CN110752141B - 一种太阳能电池cigs吸收层的制备方法 - Google Patents

一种太阳能电池cigs吸收层的制备方法 Download PDF

Info

Publication number
CN110752141B
CN110752141B CN201810813615.4A CN201810813615A CN110752141B CN 110752141 B CN110752141 B CN 110752141B CN 201810813615 A CN201810813615 A CN 201810813615A CN 110752141 B CN110752141 B CN 110752141B
Authority
CN
China
Prior art keywords
layer
evaporation
naf
cigs
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810813615.4A
Other languages
English (en)
Other versions
CN110752141A (zh
Inventor
陈腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongyi Technology Co.,Ltd.
Original Assignee
Hongyi Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongyi Technology Co ltd filed Critical Hongyi Technology Co ltd
Priority to CN201810813615.4A priority Critical patent/CN110752141B/zh
Publication of CN110752141A publication Critical patent/CN110752141A/zh
Application granted granted Critical
Publication of CN110752141B publication Critical patent/CN110752141B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种用于太阳能电池的CIGS吸收层的制备方法,包括以下步骤:提供基底,并在基底上蒸发沉积第一NaF层;在第一NaF层上共蒸发沉积第一In/Ga/Se层;在第一In/Ga/Se层上共蒸发沉积Cu/Se层;在Cu/Se层上蒸发沉积第二NaF层;在第二NaF层上共蒸发沉积第二In/Ga/Se层。本发明方法能够使得CIGS吸收层在深度方向上形成V型的Ga浓度梯度,从而能够有效提高太阳能电池的转化效率。

Description

一种太阳能电池CIGS吸收层的制备方法
技术领域
本发明属于太阳能电池技术领域,尤其涉及一种用于太阳能电池的CIGS吸收层的制备方法,使得能够形成V型Ga浓度梯度的CIGS吸收层。
背景技术
CIGS太阳能电池吸收层中深度方向上的Ga浓度梯度的控制十分关键,特定的Ga双浓度梯度的形成可以有效提高电池的开路电压和短路电流,从而提高电池转化效率。
CIGS太阳能电池吸收层的制备方法主要有溅射后硒化法和共蒸发法,其中溅射后硒化法因其工艺的局限性很难形成V型Ga浓度梯度。共蒸发法,尤其是三步共蒸发法,因其工艺具有Ga双浓度梯度分布的特性,使得共蒸发法在产业化上备受青睐。通常,在共蒸发法工艺中,利用膜厚仪逐个测定单一金属源在工作蒸发温度下的蒸发速率,然后根据蒸发速率控制蒸发时间来实现蒸镀沉积厚度的控制。
常规三步共蒸发法工艺通常是第一步先进行In/Ga/Se的共蒸发,形成(In,Ga)2Se3预制层;第二步再进行Gu/Se共蒸发,与所述预制层反应形成CIGS晶体薄膜和富Cu的Cu2Se二元相;最后第三步再进行In/Ga/Se的共蒸发,形成具有Ga浓度梯度的表面贫Cu的CIGS薄膜。
图1示出CIGS吸收层中沿深度方向的三种Ga浓度梯度形式。常规三步共蒸发法虽然可以形成Ga的双浓度梯度分布,但是常规三步共蒸发法由于其第一步和第三步蒸发沉积的Ga会彼此相互扩散,导致难以形成理想的V型Ga浓度梯度(如图1a所示),而是容易在CIGS薄膜中间部位形成Ga浓度较高的过渡层(如图1b所示),甚至在CIGS薄膜中间形成Ga浓度较高的峰(如图1c所示),从而影响薄膜吸收层吸收光谱范围和载流子输运,不利于薄膜吸收层的质量。
现有太阳能电池吸收层制备技术中,制备CIGS太阳能电池的方法包括在具有聚酰亚胺膜的衬底上通过三步共蒸法制备CIGS吸收层,再在CIGS吸收层上沉积氟化钠层,使得Na能够扩散掺杂进入CIGS吸收层中。但是,该专利并未教导此种方法是否能够实现V型Ga浓度梯度的CIGS吸收层。
发明内容
为了解决上述问题,本发明提出一种用于太阳能电池的CIGS吸收层的制备方法,以利于实现V型Ga浓度梯度的CIGS吸收层。
本发明提供一种用于太阳能电池的CIGS吸收层的制备方法,包括以下步骤:提供基底,并在基底上蒸发沉积第一NaF层;在第一NaF层上共蒸发沉积第一In/Ga/Se层;在第一In/Ga/Se层上共蒸发沉积Cu/Se层;在Cu/Se层上蒸发沉积第二NaF层;在第二NaF层上共蒸发沉积第二In/Ga/Se层。
优选地,所述方法在真空环境中进行,其中真空度为10-3-10-5Pa。
优选地,所述基底选自表面镀钼的不锈钢或钠钙玻璃。
优选地,制备所述第一NaF层的工艺条件包括:基底温度为300-350℃,第一NaF层的沉积厚度为
Figure BDA0001739797180000021
优选地,制备所述第一In/Ga/Se层的工艺条件包括:基底温度为450-500℃,In的沉积厚度为
Figure BDA0001739797180000022
Ga的沉积厚度为
Figure BDA0001739797180000023
Se的沉积厚度为
Figure BDA0001739797180000024
蒸发时间可以是200-240秒。
优选地,制备所述Cu/Se层的工艺条件包括:基底温度为550-600℃,Cu的沉积厚度为
Figure BDA0001739797180000025
Se的沉积厚度为
Figure BDA0001739797180000026
优选地,制备所述第二NaF层的工艺条件包括:基底温度为700-750℃,第二NaF层的沉积厚度为
Figure BDA0001739797180000027
蒸发时间可以是100-120秒。
优选地,制备所述第二In/Ga/Se层的工艺条件包括:基底温度为750-800℃,In的沉积厚度为
Figure BDA0001739797180000028
Ga的沉积厚度为
Figure BDA0001739797180000029
Se的沉积厚度为
Figure BDA00017397971800000210
蒸发时间可以为120-150秒。
优选地,通过上述方法制备的CIGS吸收层在深度方向上具有V型Ga浓度梯度。
本发明所述的用于太阳能电池的CIGS吸收层的制备方法,在第一层(底层)NaF和第二层(夹层)NaF的共同作用下,实现了V型Ga浓度梯度CIGS吸收层的制备,使得CIGS吸收层的Ga浓度梯度能够在深度方向上形成V型分布,从而能够有效提高电池的转化效率。
附图说明
图1示出CIGS吸收层中沿深度方向的三种Ga浓度梯度形式;
图2示出本发明方法的蒸发沉积层次的示意图;和
图3示出本发明方法与常规三步共蒸发方法得到的Ga浓度梯度分布对比图。
具体实施方式
具体地,本发明提供一种用于太阳能电池的CIGS吸收层的制备方法,包括以下步骤:第一步,提供基底,并在基底上蒸发沉积第一NaF层;第二步,在第一NaF层上共蒸发沉积第一In/Ga/Se层;第三步,在第一In/Ga/Se层上共蒸发沉积Cu/Se层;第四步,在Cu/Se层上蒸发沉积第二NaF层;第五步,在第二NaF层上共蒸发沉积第二In/Ga/Se层。
本发明的原理在于,第一步中沉积的NaF会在第二步In/Ga/Se逐渐反应形成的(In,Ga)2Se3晶界中饱和分布,在第三步Cu/Se蒸镀反应中,由于(In,Ga)2Se3中晶界NaF的阻挡作用,Cu/Se会优先与扩散系数较大倾向于向预制层表面扩散的In反应,从而形成由底部到表面Ga浓度递减的CIGS和表面Cu2Se二元相;而第四步沉积的NaF会扩散进入底部CIGS和Cu2Se二元相近表面,在第五步In/Ga/Se蒸镀反应过程中,同样扩散并分布至新形成的CIGS晶界,阻挡Ga向下扩散与富铜二元相Cu2Se的反应,从而形成由顶部至中间浓度递减的Ga浓度梯度。
如此,在第一层(底层)NaF和第二层(夹层)NaF的共同作用下,本发明实现了V型Ga浓度梯度CIGS吸收层的制备,使得CIGS吸收层的Ga浓度梯度能够在深度方向上形成V型分布,从而能够有效提高电池的转化效率。
下面结合实施例对本发明进行进一步说明:
实施例1
在常规真空蒸发设备中制备用于太阳能电池的V型Ga浓度梯度CIGS吸收层,具体包括以下步骤:
第一,调节环境真空度为10-3Pa;
第二,选用表面镀Mo的钠钙玻璃为基底,调节基底温度为300℃,在基底上蒸镀第一NaF层,蒸镀沉积厚度为
Figure BDA0001739797180000031
第三,调节基底温度为450℃,共蒸发沉积第一In/Ga/Se层,In的沉积厚度为
Figure BDA00017397971800000310
Ga的沉积厚度为
Figure BDA0001739797180000032
Se的沉积厚度为
Figure BDA0001739797180000033
蒸发时间为200s;
第四,调节基底温度为550℃,共蒸发沉积Cu/Se层,Cu的沉积厚度为
Figure BDA0001739797180000034
Se的沉积厚度为
Figure BDA0001739797180000035
蒸发时间为100s;
第五,调节基底温度为700℃,蒸发沉积第二NaF层,沉积厚度为
Figure BDA0001739797180000036
第六,调节基底温度为750℃,共蒸发沉积第二In/Ga/Se层,In的沉积厚度为
Figure BDA0001739797180000037
Ga的沉积厚度为
Figure BDA0001739797180000038
Se的沉积厚度为
Figure BDA0001739797180000039
蒸发时间为120s;
第七,基底温度降温至室温。
实施例2
在常规真空蒸发设备中制备用于太阳能电池的V型Ga浓度梯度CIGS吸收层,具体包括以下步骤:
第一,调节环境真空度为10-5Pa;
第二,选用表面镀Mo的不锈钢为基底,调节基底温度为350℃,在基底上蒸镀第一NaF层,蒸镀沉积厚度为
Figure BDA0001739797180000041
第三,调节基底温度为500℃,共蒸发沉积第一In/Ga/Se层,In的沉积厚度为
Figure BDA0001739797180000042
Ga的沉积厚度为
Figure BDA0001739797180000043
Se的沉积厚度为
Figure BDA0001739797180000044
蒸发时间为240s;
第四,调节基底温度为600℃,共蒸发沉积Cu/Se层,Cu的沉积厚度为
Figure BDA0001739797180000045
Se的沉积厚度为
Figure BDA0001739797180000046
蒸发时间为120s;
第五,调节基底温度为750℃,蒸发沉积第二NaF层,沉积厚度为
Figure BDA0001739797180000047
第六,调节基底温度为780℃,共蒸发沉积第二In/Ga/Se层,In的沉积厚度为
Figure BDA0001739797180000048
Ga的沉积厚度为
Figure BDA0001739797180000049
Se的沉积厚度为
Figure BDA00017397971800000410
蒸发时间为150s;
第七,基底温度降温至室温。
实施例3
在常规真空蒸发设备中制备用于太阳能电池的V型Ga浓度梯度CIGS吸收层,具体包括以下步骤:
第一,调节环境真空度为10-4Pa;
第二,选用表面镀Mo的钠钙玻璃为基底,调节基底温度为320℃,在基底上蒸镀第一NaF层,蒸镀沉积厚度为
Figure BDA00017397971800000411
第三,调节基底温度为460℃,共蒸发沉积第一In/Ga/Se层,In的沉积厚度为
Figure BDA00017397971800000412
Ga的沉积厚度为
Figure BDA00017397971800000413
Se的沉积厚度为
Figure BDA00017397971800000414
蒸发时间为220s;
第四,调节基底温度为580℃,共蒸发沉积Cu/Se层,Cu的沉积厚度为
Figure BDA00017397971800000415
Se的沉积厚度为
Figure BDA00017397971800000416
蒸发时间为110s;
第五,调节基底温度为720℃,蒸发沉积第二NaF层,沉积厚度为
Figure BDA00017397971800000417
第六,调节基底温度为760℃,共蒸发沉积第二In/Ga/Se层,In的沉积厚度为
Figure BDA00017397971800000418
Ga的沉积厚度为
Figure BDA00017397971800000419
Se的沉积厚度为
Figure BDA00017397971800000420
蒸发时间为130s;
第七,基底温度降温至室温。
对比实施例1
利用常规的三步共蒸发工艺制备用于太阳能电池的CIGS吸收层,具体方法包括以下步骤:
第一,调节真空蒸发设备中的环境气压为10-4Pa;
第二,选用表面镀Mo的钠钙玻璃为基底,调节基底温度为460℃,进行In/Ga/Se共蒸,In的沉积厚度为
Figure BDA0001739797180000051
Ga的沉积厚度为
Figure BDA0001739797180000052
Se的沉积厚度为
Figure BDA0001739797180000053
蒸发时间为220s;
第三,调节基底温度为580℃,进行Cu/Se共蒸,Cu的沉积厚度为
Figure BDA0001739797180000054
Se的沉积厚度为
Figure BDA0001739797180000055
蒸发时间为110s;
第四,调节基底温度为760℃,进行In/Ga/Se共蒸,In的沉积厚度为
Figure BDA0001739797180000056
Ga的沉积厚度为
Figure BDA0001739797180000057
Se的沉积厚度为
Figure BDA0001739797180000058
蒸发时间为130s;
第五,基底降温至室温。
蒸发沉积厚度(蒸镀厚度)用于表征在蒸发或共蒸发工艺中所沉积的量,蒸发沉积厚度取决于一定温度下的蒸发速率和蒸发时间,通过利用膜厚仪逐个离线测定单一金属源在工作蒸发温度下的蒸发速率,然后根据蒸发速率控制蒸发时间来实现蒸镀厚度的控制,这属于公知技术,本文不多加赘述。
如图2所示,示出了本发明方法的蒸发沉积层次的示意图。在基底上1)蒸发沉积第一NaF层;2)在第一NaF层上共蒸发沉积第一In/Ga/Se层;3)在第一In/Ga/Se层上共蒸发沉积Cu/Se层;4)在Cu/Se层上蒸发沉积第二NaF层;5)在第二NaF层上共蒸发沉积第二In/Ga/Se层。
图3示出本发明方法(实施例3)与常规三步共蒸发方法(对比例1)得到的CIGS吸收层中Ga浓度梯度分布对比图,其中以Ga/(In+Ga)原子比来表征Ga的浓度。由图3可见,在常规三步共蒸发法(对比例1)中,Ga浓度梯度表现为如图1b所示的形状,在CIGS吸收层的中间厚度部位形成Ga浓度较高的平坦过渡层。而在本发明的方法(实施例3)中,Ga浓度梯度形成为如图1a所示的理想V型。
不受现有理论的束缚,本发明人认为本发明方法能够形成V型Ga浓度梯度分布的CIGS吸收层的原理可能在于:第一步中沉积的底层NaF会在第二步沉积的In/Ga/Se所逐渐反应形成的(In,Ga)2Se3晶界中饱和分布;在第三步Cu/Se蒸镀反应中,由于(In,Ga)2Se3中晶界NaF的阻挡作用,Cu/Se会优先与扩散系数较大的倾向于向预制层表面扩散的In反应,从而形成由底部到表面Ga浓度递减的CIGS和表面Cu2Se二元相;而第四步沉积的NaF会扩散进入底部CIGS和Cu2Se二元相的近表面,在第五步In/Ga/Se蒸镀反应过程中,NaF同样扩散并分布至新形成的CIGS晶界,阻挡Ga向下扩散与富铜二元相Cu2Se的反应,从而形成由顶部至中间浓度递减的Ga浓度梯度。由此,能够形成在CIGS吸收层的深度方向上从两端向中间逐渐减小的Ga浓度梯度,即V型Ga浓度梯度。
表1示出常规三步共蒸发法(对比例1)与本发明方法(实施例3)制备得到的CIGS太阳能电池的性能对比数据,其中本发明方法制备得到的CIGS太阳能电池的各项性能数据均优于常规三步共蒸发法制备得到的CIGS太阳能电池,例如开路电压提高了2.5%,电池转化效率增加了3.6%。因此,本发明方法制备得到的太阳能电池具有较高的开路电压和短路电流,同时填充因子接近,从而具有更高的电池转化效率。
表1-对比例1与实施例3的方法制备得到的CIGS太阳能电池的性能对比参照表
Figure BDA0001739797180000061
本发明并不局限于上述实施方式,本发明的实施例旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种用于太阳能电池的CIGS吸收层的制备方法,其特征在于,包括:
提供一基底,在基底上蒸发沉积第一NaF层;
在第一NaF层上共蒸发沉积第一In/Ga/Se层;
在第一In/Ga/Se层上共蒸发沉积Cu/Se层;
在Cu/Se层上蒸发沉积第二NaF层;和
在第二NaF层上共蒸发沉积第二In/Ga/Se层。
2.如权利要求1所述的方法,其特征在于,所述方法在真空环境中进行,其中真空度为10-3-10-5Pa。
3.如权利要求1所述的方法,其特征在于,所述基底选自表面镀钼的不锈钢或钠钙玻璃。
4.如权利要求1所述的方法,其特征在于,制备所述第一NaF层的工艺条件包括:基底温度为300-350℃,第一NaF层的沉积厚度为
Figure FDA0001739797170000011
5.如权利要求1所述的方法,其特征在于,制备所述第一In/Ga/Se层的工艺条件包括:基底温度为450-500℃,In的沉积厚度为
Figure FDA0001739797170000019
Ga的沉积厚度为
Figure FDA00017397971700000110
Se的沉积厚度为
Figure FDA0001739797170000012
6.如权利要求1所述的方法,其特征在于,制备所述Cu/Se层的工艺条件包括:基底温度为550-600℃,Cu的沉积厚度为
Figure FDA0001739797170000013
Se的沉积厚度为
Figure FDA0001739797170000018
7.如权利要求1所述的方法,其特征在于,制备所述第二NaF层的工艺条件包括:基底温度为700-750℃,第二NaF层的沉积厚度为
Figure FDA0001739797170000014
8.如权利要求1所述的方法,其特征在于,制备所述第二In/Ga/Se层的工艺条件包括:基底温度为750-800℃,In的沉积厚度为
Figure FDA0001739797170000015
Ga的沉积厚度为
Figure FDA0001739797170000016
Se的沉积厚度为
Figure FDA0001739797170000017
9.如权利要求1所述的方法,其特征在于,所述CIGS吸收层在深度方向上具有V型Ga浓度梯度。
CN201810813615.4A 2018-07-23 2018-07-23 一种太阳能电池cigs吸收层的制备方法 Active CN110752141B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810813615.4A CN110752141B (zh) 2018-07-23 2018-07-23 一种太阳能电池cigs吸收层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810813615.4A CN110752141B (zh) 2018-07-23 2018-07-23 一种太阳能电池cigs吸收层的制备方法

Publications (2)

Publication Number Publication Date
CN110752141A CN110752141A (zh) 2020-02-04
CN110752141B true CN110752141B (zh) 2022-01-11

Family

ID=69275182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810813615.4A Active CN110752141B (zh) 2018-07-23 2018-07-23 一种太阳能电池cigs吸收层的制备方法

Country Status (1)

Country Link
CN (1) CN110752141B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331729A (zh) * 2020-11-04 2021-02-05 凯盛光伏材料有限公司 Cigs薄膜太阳能电池的光吸收层及其形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201124544A (en) * 2009-11-24 2011-07-16 Applied Quantum Technology Llc Chalcogenide absorber layers for photovoltaic applications and methods of manufacturing the same
US8404512B1 (en) * 2011-03-04 2013-03-26 Solopower, Inc. Crystallization methods for preparing group IBIIIAVIA thin film solar absorbers
JP5851434B2 (ja) * 2013-02-12 2016-02-03 日東電工株式会社 Cigs膜の製法およびその製法を用いたcigs太陽電池の製法
US20150207011A1 (en) * 2013-12-20 2015-07-23 Uriel Solar, Inc. Multi-junction photovoltaic cells and methods for forming the same
CN204271113U (zh) * 2014-11-17 2015-04-15 中国电子科技集团公司第十八研究所 一种柔性衬底上共蒸发制备高结合力吸收层的装置

Also Published As

Publication number Publication date
CN110752141A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
JP4841173B2 (ja) Cis系薄膜太陽電池の高抵抗バッファ層・窓層連続製膜方法及び製膜装置
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
US20140053896A1 (en) Method for producing the pentanary compound semiconductor cztsse, and thin-film solar cell
JP2009283508A (ja) Cis系薄膜太陽電池の製造方法
WO2009142316A1 (ja) Cis系薄膜太陽電池の製造方法
WO2011074685A1 (ja) Cis系薄膜太陽電池の製造方法
EP2876696B1 (en) Method for preparing copper indium gallium selenide film solar cell
KR101628312B1 (ko) CZTSSe계 박막 태양전지의 제조방법 및 이에 의해 제조된 CZTSSe계 박막 태양전지
CN105720132A (zh) 一种柔性衬底上制备cigs吸收层碱金属掺杂方法
US20090050208A1 (en) Method and structures for controlling the group iiia material profile through a group ibiiiavia compound layer
Hsu et al. Na‐induced efficiency boost for Se‐deficient Cu (In, Ga) Se2 solar cells
US20190245103A1 (en) Copper indium gallium selenide absorption layer and preparation method thereof, solar cell and preparation method thereof
US20070151862A1 (en) Post deposition treatments of electrodeposited cuinse2-based thin films
CN104025309A (zh) 太阳能电池及其制造方法
CN110752141B (zh) 一种太阳能电池cigs吸收层的制备方法
EP2702615B1 (en) Method of preparing a solar cell
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
US8962379B2 (en) Method of producing CIGS film, and method of producing CIGS solar cell by using same
JP2010192690A (ja) 太陽電池の製造方法
KR101322652B1 (ko) ZnS/CIGS 박막태양전지 및 제조방법
US20120288986A1 (en) Electroplating method for depositing continuous thin layers of indium or gallium rich materials
US8846438B2 (en) Method for indium sputtering and for forming chalcopyrite-based solar cell absorber layers
CN111223963B (zh) 一种铜铟镓硒薄膜太阳能电池大规模生产时的碱金属掺杂处理法
CN105679877A (zh) 一种柔性衬底上制备高结合力吸收层的方法
JP5575163B2 (ja) Cis系薄膜太陽電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 100076 6015, 6th floor, building 8, 9 Yingshun Road, Yinghai Town, Daxing District, Beijing

Applicant after: Beijing Dingrong Photovoltaic Technology Co.,Ltd.

Address before: 3001, room 6, building No. 7, Rongchang East Street, Beijing economic and Technological Development Zone, Beijing, Daxing District 100176, China

Applicant before: BEIJING APOLLO DING RONG SOLAR TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20210426

Address after: 518000 Guangdong city of Shenzhen province Qianhai Shenzhen Hong Kong cooperation zone before Bay Road No. 1 building 201 room A (located in Shenzhen Qianhai business secretary Co. Ltd.)

Applicant after: Hongyi Technology Co.,Ltd.

Address before: 100076 6015, 6th floor, building 8, 9 Yingshun Road, Yinghai Town, Daxing District, Beijing

Applicant before: Beijing Dingrong Photovoltaic Technology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant