999-09-28 The Unites States Of America, As Represented By The Secretary Of Agriculture Controlled release fumigation of harvested agricultural commodities
JP5730574B2 (ja) * 2007-09-25 2015-06-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 食用に適した生体適合性金属有機構造体
CN101627754B (zh) 2009-08-13 2013-11-13 韩景良 氯化苦与1.3——二氯丙烯的固体混合剂型及其制造技术
CA2804313A1 (en) * 2010-07-20 2012-01-26 The Regents Of The University Of California Functionalization of organic molecules using metal-organic frameworks (mofs) as catalysts
CN104302387B (zh) * 2011-10-13 2019-06-18 加利福尼亚大学董事会 具有格外大的孔口的金属有机骨架
EP3086427B1 (en) * 2013-12-20 2019-11-27 Sinonewenergy (Suzhou) Technology Co. Ltd. Lithium-ion battery protector
US20170081345A1 (en) * 2014-03-18 2017-03-23 The Regents Of The University Of California Metal-organic frameworks characterized by having a large number of adsorption sites per unit volume
US10196887B2 (en) * 2014-07-15 2019-02-05 Halliburton Energy Services, Inc. Metal-organic frameworks as porous proppants
US20170166805A1 (en) * 2014-07-15 2017-06-15 Halliburton Energy Services, Inc. Metal-Organic Frameworks as Encapsulating Agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933591A (zh) * 2010-04-30 2013-02-13 联邦科学与工业研究组织 用于合成金属有机框架的结晶辅助剂
US20170101429A1 (en) * 2014-03-28 2017-04-13 The Regents Of The University Of California Metal organic frameworks comprising a plurality of sbus with different metal ions and/or a plurality of organic linking ligands with different functional groups
WO2016077875A1 (en) * 2014-11-17 2016-05-26 Commonwealth Scientific And Industrial Research Organisation Fertiliser composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEBASIS BANERJEE等: "Recent Advances in s-Block Metal Carboxylate Networks", 《CRYSTAL GROWTH & DESIGN》 *
JINGJING YANG 等: "Calcium L-Lactate Frameworks as Naturally Degradable Carriers for Pesticides", 《J.AM.CHEM.SOC.》 *
STUART R. MILLER等: "A rare example of porous calcium based MOF for the controlled release of biologically active nitric oxide", 《CHEM.COMMUN.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116515125A (zh) * 2023-04-28 2023-08-01 华中科技大学 一种废弃聚乳酸制备金属-有机框架材料的方法
CN116515125B (zh) * 2023-04-28 2024-05-24 华中科技大学 一种废弃聚乳酸制备金属-有机框架材料的方法

Also Published As

Publication number Publication date
JP7066750B2 (ja) 2022-05-13
WO2018222785A1 (en) 2018-12-06
JP2020522511A (ja) 2020-07-30
US20200095264A1 (en) 2020-03-26
KR102561161B1 (ko) 2023-07-28
KR20200014846A (ko) 2020-02-11
EP3630715A4 (en) 2020-05-13
US10766908B2 (en) 2020-09-08
EP3630715A1 (en) 2020-04-08
EP3630715B1 (en) 2021-07-07
CN110770201B (zh) 2022-03-11
ES2884799T3 (es) 2021-12-13

Similar Documents

Publication Publication Date Title
Gupta et al. Control of interpenetration and structural transformations in the interpenetrated MOFs
Liang et al. A tailor-made interpenetrated MOF with exceptional carbon-capture performance from flue gas
Pal et al. Significant Gas Adsorption and Catalytic Performance by a Robust CuII–MOF Derived through Single‐Crystal to Single‐Crystal Transmetalation of a Thermally Less‐Stable ZnII–MOF
Wang et al. Continuous synthesis for zirconium metal-organic frameworks with high quality and productivity via microdroplet flow reaction
Fujita et al. Molecular paneling via coordination
Meyer et al. The dynamic chemistry of molecular Borromean rings and Solomon knots
Schneemann et al. Targeted manipulation of metal–organic frameworks to direct sorption properties
CN110770201B (zh) 作为天然可降解载体的l-乳酸钙骨架
Wang et al. Uncovering structural opportunities for zirconium metal–organic frameworks via linker desymmetrization
Karra et al. Synthesis, characterization, and adsorption studies of nickel (II), zinc (II), and magnesium (II) coordination frameworks of BTTB
Wang et al. A hydrostable anionic zinc-organic framework carrier with a bcu topology for drug delivery
Berijani et al. Chiral templated synthesis of homochiral metal-organic frameworks
Xiao et al. Enhancing adsorption capacity and herbicidal efficacy of 2, 4-D through supramolecular self-assembly: insights from cocrystal engineering to solution chemistry
Zheng et al. Metal‐Organic Frameworks with Rod Yttrium Secondary Building Units
KR101176875B1 (ko) 큰 기공을 갖는 혼합-리간드 금속-유기 골격체
CN103435801B (zh) 一种氯化银/多孔芳香框架复合材料及其制备方法
Yadav et al. A supramolecular 2: 1 guanidinium–carboxylate based building block for generation of water channels and clusters in organic materials
KR101029326B1 (ko) 큰 다공성의 금속-유기 골격체 및 이를 포함하는 가스 저장체 및 금속-유기 골격체 제조방법
Das et al. Effect of substitution on halide/hydrated halide binding: a case study of neutral bis-urea receptors
Springer et al. The ZIF system zinc (II) 4, 5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms
Helten et al. Functional group tolerance in BTB-based metal–organic frameworks (BTB–benzene-1, 3, 5-tribenzoate)
Yang et al. A microporous [Ni3 (μ3-OH)] cluster-based framework with 9-connected ncb topology
Gupta et al. Sc (III)-based metal–organic frameworks
Ishikawa et al. Water adsorption–desorption property of stable porous supramolecular assembly composed of discrete tetranuclear iron (III) complex using π⋯ π interactions
Kayal et al. Steric influence of adamantane substitution in tris-urea receptor: Encapsulation of sulphate and fluoride-water cluster

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant