CN113921627A - 一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法 - Google Patents

一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN113921627A
CN113921627A CN202111102849.6A CN202111102849A CN113921627A CN 113921627 A CN113921627 A CN 113921627A CN 202111102849 A CN202111102849 A CN 202111102849A CN 113921627 A CN113921627 A CN 113921627A
Authority
CN
China
Prior art keywords
solar blind
film
blind ultraviolet
photoelectric detector
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111102849.6A
Other languages
English (en)
Inventor
张洪良
陈文山
徐翔宇
况思良
张佳业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202111102849.6A priority Critical patent/CN113921627A/zh
Publication of CN113921627A publication Critical patent/CN113921627A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种(InxGa1‑x)2O3日盲紫外光电探测器及其制备方法,其光灵敏性达到108,探测率达到2×1016‑5×1016Jones,包括一c‑Al2O3衬底,该c‑Al2O3衬底上通过PLD生长形成一厚度为0.1‑0.5μm的(InxGa1‑x)2O3薄膜,该(InxGa1‑x)2O3薄膜上设有叉指电极,其中0.05≤x≤0.1。本发明将Ga2O3和In2O3合金化,In的引入有效降低了器件的暗电流,提高了器件的光响应,使器件的光电性能得到大幅度提升,实现超高灵敏度和超高探测率,使得本发明所制备的器件对日盲光具有极高灵敏性,能够识别极其微弱的日盲紫外信号,不受可见光影响,具备全天候型的日盲紫外光探测能力。

Description

一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法
技术领域
本发明属于日盲紫外探测技术领域,具体涉及一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法。
背景技术
大气层中的臭氧层对波长为200-280nm的紫外光具有强烈的吸收,在近地表处于该波段的紫外光几乎衰减至零,因此该波段被称为日盲区。这就为日盲紫外探测技术提供了良好的信号背景,使其具有背景噪声低,灵敏度高等优势。
日盲紫外探测技术在国家及市场层面的应用需求是具有战略意义的,例如在导弹预警及天基预警等国防领域,以及在电晕检测,无人机检测等电网领域,日盲紫外光电探测器都扮演着不可替代的角色。日盲紫外光电探测器的应用场景还包括火焰探测、空间通讯、保密通讯和环境检测等。
目前市场主要受控于硅基紫外探测器以及光电倍增管,由于带隙太小,这些产品需要内置滤波片,这不仅增加了成本且不利于产品的寿命。Ga2O3具有天然的约等于4.85eV的宽带隙,吸收边正好落在日盲紫外波段,使Ga2O3成为制备日盲紫外光电探测器的优选材料。现有技术中,Ga2O3日盲光电探测器主要是薄膜型且相关报道众多,但其中大部分Ga2O3日盲光电探测器依旧不能实现高灵敏性及高探测率兼具的性能(Xie,C.;Lu,X.T.;Ma,M.R.;Tong,X.W.;Zhang,Z.X.;Wang,L.;Wu,C.Y.;Yang,W.H.;Luo,L.B.Catalyst-freevapor-solid deposition growth ofβ-Ga2O3 nanowires for DUV photodetector andimage sensorapplication.Adv.Opt.Mater.2019,7,1901257.,Qin,Y.;Long,S.B.;He,Q.M.;Dong,H.;Jian,G.Z.;Zhang,Y.;Hou,X.H.;Tan,P.J.;Zhang,Z.F.;Lu,Y.J.etal.Amorphous gallium oxide-based gate-tunable high-performance thin filmphototransistor for solar-blind imaging.Adv.Electron.Mater.2019,5,1900389.),总体性能依旧有待提升,这就限制了诸多应用场景的实现。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种(InxGa1-x)2O3日盲紫外光电探测器。
本发明的另一目的在于提供上述(InxGa1-x)2O3日盲紫外光电探测器的制备方法。
本发明的技术方案如下:
一种(InxGa1-x)2O3日盲紫外光电探测器,其光灵敏性达到108,探测率达到2×1016-5×1016Jones,包括一c-Al2O3衬底,该c-Al2O3衬底上通过PLD生长形成一厚度为0.1-0.5μm的(InxGa1-x)2O3薄膜,该(InxGa1-x)2O3薄膜上设有叉指电极,其中0.05≤x≤0.1;
上述PLD的靶材由Ga2O3粉末和In2O3粉末经混合后1300-1350℃煅烧制成,该PLD的温度为640-700℃。
该(InxGa1-x)2O3日盲紫外光电探测器的工作原理为:在叉指电极两端加一定偏压,在暗环境下,该探测器内部会有相当微弱的电流响应,无光照时电路电流在PA级别。在240nm的日盲光照射下,(InxGa1-x)2O3薄膜受光激发而产生光生载流子,光生载流子在外加偏压的作用下进行定向运动,在叉指电极的收集作用下产生光电流,最后由外部电路反馈为光响应信号。
在本发明的一个优选实施方案中,所述c-Al2O3衬底为单面抛光或者双面抛光,尺寸为5-10mm×5-10mm×0.4-0.6mm。
在本发明的一个优选实施方案中,所述(InxGa1-x)2O3薄膜的厚度为0.1-0.3μm。
在本发明的一个优选实施方案中,所述叉指电极的材质为金或铂。
进一步优选的,所述叉指电极的厚度为0.03-1μm。
上述(InxGa1-x)2O3日盲紫外光电探测器的制备方法,包括如下步骤:
(1)将0.026-0.036mol的Ga2O3粉末和0.0003-0.003mol的In2O3粉末放入研钵中并研磨混合均匀,然后将混合均匀的粉末倒入不锈钢磨具中,压制成型,再于1300-1350℃煅烧20-25h,获得陶瓷合金靶材;
(2)将c-Al2O3衬底依次在丙酮、异丙醇和去离子水中进行超声清洗,然后用氮气吹干,获得洁净的c-Al2O3衬底。
(3)将上述洁净的c-Al2O3衬底固定在样品台上,再将其与陶瓷合金靶材一起放入脉冲激光沉积设备的真空腔内,于640-700℃进行脉冲激光沉积,形成所述(InxGa1-x)2O3薄膜。;
(4)在上述制得的(InxGa1-x)2O3薄膜上用电子束蒸发镀上叉指电极,获得所述(InxGa1-x)2O3日盲紫外光电探测器。
在本发明的一个优选实施方案中,所述步骤(1)中的煅烧的升温速率为5-10℃/min,降温速率为10-20℃/min。
在本发明的一个优选实施方案中,所述步骤(3)中的脉冲激光沉积具体包括:
a、用机械泵将所述真空腔内的气压抽至10Pa以下,接着用分子泵将真空抽至10- 5Pa;
b、开启加热器,以24-26℃/min的升温速率将样品台加热到640-700℃并维持温度恒定;
c、开启流量控制器往真空腔内通入氧气,用旁抽阀微调腔内气压,使腔内背景氧压维持在1Pa,设置激光能量为200mJ,设置脉冲数为10000pulse,脉冲频率为5Hz;
d、用挡板挡住样品台,开启激光器,先预溅射陶瓷合金靶材8min以清除表面污染物,预溅射结束后旋开挡板,在所述c-Al2O3衬底上开始正式进行外延生长至预先设定的尺寸,然后关闭激光器,将腔内温度降至500-600℃,接着往腔内充氧气,使腔内氧压维持200-400mbar,保温保温25-35min;
e、将腔内温度下降至200℃,开启机械泵将腔内气压抽至10Pa以下,再用分子泵抽真空,使腔内恢复背底真空10-5Pa,最后将样品台取出,获得所述(InxGa1-x)2O3薄膜。
在本发明的一个优选实施方案中,所述步骤(4)中,所述(InxGa1-x)2O3薄膜上的叉指电极通过电子束蒸发制成。
在本发明的一个优选实施方案中,所述步骤(2)中,在丙酮、异丙醇和去离子水中的超声清洗均为4-6min。
本发明的有益效果是:
1、本发明将Ga2O3,和In2O3合金化,In的引入有效降低了器件的暗电流,提高了器件的光响应,从而使器件的光电性能大幅度得到提升,开关比超过10的8次方个数量级,对日盲紫外光具有超高灵敏性,探测率达到2×1016-5×1016Jones,能够识别极其微弱的日盲紫外信号,不受可见光影响,具备全天候型的日盲紫外光探测能力。
2、本发明只对日盲光有响应,具有很好的波长选择性,且响应速度快,可重复性好,性能稳定。
3、本发明的制备方法中生长(InxGa1-x)2O3薄膜采用自主合成的(InxGa1-x)2O3陶瓷合金靶材;PLD可以实现对薄膜掺杂、缺陷和晶面取向的精准调控,生长出原子级别平整的薄膜;由于高能脉冲激光与靶材作用时间极短,靶材内的组分几乎同时蒸发,因此产生的羽辉的组分与靶材几乎一致,所制备的(InxGa1-x)2O3薄膜质量好。
4、本发明通过腔内原位高氧压退火的方式进一步优化薄膜质量,减少氧空位等缺陷,有利于降低器件的背景暗电流。
5、本发明使用的c-Al2O3衬底成本低,制备的日盲紫外光电探测器结构及工艺简单,具有很高的开发以及应用价值。
附图说明
图1是本发明实施例1和2制得的(InxGa1-x)2O3日盲紫外光电探测器的正视结构示意图。
图2是本发明实施例1和2制得的(InxGa1-x)2O3日盲紫外光电探测器的俯视结构示意图。
图3是本发明对比例1、实施例1和2所制备的Ga2O3,(In0.1Ga0.9)2O3(标记为10%In)和(In0.2Ga0.8)2O3(标记为20%In)薄膜XRD图。
图4是本发明对比例1、实施例1和2所制备的Ga2O3,(In0.1Ga0.9)2O3和(In0.2Ga0.8)2O3薄膜光学透过谱图及带隙估值图。
图5是本发明对比例1和实施例1所制备的Ga2O3和(In0.1Ga0.9)2O3日盲紫外光电探测器的光响应谱图。
图6是本发明对比例1和实施例1所制备的Ga2O3和(In0.1Ga0.9)2O3日盲紫外光电探测器的电流-电压(I-V)特性曲线图。
图7是本发明对比例1和实施例1所制备的Ga2O3和(In0.1Ga0.9)2O3日盲紫外光电探测器采用240nm日盲紫外光周期性照射所得的光电流随时间变化曲线图。
图8是本发明实施例1所制备的(In0.1Ga0.9)2O3日盲紫外光电探测器采用240nm日盲紫外光周期性照射所得的稳定性测试图。
图9是本发明对比例1和实施例1所制备的Ga2O3,(In0.1Ga0.9)2O3薄膜的价带X射线光电子吸收谱(XPS)价带谱图。
图10是本发明对比例1和实施例1所制备的Ga2O3和(In0.1Ga0.9)2O3薄膜与Au电极接触界面处的高分辨X射线光电子能谱图以及对应的金属-半导体接触示意图。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
实施例1
本实施例用于说明本发明的(InxGa1-x)2O3日盲紫外光电探测器的制备过程。如图1所示,该探测器从下到上依次包括c-Al2O3衬底,(InxGa1-x)2O3薄膜有源层和Au叉指电极。
本实施例的(InxGa1-x)2O3日盲紫外光电探测器的具体制备方法如下:
(1)靶材合成:将0.027mol的Ga2O3粉末和0.003mol的In2O3粉末放入研钵中并研磨混合均匀,然后将混合均匀的粉末倒入不锈钢磨具中,用压片机压成直径为1英寸的圆饼,再将其放入高温马弗炉中用1300℃煅烧24h,升温速率为5℃/min,降温速率为10℃/min。
(2)将一片5×5mm的单面抛光c-Al2O3衬底分别用丙酮、异丙醇、去离子水超声清洗5min并用氮气枪吹干,用银胶将洁净的衬底固定在样品台上,200℃烘烤15min,待银胶完全干透后将样品台送入PLD真空腔体内。
(3)调整靶材与衬底之间的距离为50mm。先用机械泵将腔内气压抽至10Pa以下,再用分子泵将真空抽至10-5Pa。开启加热器,以25℃/min的升温速率将样品台加热到650并维持温度恒定。开启流量控制器往真空腔内通入氧气,用旁抽阀微调腔内气压,使腔内背景氧压维持在1Pa。设置激光能量为200mJ,设置脉冲数为10000pulse,脉冲频率为5Hz。用挡板挡住样品台,开启激光器,先预溅射靶材8min以清除表面污染物。预溅射结束后旋开挡板,在c-Al2O3衬底上开始正式进行薄膜生长。
(4)待薄膜生长完毕后,关闭激光器,将腔内温度降至500℃,往腔内充氧气,使腔内氧压维持300mbar,保压保温30min。
(5)将腔内温度下降至200℃,开启机械泵将腔内气压抽至10Pa以下,再用分子泵抽真空,使腔内恢复背底真空10-5Pa。将样品台取出,获取厚度为160nm的(In0.1Ga0.9)2O3薄膜。
(6)在上述的(In0.1Ga0.9)2O3薄膜上蒸镀厚度为50nm的Au叉指电极,获得如图1和图2所示的(In0.1Ga0.9)2O3日盲紫外光电探测器。
实施例2
按照与实施例1基本相同的方法制备用于对比的MSM日盲紫外光电探测器,不同之处在于,在步骤(1)靶材合成中称取了0.0264mol的Ga2O3粉末和0.0066mol的In2O,即In含量为20%,制得厚度为160nm的(In0.2Ga0.8)2O3薄膜。
对比例1
按照与实施例1基本相同的方法制备用于对比的MSM日盲紫外光电探测器,不同之处在于,在步骤(2)靶材合成中称取了0.0264mol的Ga2O3粉末,所合成为未掺杂的纯Ga2O3靶材,制得厚度为160nm的Ga2O3薄膜。
图3给出了本发明实施例1至2及对比例1所制备的不同浓度In含量的(InxGa1-x)2O3薄膜样品的XRD图,对比单晶薄膜材料的XRD标准PDF卡片,图中在18.9°、38.1°、59.2°出现的衍射峰分别来自于Ga2O3的(-201)(-402)(-603)晶面,在41.7°出现的强衍射峰来自于c-Al2O3衬底的(0006)晶面,其中对比例1制得的(In0.2Ga0.8)2O3薄膜在30.8°出现的弱衍射峰来自In2O3的(222)晶面。由此可得出结论,Ga2O3和(In0.1Ga0.9)2O3薄膜结晶为单斜晶结构,而(In0.2Ga0.8)2O3薄膜出现了晶相分离。
图4给出了本发明实施例1至2及对比例1所制备的不同浓度In含量的(InxGa1-x)2O3薄膜光学透过谱图,内插图为用Tauc公式所得出的带隙估值图。由图可知,所有薄膜在近紫外区和可见光区表现为几乎透明,在日盲区则具有很强的光学吸收。带隙估值结果得出Ga2O3、(In0.1Ga0.9)2O3、(In0.2Ga0.8)2O3薄膜的光学带隙值分别为4.93eV、4.84eV、4.67eV。
图5给出了本发明对比例1和实施例1所制备的Ga2O3和(In0.1Ga0.9)2O3日盲紫外光电探测器的光响应谱图,测试所加偏压为20V,从波长200nm开始往长波长方向扫描采集数据。所有器件的光响应均落在日盲光谱区,峰值出现在约240nm处。对比可知,(In0.1Ga0.9)2O3日盲紫外光电探测器的响应度为23.3A/W,而Ga2O3器件为1.64A/W。将器件在波长为240nm和400nm处对应光响应的比值定义为器件的日盲-可见光抑制比,计算得到的比值均大于105,说明本发明的器件具有很好的波长选择性。
图6给出了本发明对比例1和实施例1所制备的Ga2O3和(In0.1Ga0.9)2O3日盲紫外光电探测器的电流-电压(I-V)特性曲线图,测试时所加偏压为20V,其中光电流是在240nm日盲紫外光照射下所得,暗电流则在暗箱环境下测试所得。本发明制备的器件具有低至pA级别的暗电流,背景噪声非常低。对比发现,(In0.1Ga0.9)2O3器件的光电流为99uA,而Ga2O3器件则为9uA,In掺杂使光电流大幅提升。Ga2O3和(In0.1Ga0.9)2O3器件的光暗比分别为107和108,光暗比是评估日盲紫外光电探测器灵敏性的关键指标,从结果可知,实施例1所获得的(In0.1Ga0.9)2O3器件具有非常优异的光灵敏性,这是目前所报道的最优值。
图7是本发明对比例1和实施例1所制备的Ga2O3和(In0.1Ga0.9)2O3光电探测器采用240nm日盲紫外光照射所得的光电流随时间变化曲线图,测试的外加偏压为20V。将器件从稳定光电流值的10%(90%)上升(下降)至10%(90%)所经历的时间定义为响应速度,计算得到本发明所得(In0.1Ga0.9)2O3器件的上升时间为1.3s,下降时间为0.1s。本发明所制备器件的响应速度很快,没有任何PPC效应,说明本发明所制得的薄膜缺陷少,质量好。
图8是本发明实施例1所制备的(In0.1Ga0.9)2O3日盲紫外光电探测器采用240nm日盲紫外光周期性照射所得的稳定性测试图,测试所加偏压为20V,器件连续开关次数超过240次,工作时间大于2h,测试结果表明器件在整个连续工作过程中功能没有发生明显退化,具有很好的周期稳定性和可重复性。
图9是本发明对比例和实施例1所制备的Ga2O3,(In0.1Ga0.9)2O3薄膜的价带X射线光电子吸收谱图(XPS),所有的价带谱均将结合能等于0的位置定义为费米能级所在位置。将价带谱图在结合能为5-13eV的范围内分成3个区域,标记为I,II,III。Ga2O3价带成分主要是O 2p轨道,还有少量Ga 3d,4p和4s轨道分别在区域I,II,III和O 2p轨道杂化。与Ga2O3非常类似,In2O3的价带也主要由O 2p轨道构成,同时在价带顶部,中部,底部分别有少量In 4d,5p和5s与O 2p轨道产生杂化。从图9可以观察到,在区域I处,(In0.1Ga0.9)2O3薄膜的态密度明显增加,这主要是来自于其价带顶部引入了In 4d轨道,从图9的内插放大图可以更清晰地观察到这一结果。In 4d轨道的结合能比Ga 3d轨道的更小,更浅的In 4d轨道能级更容易与O 2p轨道杂化。正是由于价带顶上引入了In 4d轨道,(In0.1Ga0.9)2O3薄膜器件具有更强的光吸收,在日盲紫外光照射下会产生更大浓度的光生载流子,因此光响应更大。
图10给出了本发明对比例1和实施例1所制备的Ga2O3和(In0.1Ga0.9)2O3薄膜与Au电极接触界面处的高分辨X射线光电子能谱图,为了得到可靠结果,我们在样品表面沉积了厚度精确为1,2,5,30nm的Au金属层。XPS是基于表面的分析手段,当表面金属厚度为1,2,5nm时,测试时高能X射线依旧能够探测到金属所覆盖的半导体薄膜层。以未覆盖以及覆盖了1nm金属层的样品为标准参照,所测得XPS结合能的偏移值等于样品的能带弯曲。结果表明,Ga2O3和(In0.1Ga0.9)2O3薄膜的Ga 2p,Ga 3s的芯能级位置往结合能更小的方向偏移,说明在半导体一侧能带向上弯曲,由结合能移动的平均值计算得到,能带弯曲分别为0.47eV和0.69eV,In的引入使(In0.1Ga0.9)2O3薄膜具有更大的界面能带弯曲。此外,在价带边用线性外插法可以估算价带顶位置,估算结果即是半导体的价带顶与费米能级的距离,本实施例中,得到Ga2O3,(In0.1Ga0.9)2O3薄膜的估值结果分别为4.42eV和4.20eV。这里,结合价带顶与费米能级之间的距离值,以及由光学测试结果计算得到的带隙值,可以计算得到金属-半导体接触界面的肖特基势垒高度。在本实施例中,计算得到Ga2O3和(In0.1Ga0.9)2O3薄膜与Au电极接触界面的肖特基势垒高度分别为0.95eV和1.31eV。(In0.1Ga0.9)2O3薄膜器件的金属-半导体接触界面具有更高的肖特基势垒,这有利于阻碍载流子在金属和半导体间的传输,降低器件的暗电流,使器件具有更低的背景噪声以及光灵敏性。
探测率(D*)是日盲紫外光电探测器的又一关键性能指标,用于评估探测器探测微弱日盲光的能力。D*可用公式:
Figure BDA0003271059540000081
计算得到,其中Rλ是光响应峰值,q代表元电荷数值(1.6×10-19),jd是暗电流密度,计算得到本发明对比例1和实施例1所得Ga2O3和(In0.1Ga0.9)2O3器件的探测率分别为2.4×1015和4.5×1016,说明本发明制得的日盲紫外探测器能够探测非常微弱的日盲光,其中实施例1制得的(In0.1Ga0.9)2O3器件具有更加优异的探测率,该值是目前所报道的最高值。
本发明实施例1制得的(In0.1Ga0.9)2O3器件更高的灵敏性及探测率源于两个方面:1、In的引入调控了Ga2O3的电子结构,使薄膜对日盲紫外光的吸收增强,使器件内部光生载流子浓度增加,进而得到更大的光响应;2、In的引入调控了Ga2O3的能带结构,使金属-半导体接触界面的肖特基势垒更高,从而获得更低的暗电流。
对比例2
按照与实施例1基本相同的方法制备用于对比的(In0.1Ga0.9)2O3日盲紫外光电探测器,不同之处在于,在步骤(2)结束后不进行高氧压退火,即沉积结束后关闭激光器,将温度设置为将温度设置为0℃,使腔内温度下降,温度降至200℃时停止通气,待腔内恢复背底真空10-5Pa后将样品台取出,获取厚度为200nm的(In0.1Ga0.9)2O3薄膜。
由于本对比例在薄膜生长过程中未进行高氧压退火,由此制备的日盲紫外光电探测器暗电流很大,背景噪声很大,探测率较低,不适于实际应用。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (10)

1.一种(InxGa1-x)2O3日盲紫外光电探测器,其特征在于:其光灵敏性达到108,探测率达到2×1016-5×1016jones,包括一c-Al2O3衬底,该c-Al2O3衬底上通过PLD生长形成一厚度为0.1-0.5μm的(InxGa1-x)2O3薄膜,该(InxGa1-x)2O3薄膜上设有叉指电极,其中0.05≤x≤0.1;上述PLD的靶材由Ga2O3粉末和In2O3粉末经混合后煅烧制成,该PLD的温度为640-700℃。
2.如权利要求1所述的一种(InxGa1-x)2O3日盲紫外光电探测器,其特征在于:所述c-Al2O3衬底为单面抛光或者双面抛光,尺寸为5-10mm×5-10mm×0.4-0.6mm。
3.如权利要求1所述的一种(InxGa1-x)2O3日盲紫外光电探测器,其特征在于:所述(InxGa1-x)2O3薄膜的厚度为0.1-0.3μm。
4.如权利要求1所述的一种(InxGa1-x)2O3日盲紫外光电探测器,其特征在于:所述叉指电极的材质为金或铂。
5.如权利要求4所述的一种(InxGa1-x)2O3日盲紫外光电探测器,其特征在于:所述叉指电极的厚度为0.03-1μm。
6.权利要求1至5中任一权利要求所述的(InxGa1-x)2O3日盲紫外光电探测器的制备方法,其特征在于:包括如下步骤:
(1)将0.026-0.036mol的Ga2O3粉末和0.0003-0.003mol的In2O3粉末放入研钵中并研磨混合均匀,然后将混合均匀的粉末倒入不锈钢磨具中,压制成型,再于1300-1350℃煅烧20-25h,获得陶瓷合金靶材;
(2)将c-Al2O3衬底依次在丙酮、异丙醇和去离子水中进行超声清洗,然后用氮气吹干,获得洁净的c-Al2O3衬底。
(3)将上述洁净的c-Al2O3衬底固定在样品台上,再将其与陶瓷合金靶材一起放入脉冲激光沉积设备的真空腔内,于640-700℃进行脉冲激光沉积,形成所述(InxGa1-x)2O3薄膜。
(4)在上述制得的(InxGa1-x)2O3薄膜上用电子束蒸发镀上叉指电极,获得所述(InxGa1-x)2O3日盲紫外光电探测器。
7.如权利要求6所述的制备方法,其特征在于:所述步骤(1)中的煅烧的升温速率为5-10℃/min,降温速率为10-20℃/min。
8.如权利要求6所述的制备方法,其特征在于:所述步骤(3)中的脉冲激光沉积具体包括:
a、用机械泵将所述真空腔内的气压抽至10Pa以下,接着用分子泵将真空抽至10-5Pa;
b、开启加热器,将样品台加热到640-700℃并维持温度恒定;
c、开启流量控制器往真空腔内通入氧气,用旁抽阀微调腔内气压,使腔内背景氧压维持在1Pa,设置激光能量为200mJ,设置脉冲数为10000pulse,脉冲频率为5Hz;
d、用挡板挡住样品台,开启激光器,先预溅射陶瓷合金靶材8min以清除表面污染物,预溅射结束后旋开挡板,在所述c-Al2O3衬底上开始正式进行外延生长至预先设定的尺寸,然后关闭激光器,将腔内温度降至500-600℃,接着往腔内充氧气,使腔内氧压维持200-400mbar,保压保温25-35min;
e、将腔内温度下降至200℃,开启机械泵将腔内气压抽至10Pa以下,再用分子泵抽真空,使腔内恢复背底真空10-5Pa,最后将样品台取出,获得所述(InxGa1-x)2O3薄膜。
9.如权利要求6所述的制备方法,其特征在于:所述步骤(4)中,所述(InxGa1-x)2O3薄膜上的叉指电极通过电子束蒸发制成。
10.如权利要求6所述的制备方法,其特征在于:所述步骤(2)中,在丙酮、异丙醇和去离子水中的超声清洗均为4-6min。
CN202111102849.6A 2021-09-18 2021-09-18 一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法 Pending CN113921627A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111102849.6A CN113921627A (zh) 2021-09-18 2021-09-18 一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111102849.6A CN113921627A (zh) 2021-09-18 2021-09-18 一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN113921627A true CN113921627A (zh) 2022-01-11

Family

ID=79235459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111102849.6A Pending CN113921627A (zh) 2021-09-18 2021-09-18 一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113921627A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000228A (zh) * 2022-05-13 2022-09-02 厦门大学 一种高性能Ga2O3薄膜有源日盲紫外探测器及其制备方法
CN115094398A (zh) * 2022-05-14 2022-09-23 东北师范大学 一种(InxGa1-x)2O3宽禁带半导体材料的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170170345A1 (en) * 2014-01-31 2017-06-15 Merck Patent Gmbh Method for producing a uv photodetector
CN109326681A (zh) * 2018-08-09 2019-02-12 西安电子科技大学 一种双波段紫外光电探测器件及其制备方法
CN110335914A (zh) * 2019-04-22 2019-10-15 湖北大学 一种MSM型(GaMe)2O3三元合金日盲紫外光探测器及其制备方法
CN111081825A (zh) * 2019-12-20 2020-04-28 浙江大学 一种msm型日盲紫外探测器的制备方法
US20200287067A1 (en) * 2019-04-22 2020-09-10 Hubei University (GaMe)2O3 ternary alloy material, its preparation method and application in solar-blind ultraviolet photodetector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170170345A1 (en) * 2014-01-31 2017-06-15 Merck Patent Gmbh Method for producing a uv photodetector
CN109326681A (zh) * 2018-08-09 2019-02-12 西安电子科技大学 一种双波段紫外光电探测器件及其制备方法
CN110335914A (zh) * 2019-04-22 2019-10-15 湖北大学 一种MSM型(GaMe)2O3三元合金日盲紫外光探测器及其制备方法
US20200287067A1 (en) * 2019-04-22 2020-09-10 Hubei University (GaMe)2O3 ternary alloy material, its preparation method and application in solar-blind ultraviolet photodetector
CN111081825A (zh) * 2019-12-20 2020-04-28 浙江大学 一种msm型日盲紫外探测器的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张珂: "氧化镓基半导体薄膜的外延生长及紫外探测器的研制", 《中国优秀硕士学位论文全文数据库(工程科技Ⅰ辑)》, 15 February 2020 (2020-02-15), pages 1 - 51 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000228A (zh) * 2022-05-13 2022-09-02 厦门大学 一种高性能Ga2O3薄膜有源日盲紫外探测器及其制备方法
CN115094398A (zh) * 2022-05-14 2022-09-23 东北师范大学 一种(InxGa1-x)2O3宽禁带半导体材料的制备方法及其应用

Similar Documents

Publication Publication Date Title
Elkamel et al. High responsivity and 1/f noise of an ultraviolet photodetector based on Ni doped ZnO nanoparticles
Selman et al. Fabrication and characterization of metal–semiconductor–metal ultraviolet photodetector based on rutile TiO2 nanorod
CN106340551B (zh) 一种基于Mg:β-Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
Lee et al. Modulated Al 2 O 3-alloyed Ga 2 O 3 materials and deep ultraviolet photodetectors
CN108396288B (zh) 超宽禁带ZrxSn1-xO2合金半导体外延薄膜材料及其制备方法、应用和器件
CN113921627A (zh) 一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法
Gu et al. Structural, optical and photoelectric properties of Mn-doped ZnO films used for ultraviolet detectors
Shewale et al. UV sensitive pulsed laser deposited ZnO thin films: Influence of growth temperature
Viet Pham et al. Photocarrier generation in CuxO thin films deposited by radio frequency sputtering
Hajimazdarani et al. Enhanced optical properties and photodetection behavior of ZnS thin film deposited by electron beam evaporation upon doping with europium oxide
Hunashimarad et al. ZnO: Ca MSM ultraviolet photodetectors
Zhang et al. Effects of oxygen pressure on PLD-grown Be and Cd co-substituted ZnO alloy films for ultraviolet photodetectors
Raj et al. The role of silver doping in tuning the optical absorption, energy gap, photoluminescence properties of NiO thin films for UV photosensor applications
Locovei et al. Physical properties of Cu and Dy co-doped ZnO thin films prepared by radio frequency magnetron sputtering for hybrid organic/inorganic electronic devices
Shewale et al. Physical and UV photodetection properties of pulsed laser deposited Mg0. 05Zn0. 95O thin films: Effect of oxygen pressure
Zhang et al. Lu-alloyed SnO X films with tunable optical bandgap for deep ultraviolet detection
Soylu et al. The validity of Kohlrausch law for the photocurrent transient and the role of N2/Ar flow ratio in photoconductivity of sputtered CoZnO
Ramakrishnan et al. Oxygen partial pressure dependent sputtered copper oxide films for visible photodetectors
Zargou et al. Effect of solution flow rate on growth and characterization of nanostructured ZnO thin films deposited using spray pyrolysis
Jiang et al. A high-speed photoconductive UV detector based on an Mg0. 4Zn0. 6O thin film
Chaoudhary et al. Influence of substrate temperature on the NiO thin films for p-NiO/n-Si UV-visible photodetector
Gürgenç et al. Production and Characterization of AlNiOZnOp-SiAl Composite Photodiodes for Solar Energy Tracking Systems
KR101935840B1 (ko) 광전 소자 및 그 제조 방법
CN108546918B (zh) 一种超宽禁带氧化物合金半导体外延薄膜材料及其制备方法和应用
Hamd et al. Fabrication of visible-enhanced BxC/SiO2/Si photodetector by one-step laser ablation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination