CN110750002B - 一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法与应用 - Google Patents

一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法与应用 Download PDF

Info

Publication number
CN110750002B
CN110750002B CN201911040227.8A CN201911040227A CN110750002B CN 110750002 B CN110750002 B CN 110750002B CN 201911040227 A CN201911040227 A CN 201911040227A CN 110750002 B CN110750002 B CN 110750002B
Authority
CN
China
Prior art keywords
magneto
film
optical
cubic phase
bismuth ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911040227.8A
Other languages
English (en)
Other versions
CN110750002A (zh
Inventor
庄乃锋
林楠茜
胡晓琳
陈新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201911040227.8A priority Critical patent/CN110750002B/zh
Publication of CN110750002A publication Critical patent/CN110750002A/zh
Application granted granted Critical
Publication of CN110750002B publication Critical patent/CN110750002B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0036Magneto-optical materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Nonlinear Science (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明提供一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法和应用。所述磁光材料的化学式为Bi1‑x Sr x Fe1‑x Ti x O3x=0.2~0.5,其属于立方晶系,空间群为,并可采用射频磁控溅射法制备,具有工艺简单,周期短,重现性好等优点。本发明所得磁光材料具有结构新颖、光学和磁学性能良好、磁光效应显著等优点,且其与硅的晶格相匹配,有望在硅基集成光隔离器等领域获得应用。

Description

一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法与 应用
技术领域
本发明属于磁光材料技术领域,具体涉及一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法与应用。
背景技术
在光通信技术中,大量的数据传输对光纤的抗干扰性和稳定性有很高要求,需要在光纤或其他光器件中加入磁光隔离器来提高传输的稳定性。因此,开发具有高磁光性能、高稳定性、低传输损耗的磁光材料,是当前通讯技术发展的迫切需要。相关研究表明,在石榴石型磁光材料R3Fe5O12中掺入适量的Bi3+离子,由于Bi3+激发态能级在晶场和分子场超交换作用下,晶场能级强烈混合,从而可以明显提高晶体的磁光法拉第效应。例如Bi:YIG、Bi:HoYbIG、Bi:GdIG等,都具有法拉第旋转角大、磁光性能优异等优点。但是,石榴石型薄膜与硅基底之间存在热膨胀系数(YIG:10.4×10-6K-1,Si:3×10-6K-1)和晶胞参数(YIG:12.376,Si:5.431/>)的巨大差异,导致在硅单晶片上直接生长石榴石型薄膜时容易产生开裂等缺陷,限制其在集成器件方面的应用。
与石榴石相比,钙钛矿型铁酸盐RFeO3的晶格与硅衬底的匹配度更高,并且具备高灵敏度、高响应速度、高磁光优值和高居里温度(620-760K)等诸多优点。然而,作为Bi3+离子含量更高的BiFeO3,尽管在自旋电子器件、磁电传感器、转换器、制动器以及高密度铁电存储器等方面表现出众多优点,成为了最有应用前景的材料体系之一,却未有文献报道其磁光性能及其在磁光器件方面的应用。这主要是因为BiFeO3属三方菱形晶系,由于特殊的螺旋G型反铁磁结构,晶体的宏观磁性很弱,导致磁光效应太小而未受关注。此外,BiFeO3属于三方晶系,存在双折射效应,对磁光效应也有不利影响。而有关立方相掺杂BiFeO3的磁光效应及其硅基薄膜制备等的研究目前尚未有文献报道。
发明内容
本发明针对现有技术的不足,提供了一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法与应用。该磁光材料的晶格点阵与硅适配度高,易于在硅基底上外延生长获得高质量薄膜,且其在室温下具有光学和磁学性能良好、磁光性能优异的特点,在集成光隔离器领域具有很好的应用前景。
为实现上述目的,本发明采用如下技术方案:
一种钙钛矿型立方相掺杂铁酸铋磁光材料,其化学式为Bi1-x Sr x Fe1-x Ti x O3x=0.2~0.5,属立方晶系,空间群为,是一种新型立方相钙钛矿铁酸盐结构;其中Bi、Sr共同占据A格位,Fe、Ti共同占据B格位。
所述钙钛矿型立方相掺杂铁酸铋磁光材料的制备方法包括如下步骤:
(1)多晶粉体的制备:按Bi1-x Sr x Fe1-x Ti x O3x=0~0.5)的化学计量比准确称取初始原料Bi2O3、Fe2O3、SrCO3、TiO2,置于玛瑙研钵中研磨45分钟,以确保混合均匀;将所得混合粉末于空气气氛、700℃下预烧结4小时,然后重新研磨,再在空气气氛、820℃下烧结6小时得到立方相掺杂铁酸铋多晶粉体;
(2)靶材的制备:按0.05mL/g的比例往步骤(1)所得立方相掺杂铁酸铋多晶粉体中加入PVA粘合剂,充分研磨并压制成片,再在820℃下烧结4小时,获得致密度高的多晶原料靶材;
(3)薄膜的制备:采用射频磁控溅射法,以(100)取向的单晶硅片或SiO2石英玻璃为基底制备Bi1-x Sr x Fe1-x Ti x O3x=0~0.5)薄膜;射频磁控溅射的工艺参数为:靶基距5cm,本底真空度1×10-4Pa,工作气体为Ar,工作气压1.6Pa,气体流量20Sccm,溅射功率80W,溅射时长为1.5小时;
(4)晶化处理:将步骤(3)制得的薄膜在氧气氛围中进行退火,避免氧空位缺陷的产生对薄膜光学、磁学性能产生影响,获得Bi1-x Sr x Fe1-x Ti x O3x=0~0.5)磁光材料;所述退火是在600℃、氧气气氛中恒温退火3小时,其升温速率为1℃/min,降温速率为0.7℃/min。
所得钙钛矿型立方相掺杂铁酸铋磁光材料有望应用于光隔离器、光环形器或磁光调制器。
研究表明,BiFeO3磁结构中铁离子自旋取向是64nm为周期的螺旋反铁磁结构,导致宏观磁性弱。本发明通过高温固相法合成了Bi1-x Sr x Fe1-x Ti x O3 (x=0~0.7)系列粉末样品,其通过在BiFeO3中掺入非磁性的钛离子来替代磁性铁离子,打破BiFeO3的螺旋G型反铁磁结构,使其表现出强的宏观磁性;并在A位掺入半径大的锶离子替代铋离子,使晶体结构从三方相转变为立方相。得到的立方相掺杂BiFeO3与硅的晶胞参数接近,晶格失配度较低,通过单晶基底的诱导作用获得高质量的硅基立方相BiFeO3磁光薄膜。
经XRD测试分析结果表明,当Bi1-x Sr x Fe1-x Ti x O3 (x=0~0.7)中掺杂比例为x=0.2~0.5时,成功实现了BiFeO3从三方晶相向立方晶相的演变。采用磁控溅射法制备得到了具有<100>取向的Bi1-x Sr x Fe1-x Ti x O3/Si(100)(x=0.2~0.5)外延薄膜,以及Bi1-x Sr x Fe1-x Ti x O3/SiO2 (x=0.2~0.5)多晶薄膜。薄膜的磁圆二色(MCD)光谱、紫外-可见光谱、室温磁滞回线、表面形貌等的测试结果表明,所制备的立方相Sr2+、Ti4+掺杂BiFeO3磁光材料的成膜质量高、光学透过性能良好。随着掺杂量的提高,材料的磁性明显增强,其中,Bi0.5Sr0.5Fe0.5Ti0.5O3/Si(100)的饱和磁化强度是BiFeO3/Si(100)的近10倍。薄膜的磁性增强显著提升了磁光效应,最大达到了2300deg./cm,有望应用于开发新型磁光器件。
专利CN 110172734A中公开了一种同样通过掺杂来获得立方相磁光材料的内容,但其中针对的CeFeO3为非共线的G型反铁磁结构,已具有比较强的磁性,同时由于Fe3+的3d电子和Ce3+的5d、4f电子形成自旋-轨道劈裂较大的耦合轨道,以及强的Fe3+(3d)→Ce3+(4f)电子跃迁,使CeFeO3本身具有强磁光性能。但CeFeO3属于正交晶系,存在双折射效应,导致晶体的磁光综合性能差。为此,该专利通过掺杂Sr、V离子来调控其结构从正交相转变为立方相,以消除双折射效应,获得综合性能好的磁光材料。但本发明中所使用的BiFeO3晶体属三方非心结构,存在特殊的螺旋G型反铁磁结构,Fe3+自旋取向呈螺旋摆线反铁磁排列,导致晶体虽具有很高的奈尔温度但宏观磁性很弱。本发明通过掺杂入Ti4+来部分取代Fe3+,局部打破这种磁结构,大幅增强了材料磁性,并进而显著提高材料的磁光效应。因此,本发明的掺杂作用机制与专利CN 110172734A存在较大差异。
本发明的显著优点在于:
(1)本发明立方相掺杂铁酸铋磁光材料Bi1-x Sr x Fe1-x Ti x O3x=0.2~0.5是一类新型的磁光薄膜材料,属立方晶系,空间群为。该磁光材料与硅基底的晶格失配度较小,晶化处理后获得的薄膜具有明显的(100)面择优取向,且成膜质量良好,均方根粗糙度(Rq)在7nm以下。
(2)本发明磁光材料具有较好的光学透过性能和饱和磁化强度,而且具有显著的磁光效应。当Sr2+、Ti4+的掺杂比例提高到50%时,饱和磁化强度达到48emu/cm3,磁圆二色响应值(MCD)达到2300deg./cm,说明该材料磁性、磁光性能优异,有望在硅基光电集成器件领域获得应用。
(3)本发明的制备方法工艺简单、快速、周期短、重现性好。
附图说明
图1为实施例所制备Bi1-x Sr x Fe1-x Ti x O3粉末的X-射线衍射(XRD)谱。
图2为实施例中以不同基底制备的Bi1-x Sr x Fe1-x Ti x O3薄膜晶化后的X-射线衍射(XRD)谱,其中(a)为二氧化硅基底,(b)为硅基底。
图3为实施例所制备晶化后的Bi1-x Sr x Fe1-x Ti x O3/Si(100)薄膜的AFM 2D图。(a)BiFeO3;(b) Bi0.8Sr0.2Fe0.8Ti0.2O3;(c) Bi0.5Sr0.5Fe0.5Ti0.5O3
图4为实施例所制备晶化后的Bi1-x Sr x Fe1-x Ti x O3/Si(100)薄膜的透过光谱。
图5为实施例所制备晶化后的Bi1-x Sr x Fe1-x Ti x O3/Si(100)薄膜的室温饱和磁滞回线谱(out-of-plane)。
图6为实施例所制备晶化后的Bi1-x Sr x Fe1-x Ti x O3/SiO2薄膜的MCD谱。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
一种立方相掺杂铁酸铋磁光材料Bi0.8Sr0.2Fe0.8Ti0.2O3的制备方法,包括如下具体步骤:
(1)多晶粉体的制备:按Bi0.8Sr0.2Fe0.8Ti0.2O3的化学计量比准确称取初始原料Bi2O3、Fe2O3、SrCO3、TiO2,置于玛瑙研钵中研磨45分钟,以确保混合均匀;将所得混合粉末置于空气气氛、700℃下预烧结4小时,然后重新研磨,再在空气气氛、820℃下烧结6小时,即可得到立方相掺杂铁酸铋多晶粉体;
(2)靶材的制备:按0.05mL/g的比例往所得立方相掺杂铁酸铋多晶粉体中加入PVA粘合剂,充分研磨并压制成片,再在820℃下烧结4小时,获得致密度高的多晶原料靶材;
(3)薄膜的制备:采用射频磁控溅射法,分别以(100)取向的单晶硅片和SiO2石英玻璃为基底,制备了厚度为236nm的Bi0.8Sr0.2Fe0.8Ti0.2O3/Si(100)和Bi0.8Sr0.2Fe0.8Ti0.2O3/SiO2薄膜;射频磁控溅射的工艺参数为:靶基距5cm,本底真空度1×10-4Pa,工作气体为Ar,工作气压1.6Pa,气体流量20Sccm,溅射功率80W,溅射时长为1.5小时;
(4)晶化处理:由于溅射得到的薄膜是非晶态,后续需对其进行晶化处理,为了避免氧空位的产生对薄膜的光学、磁学等性能产生影响,将薄膜置于真空管式炉中,通入O2气体进行退火;退火温度为600℃,恒温时长为3小时,升温速率为1℃/min、降温速率为0.7℃/min。
由图1中Bi0.8Sr0.2Fe0.8Ti0.2O3粉体的XRD谱可以得知,该化合物为钙钛矿立方相。
对不同基底制备薄膜晶化处理后的物相进行表征,从图2中可观察到,以SiO2石英玻璃为基底(a),薄膜的所有衍射峰都与钙钛矿立方相的标准卡片(JCPDS 54-0683)的衍射峰吻合,无其余杂相峰出现,说明所制备的Bi0.8Sr0.2Fe0.8Ti0.2O3/SiO2薄膜为纯相的钙钛矿立方相多晶薄膜。以(100)取向的单晶硅片为基底制备的薄膜(b),除了基底的衍射之外,仅出现了薄膜的(100)和(200)面衍射峰,说明以硅为基底制备的Bi0.8Sr0.2Fe0.8Ti0.2O3/Si(100)薄膜具有<100>择优取向。
采用原子力显微镜对薄膜的成膜质量进行分析,如图3中b所示,晶化处理之后的薄膜表面形成结晶,颗粒分布均匀,表面无裂纹,溅射1.5小时的薄膜(厚度为236nm)均方根粗糙度仅为2.74nm,其Rq值明显低于相同条件下制备的BiFeO3/Si(100)薄膜(12.9nm),说明制备的立方相Bi0.8Sr0.2Fe0.8Ti0.2O3薄膜与硅基底更加适配,成膜质量明显更高。
由图4透过光谱可知,晶化后的Bi0.8Sr0.2Fe0.8Ti0.2O3/Si(100)薄膜透过率在1000~3000nm波段范围内可达到60~70%,明显高于硅基底,这主要是由于薄膜的增透作用;并且透过光谱中无明显的吸收峰出现,说明所制备的薄膜质量高、光学透过性能良好。
由图5室温饱和磁滞回线(out-of-plane)可知,Bi0.8Sr0.2Fe0.8Ti0.2O3/Si(100)薄膜的饱和磁化强度为17.5emu/cm3,明显高于相同条件下制备的BiFeO3薄膜的饱和磁化强度(5emu/cm3)。
从图6以SiO2石英玻璃为基底制备获得的薄膜在300~800 nm波段的MCD谱中可以看出,Bi0.8Sr0.2Fe0.8Ti0.2O3薄膜在372nm处薄膜出现了明显的磁圆二色效应,归属于双激子跃迁,并且在外加磁场为2500Oe的条件下,其MCD的值达到了2000deg./cm,具有良好的磁光性能;而相同条件下制备的BiFeO3薄膜,则无明显磁光效应产生,这说明通过Sr、Ti离子掺杂,使BiFeO3的磁性增强,并且随着其结构从三方相向立方相转变,磁光效应也得到了显著的提高。
实施例2
一种立方相掺杂铁酸铋磁光材料Bi0.5Sr0.5Fe0.5Ti0.5O3的制备方法,包括如下具体步骤:
(1)多晶粉体的制备:按Bi0.5Sr0.5Fe0.5Ti0.5O3的化学计量比准确称取初始原料Bi2O3、Fe2O3、SrCO3、TiO2,置于玛瑙研钵中研磨45分钟,以确保混合均匀;将所得混合粉末置于空气气氛、700℃下预烧结4小时,然后重新研磨,再在空气气氛、820℃下烧结6小时,即可得到立方相掺杂铁酸铋多晶粉体;
(2)靶材的制备:按0.05mL/g的比例往所得立方相掺杂铁酸铋多晶粉体中加入PVA粘合剂,充分研磨并压制成片,再在820℃下烧结4小时,获得致密度高的多晶原料靶材;
(3)薄膜的制备:采用射频磁控溅射法,分别以(100)取向的单晶硅片和SiO2石英玻璃为基底,制备了厚度为202nm的Bi0.5Sr0.5Fe0.5Ti0.5O3/Si(100)和Bi0.5Sr0.5Fe0.5Ti0.5O3/SiO2薄膜;射频磁控溅射的工艺参数为:靶基距5cm,本底真空度1×10-4Pa,工作气体为Ar,工作气压1.6Pa,气体流量20Sccm,溅射功率80W,溅射时长为1.5小时;
(4)晶化处理:由于溅射得到的薄膜是非晶态,后续需对其进行晶化处理,为了避免氧空位的产生对薄膜的光学、磁学等性能产生影响,将薄膜置于真空管式炉中,通入O2气体进行退火;退火温度为600℃,恒温时长为3小时,升温速率为1℃/min、降温速率为0.7℃/min。
由图1中Bi0.5Sr0.5Fe0.5Ti0.5O3粉体的XRD谱可以得知,该化合物为钙钛矿立方相,并且存在极少量的Bi25FeO40杂相。但从图2以不同基底制备薄膜晶化处理后的XRD谱中可观察到,以SiO2石英玻璃为基底(a)制备的Bi0.5Sr0.5Fe0.5Ti0.5O3/SiO2薄膜的所有衍射峰都与钙钛矿立方相的标准卡片(JCPDS 54-0683)中衍射峰相吻合,无其余杂相峰存在,说明所制备的Bi0.5Sr0.5Fe0.5Ti0.5O3/SiO2为纯相的钙钛矿立方相多晶薄膜。以(100)取向的单晶硅片为基底制备的薄膜(b),除了基底的衍射峰之外,仅出现了薄膜的(100)和(200)面衍射峰,说明以硅为基底制备的Bi0.5Sr0.5Fe0.5Ti0.5O3/Si(100)薄膜具有<100>择优取向。
采用原子力显微镜对薄膜的成膜质量进行分析,如图3中c所示,晶化处理之后的薄膜表面形成结晶,颗粒分布均匀,表面无裂纹。溅射1.5小时的薄膜(厚度为202nm)均方根粗糙度仅为7.0nm,明显低于相同条件下制备的BiFeO3/Si(100)薄膜,说明制备的立方相Bi0.5Sr0.5Fe0.5Ti0.5O3薄膜与硅基底更加适配,成膜质量明显更高。
由图4透过光谱可知,晶化后的Bi0.5Sr0.5Fe0.5Ti0.5O3/Si(100)薄膜透过率在1000~3000nm波段范围内可达到58~68%,明显高于硅基底,这主要是由于薄膜的增透作用;并且透过光谱中无明显的吸收峰出现,说明所制备的薄膜质量高、光学透过性能良好。
由图5室温饱和磁滞回线(out-of-plane)可知,Bi0.5Sr0.5Fe0.5Ti0.5O3/Si(100)薄膜的饱和磁化强度高达48emu/cm3
从图6以SiO2石英玻璃为基底制备获得的在300~800 nm波段的MCD谱中可以看出,Bi0.5Sr0.5Fe0.5Ti0.5O3薄膜在400nm和500nm处薄膜出现了明显的磁圆二色效应,且在外加磁场为2500Oe的条件下,其MCD信号ΨF值达到了2300deg./cm,具有较强的磁光性能。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.一种钙钛矿型立方相掺杂铁酸铋在用作磁光材料方面的应用,其特征在于:所述钙钛矿型立方相掺杂铁酸铋的化学式为Bi0.5Sr0.5Fe0.5Ti0.5O3,属立方晶系,空间群为;其中Bi、Sr共同占据A格位,Fe、Ti共同占据B格位;
其制备方法包括如下步骤:
(1)多晶粉体的制备:按Bi0.5Sr0.5Fe0.5Ti0.5O3的化学计量比准确称取初始原料Bi2O3、Fe2O3、SrCO3、TiO2,置于玛瑙研钵中研磨45分钟;将所得混合粉末置于空气气氛、700℃下预烧结4小时,然后重新研磨,再在空气气氛、820℃下烧结6小时,得到立方相掺杂铁酸铋多晶粉体;
(2)靶材的制备:按0.05mL/g的比例往所得立方相掺杂铁酸铋多晶粉体中加入PVA粘合剂,充分研磨并压制成片,再在820℃下烧结4小时,获得致密度高的多晶原料靶材;
(3)薄膜的制备:采用射频磁控溅射法,以(100)取向的单晶硅片或SiO2石英玻璃为基底,制备厚度为202nm的Bi0.5Sr0.5Fe0.5Ti0.5O3/Si(100)薄膜或Bi0.5Sr0.5Fe0.5Ti0.5O3/SiO2薄膜;射频磁控溅射的工艺参数为:靶基距5cm,本底真空度1×10-4Pa,工作气体为Ar,工作气压1.6Pa,气体流量20Sccm,溅射功率80W,溅射时长为1.5小时;
(4)晶化处理:将所得薄膜置于真空管式炉中,通入O2气体进行退火;退火温度为600℃,恒温时长为3小时,升温速率为1℃/min、降温速率为0.7℃/min。
CN201911040227.8A 2019-10-29 2019-10-29 一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法与应用 Active CN110750002B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911040227.8A CN110750002B (zh) 2019-10-29 2019-10-29 一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911040227.8A CN110750002B (zh) 2019-10-29 2019-10-29 一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110750002A CN110750002A (zh) 2020-02-04
CN110750002B true CN110750002B (zh) 2024-04-19

Family

ID=69280963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911040227.8A Active CN110750002B (zh) 2019-10-29 2019-10-29 一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110750002B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101122631B1 (ko) * 2010-09-17 2012-03-09 한국기계연구원 우수한 상온 다강성을 가지는 복합 페롭스카이트 계 세라믹스 및 필름, 및 이의 제조방법
CN104476832A (zh) * 2014-12-11 2015-04-01 陕西科技大学 一种叠层状BiFe0.97-xMn0.03TMxO3/CoFe2O4多铁性复合膜及其制备方法
CN109923245A (zh) * 2016-10-31 2019-06-21 奎斯特综合有限责任公司 用于外延生长单晶的具有无差别点的单晶钙钛矿固溶体
CN110172734A (zh) * 2019-05-30 2019-08-27 福州大学 一种立方相掺杂铁酸铈磁光材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101122631B1 (ko) * 2010-09-17 2012-03-09 한국기계연구원 우수한 상온 다강성을 가지는 복합 페롭스카이트 계 세라믹스 및 필름, 및 이의 제조방법
CN104476832A (zh) * 2014-12-11 2015-04-01 陕西科技大学 一种叠层状BiFe0.97-xMn0.03TMxO3/CoFe2O4多铁性复合膜及其制备方法
CN109923245A (zh) * 2016-10-31 2019-06-21 奎斯特综合有限责任公司 用于外延生长单晶的具有无差别点的单晶钙钛矿固溶体
CN110172734A (zh) * 2019-05-30 2019-08-27 福州大学 一种立方相掺杂铁酸铈磁光材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Reetu 等.Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic.《JOURNAL OF APPLIED PHYSICS》.2011,第110卷第073909-1页到第073909-6页. *
Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic;Reetu 等;《JOURNAL OF APPLIED PHYSICS》;20111011;第110卷;第073909-1页到第073909-6页 *

Also Published As

Publication number Publication date
CN110750002A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
CN105714379B (zh) 一种硅上直接生长高掺杂钇铁石榴石薄膜的制备方法
CN114150375B (zh) 一种磁控共溅射制备Fe-Sn-Se-Te四元薄膜的方法
CN101235539B (zh) 外延生长La1-xCaxMnO3单晶薄膜的方法
CN101016648A (zh) 一种过渡金属掺杂氧化锌晶体及其水热法生长方法
Lin et al. High magneto-optical performance of GdFeO3 thin film with high orientation and heavy Ce3+ doping
CN110750002B (zh) 一种钙钛矿型立方相掺杂铁酸铋磁光材料及其制备方法与应用
CN110172734B (zh) 一种立方相掺杂铁酸铈磁光材料及其制备方法和应用
Riaz et al. Effect of Mn-doping concentration on the structural & magnetic properties of sol-gel deposited ZnO diluted magnetic semiconductor
Zhang et al. Improvement of multiferroic properties of the Bi 5 Ti 3 FeO 15 thin films by Ni doping
CN102683168A (zh) 一种制备磁性锗量子点的方法
Zhang et al. Microwave/millimeter-wave garnet films
CN109234678B (zh) 一种铜掺杂钛酸钡/镍锌铁氧体复相薄膜材料及制备方法
CN108962897B (zh) 基于六角ErMnO3外延薄膜的铁电存储器件及其制备方法
CN110699751A (zh) 一种单斜相钽铌酸铽磁光晶体及其制备方法和应用
CN106756787B (zh) 一种可调控磁光光谱的磁光材料及其制备方法
CN102676994B (zh) 具有内禀铁磁性的ZnO基稀磁半导体薄膜及其制备方法
Stolyarchuk et al. Structural and optical properties of Co and Ni doped ZnO thin films prepared by RF magnetron sputtering
CN113862774B (zh) 一种铌钪酸镨锂磁光晶体及其制备方法
Reddy et al. Influence of Fe-doping concentration on microstructural and magnetic properties of Fe doped Cds thin films
CN115124334B (zh) 具有六角板状晶相结构且高介高磁共存的Ba间隙掺杂钡铁氧体取向生长薄膜及其制备方法
CN112708861B (zh) 一种具有室温铁磁性的ZnO基稀磁半导体薄膜及其制备方法
CN117488403A (zh) 钙钛矿型立方相掺杂铁酸钕磁光晶体材料及其制备方法和应用
Junye et al. Growth and magnetic‐optical properties of Sr3Gd (BO3) 3 and Sr3TbxGd1‐x (BO3) 3 single crystals
Jannat et al. Effect of Sr and Mn co-doping on multiferroic properties of BiFeO3 via sol-gel chemical process
JP2000119100A (ja) 非磁性ガーネット単結晶及び磁性ガーネット単結晶

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant