CN110739221A - 带隙可调的锡氧化物薄膜制备方法 - Google Patents

带隙可调的锡氧化物薄膜制备方法 Download PDF

Info

Publication number
CN110739221A
CN110739221A CN201911011269.9A CN201911011269A CN110739221A CN 110739221 A CN110739221 A CN 110739221A CN 201911011269 A CN201911011269 A CN 201911011269A CN 110739221 A CN110739221 A CN 110739221A
Authority
CN
China
Prior art keywords
tin oxide
annealing
oxide film
preparation
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911011269.9A
Other languages
English (en)
Other versions
CN110739221B (zh
Inventor
唐利斌
项金钟
王方
王茺
姬荣斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Physics
Original Assignee
Kunming Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Physics filed Critical Kunming Institute of Physics
Priority to CN201911011269.9A priority Critical patent/CN110739221B/zh
Publication of CN110739221A publication Critical patent/CN110739221A/zh
Application granted granted Critical
Publication of CN110739221B publication Critical patent/CN110739221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

带隙可调的锡氧化物薄膜制备方法,本发明涉及光电探测技术领域,具体涉及一种带隙可调的锡氧化物薄膜制备方法。锡氧化物薄膜制备方法,包括湿法清洗、射频磁控溅射、退火步骤。本发明的方法,通过控制氧分压和退火,形成一种混合相锡氧化物薄膜材料,改变了锡氧化物薄膜的结构,对光学带隙进行调制,实现了光学吸收的波段涵盖UVA,UVB,UVC,可实现制备紫外多波段的探测器。

Description

带隙可调的锡氧化物薄膜制备方法
技术领域
本发明涉及光电探测技术领域,具体涉及一种带隙可调的锡氧化物薄膜制备方法。
背景技术
人眼不识别电磁波谱中的紫外光波段,需要制备光电探测器应用于军事勘查、火情探测、臭氧监测、化学分析等领域中。但紫外光的光子能量相对较高,所以制备紫外探测器的材料多为宽禁带半导体。常见的材料体系有ZnO、Ga2O3、SiC、GaN、MgO等。随着该领域的速发展,新型光电探测材料不断地涌现,如氧化亚锡(SnO)和氧化锡(SnO2)。SnO作为P型半导体材料,直接带隙为2.7eV。SnO具有p型导电特性的主要原因是锡空位的存在以及氧化态的Sn2+占据了氧原子的间隙位置,SnO的氧的2p能级与锡的5s能级都位于价带最大值(VBM)附近,所以能级较为接近易于轨道杂化,进而使空穴迁移率增强,这也正是p型金属氧化物稀缺的原因。作为元素组成相同但比例不同的氧化锡(SnO2)是典型的n型金属氧化物半导体材料,直接带隙为3.6eV,具有优异的性能,被广泛应用于光电探测器,催化,气体传感器,储能,太阳能电池等领域。但是,目前还未有带隙可调的锡氧化物薄膜技术的记载。
当前记载的锡氧化物的制备方法,主要有静电纺丝法、脉冲激光沉积法、水热法、分子束外延法、磁控溅射法等。与其他方法相比,磁控溅射法具有操作简单、均匀性好、实验重复性高等优点,因此本发明将选用该方法实现锡氧化物薄膜的制备,以优化锡氧化物薄膜光电性能,实现带隙可调的锡氧化物薄膜的制备。
发明内容
本发明的目的在于提供一种锡氧化物薄膜制备方法,通过控制氧分压和退火过程,来有效地调制锡氧化物薄膜的带隙,从而优化锡氧化物薄膜光电性能。
本发明带隙可调的锡氧化物薄膜制备方法,包括湿法清洗、射频磁控溅射、退火步骤,其特征在于具体步骤包括:
S1,湿法清洗衬底,使衬底干净,干燥;
S2,射频磁控溅射,将衬底放入磁控溅射设备中,在设备真空度到达6.0×10-4pa以下时,分别在8%、10%、0%的氧分压下,进行溅射薄膜;
其中,氧分压=氧气气体流量/氧气和氩气总气体流量;
S3,退火,退火在大气气氛下进行,退火温度为250-300℃,退火时间为30-60min。
本发明的方法,通过控制氧分压,选择8%、10%、0%的氧分压和退火,形成一种混合相锡氧化物薄膜材料,改变了锡氧化物薄膜的结构,对光学带隙进行调制,实现了光学吸收的波段涵盖UVA,UVB,UVC,可实现制备紫外多波段的探测器。在其他氧分压下也能实现锡氧化物薄膜的制备,但是对光学带隙的调控作用不大。并不能实现对对紫外波段有响应。
本发明的锡氧化物薄膜制备方法,制备温度较低,实现了低能耗制备锡氧化物薄膜。制备过程简便,操作可行,制备得到的锡氧化物薄膜具有优异的光电性能。
附图说明
图1为制得的锡氧化物薄的膜XRD图;
A、B、C分别代表8%、10%、0%的氧分压。
图2为实施例1制得的锡氧化物薄膜的TEM图。
图3为实施例1制得的锡氧化物薄膜退火前的AFM图。
图4为实施例1制得的锡氧化物薄膜退火后的AFM图。
图5为制得的锡氧化物薄膜的光学带隙图。
具体实施方式
实施例1:锡氧化物薄膜制备方法,包括湿法清洗、射频磁控溅射、退火步骤,具体步骤如下:
S1,湿法清洗,将衬底放入双氧水、氨水、去离子水按1:1:3体积比配比的混合溶液中,在80℃温度下,恒温加热30min,用去离子水清洗,吹干。
S2,射频磁控溅射,将经处理的衬底放入磁控溅射的样品托上,在设备真空度到达6.0×10-4pa以下时,调节氧分压为10%,设置启辉压强0.6pa和120W溅射功率,溅射40min。
S3,退火,采用管式炉在大气气氛下进行退火,退火温度300℃,退火时间1h,直至样品降到室温,获得锡氧化物薄膜,按质量混合相的氧化锡:氧化亚锡为3:7。
对获得的锡氧化物薄膜进行表征分析。
如图1所示,为不同氧分压下锡氧化物的X射线衍射成像图,可看到薄膜是氧化锡和氧化亚锡的混合相,并且随着氧分压的增大氧化锡的含量会有所增加。
如图2所示,为锡氧化物薄膜的透射电镜成像图,可看到氧化锡及氧化亚锡的晶格条纹。
如图3所示,为锡氧化物薄膜退火前的原子力显微镜表征图,可看到薄膜表面较均匀,呈现颗粒状。
如图4所示,为锡氧化物薄膜退火后的原子力显微镜表征图,可看到薄膜表面粗糙度并无明显变化。
如图5所示,为锡氧化物薄膜的光学带隙图,如图5中1、2、3,分别对应于氧分压0%、8%、10%,通过将(αhν)2与hν图的线性部分拟合得到薄膜的光学带隙,发现样品退火后带隙值Eg会增大,并且也会随着氧分压的增大而增大,带隙可调的范围是2.16-3.96eV。
实施例2:锡氧化物薄膜制备方法,包括湿法清洗、射频磁控溅射、退火步骤,除调节氧分压为8%外,其它具体步骤和参数同实施例1,获得锡氧化物薄膜,按质量混合相的氧化锡:氧化亚锡为1:4。
实施例3:锡氧化物薄膜制备方法,包括湿法清洗、射频磁控溅射、退火步骤,除调节氧分压为0%外,其它具体步骤和参数同实施例1。获得锡氧化物薄膜,按质量混合相的氧化锡:氧化亚锡为0:1。
本发明提到的实例仅用于说明本发明的可行性,而不是仅仅限制本发明的范围。除此之外,在无实质性改变实验制备技术的情况下,亦当视为本发明的可实施范畴。

Claims (1)

1.带隙可调的锡氧化物薄膜制备方法,包括湿法清洗、射频磁控溅射、退火步骤,其特征在于具体步骤包括:
S1,湿法清洗衬底,使衬底干净,干燥;
S2,射频磁控溅射,将衬底放入磁控溅射设备中,在设备真空度到达6.0×10-4pa以下时,分别在8%、10%、0%的氧分压下,进行溅射薄膜;
其中,氧分压=氧气气体流量/氧气和氩气总气体流量;
S3,退火,退火在大气气氛下进行,退火温度为250-300℃,退火时间为30-60min。
CN201911011269.9A 2019-10-23 2019-10-23 带隙可调的锡氧化物薄膜制备方法 Active CN110739221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911011269.9A CN110739221B (zh) 2019-10-23 2019-10-23 带隙可调的锡氧化物薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911011269.9A CN110739221B (zh) 2019-10-23 2019-10-23 带隙可调的锡氧化物薄膜制备方法

Publications (2)

Publication Number Publication Date
CN110739221A true CN110739221A (zh) 2020-01-31
CN110739221B CN110739221B (zh) 2022-07-05

Family

ID=69270878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911011269.9A Active CN110739221B (zh) 2019-10-23 2019-10-23 带隙可调的锡氧化物薄膜制备方法

Country Status (1)

Country Link
CN (1) CN110739221B (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283369A (ja) * 1988-05-11 1989-11-14 Nippon Mining Co Ltd Ito透明導電膜形成用スパッタリングターゲット
CN1675399A (zh) * 2002-08-02 2005-09-28 出光兴产株式会社 溅射靶、烧结体及利用它们制造的导电膜、有机el元件及其所用的衬底
CN1930692A (zh) * 2004-03-12 2007-03-14 惠普开发有限公司 具有包含二元氧化物的混合物的沟道的半导体器件
US20090095341A1 (en) * 2007-10-12 2009-04-16 Ultradots, Inc. Solar Modules With Enhanced Efficiencies Via Use of Spectral Concentrators
CN102263134A (zh) * 2011-07-22 2011-11-30 北京大学深圳研究生院 一种双极性薄膜晶体管及其制备方法
CN102260846A (zh) * 2011-07-22 2011-11-30 复旦大学 一种多晶二氧化锡阻变薄膜及其制备方法和应用
CN102644055A (zh) * 2012-04-05 2012-08-22 东南大学 一种氮掺杂二氧化锡薄膜的制备方法
CN103147046A (zh) * 2013-03-08 2013-06-12 上海大学 二氧化锡半导体薄膜的制备方法及其缺陷湮灭方法
CN104124281A (zh) * 2014-08-01 2014-10-29 中国科学院宁波材料技术与工程研究所 双极性薄膜晶体管及其制备方法
CN104651785A (zh) * 2013-11-18 2015-05-27 北京北方微电子基地设备工艺研究中心有限责任公司 Ito薄膜的制备方法
CN105420677A (zh) * 2015-12-03 2016-03-23 吉林大学 可实现近带边紫外发光的p型二氧化锡薄膜的制备方法
US20160086778A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Sputtering target and method for manufacturing transparent conductive film using the same
CN105449000A (zh) * 2015-12-21 2016-03-30 华南理工大学 一种双有源层Cu2O/SnO p 沟道薄膜晶体管及其制备方法
CN106000384A (zh) * 2016-05-13 2016-10-12 淮北师范大学 一种组成可控的锡基氧化物的制备方法及其光催化应用
CN106206245A (zh) * 2015-05-08 2016-12-07 清华大学 氧化亚锡薄膜的制备方法
CN106702321A (zh) * 2015-11-16 2017-05-24 中国科学院福建物质结构研究所 一种磁控溅射制备高导高透明度本征二氧化锡薄膜的方法
CN107210189A (zh) * 2015-01-22 2017-09-26 追踪有限公司 基于锡的p型氧化物半导体及薄膜晶体管应用
CN107445196A (zh) * 2017-05-25 2017-12-08 南京工业大学 一种层状Sn3O4/SnO2异质结方片型气敏材料的制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283369A (ja) * 1988-05-11 1989-11-14 Nippon Mining Co Ltd Ito透明導電膜形成用スパッタリングターゲット
CN1675399A (zh) * 2002-08-02 2005-09-28 出光兴产株式会社 溅射靶、烧结体及利用它们制造的导电膜、有机el元件及其所用的衬底
CN1930692A (zh) * 2004-03-12 2007-03-14 惠普开发有限公司 具有包含二元氧化物的混合物的沟道的半导体器件
US20090095341A1 (en) * 2007-10-12 2009-04-16 Ultradots, Inc. Solar Modules With Enhanced Efficiencies Via Use of Spectral Concentrators
CN102263134A (zh) * 2011-07-22 2011-11-30 北京大学深圳研究生院 一种双极性薄膜晶体管及其制备方法
CN102260846A (zh) * 2011-07-22 2011-11-30 复旦大学 一种多晶二氧化锡阻变薄膜及其制备方法和应用
CN102644055A (zh) * 2012-04-05 2012-08-22 东南大学 一种氮掺杂二氧化锡薄膜的制备方法
CN103147046A (zh) * 2013-03-08 2013-06-12 上海大学 二氧化锡半导体薄膜的制备方法及其缺陷湮灭方法
CN104651785A (zh) * 2013-11-18 2015-05-27 北京北方微电子基地设备工艺研究中心有限责任公司 Ito薄膜的制备方法
CN104124281A (zh) * 2014-08-01 2014-10-29 中国科学院宁波材料技术与工程研究所 双极性薄膜晶体管及其制备方法
US20160086778A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Sputtering target and method for manufacturing transparent conductive film using the same
CN107210189A (zh) * 2015-01-22 2017-09-26 追踪有限公司 基于锡的p型氧化物半导体及薄膜晶体管应用
CN106206245A (zh) * 2015-05-08 2016-12-07 清华大学 氧化亚锡薄膜的制备方法
CN106702321A (zh) * 2015-11-16 2017-05-24 中国科学院福建物质结构研究所 一种磁控溅射制备高导高透明度本征二氧化锡薄膜的方法
CN105420677A (zh) * 2015-12-03 2016-03-23 吉林大学 可实现近带边紫外发光的p型二氧化锡薄膜的制备方法
CN105449000A (zh) * 2015-12-21 2016-03-30 华南理工大学 一种双有源层Cu2O/SnO p 沟道薄膜晶体管及其制备方法
CN106000384A (zh) * 2016-05-13 2016-10-12 淮北师范大学 一种组成可控的锡基氧化物的制备方法及其光催化应用
CN107445196A (zh) * 2017-05-25 2017-12-08 南京工业大学 一种层状Sn3O4/SnO2异质结方片型气敏材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
丁啸雄等: "氮掺杂对SnO_2薄膜光电性能的影响", 《真空科学与技术学报》 *
刘宏燕 等: "《透明导电氧化物薄膜材料研究进展》", 《航空材料学报》 *

Also Published As

Publication number Publication date
CN110739221B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
Vanalakar et al. Effect of post-annealing atmosphere on the grain-size and surface morphological properties of pulsed laser deposited CZTS thin films
Shewale et al. Structural, surface morphological and UV photodetection properties of pulsed laser deposited Mg-doped ZnO nanorods: effect of growth time
Zhang et al. High photo-responsivity ZnO UV detectors fabricated by RF reactive sputtering
CN105655434B (zh) 一种基于氧化镓纳米线阵列的紫外探测器件及其制备方法
Zhao et al. Growth and characterization of Sn doped β-Ga 2 O 3 thin films and enhanced performance in a solar-blind photodetector
CN106340551B (zh) 一种基于Mg:β-Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
Mamat et al. Effect of oxygen flow rate on the ultraviolet sensing properties of zinc oxide nanocolumn arrays grown by radio frequency magnetron sputtering
Tiron et al. High visible light photocatalytic activity of nitrogen-doped ZnO thin films deposited by HiPIMS
Liu et al. Strong room-temperature ultraviolet emission from nanocrystalline ZnO and ZnO: Ag films grown by ultrasonic spray pyrolysis
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
Park et al. Ag2O/β-Ga2O3 heterojunction-based self-powered solar blind photodetector with high responsivity and stability
Wu et al. UV photocurrent responses of ZnO and MgZnO/ZnO processed by atmospheric pressure plasma jets
Murkute et al. Effects of phosphorus implantation time on the optical, structural, and elemental properties of ZnO thin films and its correlation with the 3.31-eV peak
Chongsri et al. UV photodetector based on Al-doped ZnO nanocrystalline sol-gel derived thin fims
Singh et al. Effect of hydrogen peroxide treatment on the electrical characteristics of Au/ZnO epitaxial Schottky diode
Shet Zinc oxide (ZnO) nanostructures for photoelectrochemical water splitting application
CN110739221B (zh) 带隙可调的锡氧化物薄膜制备方法
CN113707760A (zh) 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法
CN109957759A (zh) Cu掺杂β-Ga2O3薄膜的制备方法及相应的结构
CN113921627A (zh) 一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法
Sugumar et al. Influence of substrate heating and annealing on the properties and photoresponse of manganese doped zinc oxide thin films
Menon et al. Effect of sulfurization on the properties of Cu2ZnSnS4 thin films deposited using chemical spray pyrolysis over ITO substrates
Abhirami et al. Structural and morphological properties of Ag ion irradiated SnO2 thin films
Manjunatha et al. Stability study: Transparent conducting oxides in chemically reactive plasmas
Kolhe et al. Study of physico-chemical properties of Cu2NiSnS4 thin films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant