CN110734644A - 一种导热绝缘氮化硼高分子复合材料及制备方法 - Google Patents
一种导热绝缘氮化硼高分子复合材料及制备方法 Download PDFInfo
- Publication number
- CN110734644A CN110734644A CN201910553189.XA CN201910553189A CN110734644A CN 110734644 A CN110734644 A CN 110734644A CN 201910553189 A CN201910553189 A CN 201910553189A CN 110734644 A CN110734644 A CN 110734644A
- Authority
- CN
- China
- Prior art keywords
- boron nitride
- heat
- dimensional
- composite material
- conducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/205—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
- C08J3/2053—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2329/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/382—Boron-containing compounds and nitrogen
- C08K2003/385—Binary compounds of nitrogen with boron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/10—Transparent films; Clear coatings; Transparent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/02—Heterophasic composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明公开了一种导热绝缘氮化硼高分子复合材料,其特征在于,该材料是在聚合物基体上,由如下三种具有不同维度的填充粒子材料制成:氮化硼量子点为零维填充粒子材料,氮化硼纳米管为一维填充粒子材料,氮化硼纳米片为二维填充粒子材料及导热填料;所述的三维材料复合在聚合物基体上,经蒸发自组装后形成多维度多尺度的导热绝缘氮化硼高分子复合材料,在三维立体空间内构筑出完整高效的导热通路、降低界面热阻,同时使材料具有优异的力学性能、良好的维度稳定性。本发明还公开了该复合材料的制备方法。该材料可有效地降低界面热阻,还具有优异的力学性能、良好的维度稳定性、一定的透明度和柔性,具有广泛地应用前景。
Description
技术领域
本发明涉及导热材料领域,具体涉及一种导热绝缘氮化硼高分子复合材料及其制备方法。
背景技术
随着电子封装和高功率化技术的快速发展,元器件的高效散热问题成为重中之重。聚合物材料由于加工简单、高强度、价廉、耐腐蚀、电绝缘性好等优点在电子封装应用中发挥着重要的作用。然后,与金属和陶瓷相比,大多数聚合物的导热性能较差,导热系数在0.1-0.3Wm-1K-1之间,这就极大限制了其在导热领域的应用。因此,开发具有高导热复合材料成为解决电子器件散热问题的迫切需要。
目前,已有很多关于导热系数较高的复合材料及其制备方法的文献和专利报道。但是,简单的添加单一的导热填料对复合材料导热系数的提高非常有限。这是由于单单添加一种填料往往会使得填料在基体中分布不均,不能构建连续的导热通路,声子散射严重,使得热流不能有效沿着导热路径传递。氮化硼纳米片由于其具有高导热系数、小的热膨胀系数以及良好的电绝缘性能等优异的物理化学性能而得到广泛的应用。同时,氮化硼纳米管具有较高的导热系数和较高的长径比,添加到聚合物基体中能够大幅度提高聚合物的导热系数。氮化硼量子点由于其独有的小尺寸,加入到氮化硼聚合物体系中,能够更好地连接导热填料与基体,完善导热通路。
现有技术中,浙江大学提交的申请号为201910006616.2的中国发明专利申请,公开了《一种氮化硼/环氧树脂复合材料的制备方法及产品和应用》,该发明涉及一种氮化硼/环氧树脂复合材料的制备方法及产品和应用,制备方法包括:1)将氮化硼纳米片与粘结剂分散于水中,形成混合溶液;2)混合溶液进行双向冷冻,然后冷冻干燥去除冰晶,得到具有片层取向结构的氮化硼气凝胶;3)在氮化硼气凝胶的片层取向结构内填充固化的环氧树脂,得到氮化硼/环氧树脂复合材料。该方法需要通过双向冷冻得到具有片层取向结构的氮化硼气凝胶,形成高效的导热通路,需要使用专门的制备设备、对制备设备的要求较高,制备过程中的能耗也高。同时,该材料仅具有良好的导热性能,但是其机械强度受到一定限制,因此其应用范围受到限制;且制备过程较为复杂、能耗较高。
发明内容
本发明是针对现有技术的上述不足,提供一种导热绝缘氮化硼高分子复合材料,具有多维度多尺度的立体空间结构,以有效地降低界面热阻,使得热流能够有效完整的运输,实现高导热性能;同时复合材料还具有优异的力学性能、良好的维度稳定性;本发明还提供一种制备上述材料的方法,通过将三种不同维度的填料氮化硼量子点为零维材料,氮化硼纳米管为一维材料,氮化硼纳米片为二维材料共同填充到聚合物基体中,经过经蒸发自组装后形成最终的复合材料,制备过程紧凑、能耗低。
为实现上述目的,本发明提供如下技术方案:
一种导热绝缘氮化硼高分子复合材料,其特征在于,该材料是在聚合物基体上,由如下三种具有不同维度的填充粒子材料制成:氮化硼量子点为零维填充粒子材料,氮化硼纳米管为一维填充粒子材料,氮化硼纳米片为二维填充粒子材料及导热填料;所述的三维材料复合在聚合物基体上,经蒸发自组装后形成多维度多尺度的导热绝缘氮化硼高分子复合材料,在三维立体空间内构筑出完整高效的导热通路、降低界面热阻,同时使材料具有优异的力学性能、良好的维度稳定性。
所述的导热绝缘氮化硼高分子复合材料,其特征在于,该材料是由如下质量份比的组分制成:
其中,所述的氮化硼量子点的粒径为2~50nm,氮化硼纳米管的粒径为20~100nm,氮化硼纳米管的长度为10~20μm,氮化硼纳米片的粒径为100~200nm。
其中,所述的聚合物基体,是聚酰亚胺、聚乙烯醇、聚丙烯、聚乙烯中的一种或其中几种混合制成。
一种制备前述导热绝缘氮化硼高分子复合材料的方法,其特征在于,其包括如下步骤:
(1)将氮化硼量子点、氮化硼纳米管、氮化硼纳米片按设定的质量份比、常温下搅拌1~5h,超声1~5h混合,使得三种不同维度的导热填料充分接触,制得多维材料混合液;
(2)将多维材料混合液与聚合物基体组分搅拌混合充分,获得计整体材料混合液;
(3)将整体混合液加入到模具中,并置于烘箱中,在50~120℃下干燥10~48h,使整体混合液中的氮化硼量子点、氮化硼纳米管、氮化硼纳米片填料与聚合物基体材料,通过蒸发自组装过程,形成导热绝缘多维度多尺度氮化硼高分子复合材料。
与现有技术相比,本发明的有益效果是:
(1)本发明提供的导热绝缘氮化硼高分子复合材料,具有立体空间的多维度多尺度的显著特性,其中的氮化硼纳米片作为“岛”分散在聚合物基体中,而氮化硼纳米管作为“桥”,连接分散的氮化硼纳米片,使之形成有效地导热通路,而氮化硼量子点作为“石子”有效地填充在“岛-桥”之间的空隙中,进一步完善导热通路;其将氮化硼纳米片、氮化硼纳米管与氮化硼量子点三种不同维度的填料与基体复合,构筑更加完整、高效的导热通路,有效提高复合材料的导热率。同时,该复合材料具有优异的力学性能、良好的维度稳定性、一定的透明度和柔性。
(2)本发明的导热绝缘氮化硼高分子复合材料的制备工艺,通过蒸发自组装过程形成导热绝缘氮化硼高分子复合材料的多维度多尺度空间立体结构,工艺巧妙、步骤紧凑;原料组分易得,无需特别的设备,且操作方便,易于控制,大部分制备步骤均在常温下完成,整体能耗低,便于大规模生产,制造成本低。
下面结合附图与具体实施方式,对本发明进一步详细说明。
附图说明
图1为本发明填料与基体复合的分子结构示意图;
图2为本发明实施例2制备的复合材料导热率对比测试图;
图3为本发明实施例2制备的复合材料的拉伸强度对比图。
具体实施方式
实施例1
参见附图1~3,本发明实施例提供的导热绝缘氮化硼高分子复合材料,其是在聚合物基体上,由如下三种具有不同维度的填充粒子材料制成:氮化硼量子点为零维填充粒子材料,氮化硼纳米管为一维填充粒子材料,氮化硼纳米片为二维填充粒子材料及导热填料;所述的三维材料复合在聚合物基体上,经蒸发自组装后形成多维度多尺度的导热绝缘氮化硼高分子复合材料,在三维立体空间内构筑出完整高效的导热通路、降低界面热阻,同时使材料具有优异的力学性能、良好的维度稳定性。
所述的导热绝缘氮化硼高分子复合材料,是由如下质量份比的组分制成:
其中,所述的氮化硼量子点的粒径为2~50nm,氮化硼纳米管的粒径为20~100nm,氮化硼纳米管的长度为10~20μm,氮化硼纳米片的粒径为100~200nm。
其中,所述的聚合物基体,是聚酰亚胺、聚乙烯醇、聚丙烯、聚乙烯中的一种或其中几种混合制成。
一种制备前述导热绝缘氮化硼高分子复合材料的方法,其包括如下步骤:
(1)将氮化硼量子点、氮化硼纳米管、氮化硼纳米片按设定的质量份比、常温下搅拌1~5h,超声1~5h混合,使得三种不同维度的导热填料充分接触,制得多维材料混合液;
(2)将多维材料混合液与聚合物基体组分搅拌混合充分,获得整体材料混合液;
(3)将整体混合液加入到模具中,并置于烘箱中,在50~120℃下干燥10~48h,使整体混合液中的氮化硼量子点、氮化硼纳米管、氮化硼纳米片填料与聚合物基体材料,通过蒸发自组装过程,形成导热绝缘多维度多尺度氮化硼高分子复合材料。
实施例2
本发明实施例提供的导热绝缘氮化硼高分子复合材料及其制备方法,与实施例1基本相同,其不同之处在于:
制备复合材料的组分中,按照质量份比例,氮化硼量子点为1,氮化硼纳米管为5,氮化硼纳米片为20,聚酰亚胺为74。
其制备方法的具体步骤为:
(1)将氮化硼量子点、氮化硼纳米管、氮化硼纳米片按1:5:20质量比制成混合液,常温下搅拌2h,超声2h,使得三种不同维度的导热填料充分接触;
(2)将超声之后的氮化硼量子点、氮化硼纳米管、氮化硼纳米片混合液与聚合物基体的聚酰亚胺、聚乙烯醇、聚丙烯、聚乙烯之一,搅拌混合充分;
(3)最后将混合液倒入模具中,并置于烘箱中,在80℃干燥24h,所述氮化硼量子点、氮化硼纳米管、氮化硼纳米片填料与聚合物基体通过蒸发自组装过程获得导热绝缘多尺度氮化硼高分子复合材料。
对实施例2制得的导热绝缘多尺度氮化硼高分子复合材料的导热率和拉伸强度进行测试,其导热率为7.62Wm-1K-1,拉伸强度为72MPa。
实施例3
本实施例提供的导热绝缘多尺度氮化硼高分子复合材料及其制备方法,其与实施例1、2基本相同,其不同之处在于:复合材料中的氮化硼量子点为2,氮化硼纳米管为10,氮化硼纳米片为25,聚酰亚胺与聚乙烯醇的混合物为63,其混合比例为50:50。
实施例4
本实施例提供的导热绝缘多尺度氮化硼高分子复合材料,其与实施例1、2、3基本相同,其不同之处在于:复合材料中氮化硼量子点为1.5,氮化硼纳米管为19,氮化硼纳米片为50,聚丙烯、聚乙烯的混合物为50,其混合比例为60:40。
实施例5
本实施例提供的导热绝缘多尺度氮化硼高分子复合材料及其制备方法,其与实施例1~4均基本相同,其不同之处在于:复合材料中的氮化硼量子点为1,氮化硼纳米管为2,氮化硼纳米片为5,聚酰亚胺、聚乙烯醇、聚丙烯、聚乙烯的混合物为90,其混合比例为1:1:1:1。
实施例6
本实施例提供的导热绝缘多尺度氮化硼高分子复合材料及其制备方法,其与实施例1~5均基本相同,其不同之处在于:复合材料中的氮化硼量子点为1,氮化硼纳米管为2,氮化硼纳米片为15,聚酰亚胺与聚乙烯的混合物为5,其混合比例为1:1。
在其他实施例中,所述的聚合物基体,还可以是四种材料之间的其他混合方法及混合比例,均可以达到所述的技术效果,本发明实施例不再一一列出。
本发明各实施例中各组分的具体配比,可以根据具体需要,在所记载的范围选择,均可以达到所述的技术效果,本发明实施例不再一一列出。
本发明不限于上述实施方式,采用与本发明相同或相似组分、配比及方法所得的其它导热绝缘氮化硼高分子复合材料及其制备方法,均在本发明保护范围内。
Claims (5)
1.一种导热绝缘氮化硼高分子复合材料,其特征在于,该材料是在聚合物基体上,由如下三种具有不同维度的填充粒子材料制成:氮化硼量子点为零维填充粒子材料,氮化硼纳米管为一维填充粒子材料,氮化硼纳米片为二维填充粒子材料及导热填料;所述的三维材料复合在聚合物基体上,经蒸发自组装后形成多维度多尺度的导热绝缘氮化硼高分子复合材料,在三维立体空间内构筑出完整高效的导热通路、降低界面热阻,同时使材料具有优异的力学性能、良好的维度稳定性。
3.根据权利要求2所述的导热绝缘氮化硼高分子复合材料,其特征在于,所述的氮化硼量子点的粒径为2~50nm,氮化硼纳米管的粒径为20~100nm,氮化硼纳米管的长度为10~20μm,氮化硼纳米片的粒径为100~200nm。
4.根据权利要求2所述的导热绝缘氮化硼高分子复合材料,其特征在于,所述的聚合物基体,是聚酰亚胺、聚乙烯醇、聚丙烯、聚乙烯中的一种或其中几种混合制成。
5.一种制备权利要求1~4之一所述导热绝缘氮化硼高分子复合材料的方法,其特征在于,其包括如下步骤:
(1)将氮化硼量子点、氮化硼纳米管、氮化硼纳米片按设定的质量份比、常温下搅拌1~5h,超声1~5h混合,使得三种不同维度的导热填料充分接触,制得多维材料混合液;
(2)将多维材料混合液与聚合物基体组分搅拌混合充分,获得整体材料混合液;
(3)将整体混合液加入到模具中,并置于烘箱中,在50~120℃下干燥10~48h,使整体混合液中的氮化硼量子点、氮化硼纳米管、氮化硼纳米片填料与聚合物基体材料,通过蒸发自组装过程,形成导热绝缘多维度多尺度氮化硼高分子复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910553189.XA CN110734644A (zh) | 2019-06-24 | 2019-06-24 | 一种导热绝缘氮化硼高分子复合材料及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910553189.XA CN110734644A (zh) | 2019-06-24 | 2019-06-24 | 一种导热绝缘氮化硼高分子复合材料及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110734644A true CN110734644A (zh) | 2020-01-31 |
Family
ID=69236696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910553189.XA Pending CN110734644A (zh) | 2019-06-24 | 2019-06-24 | 一种导热绝缘氮化硼高分子复合材料及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110734644A (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113278227A (zh) * | 2021-07-19 | 2021-08-20 | 苏州易昇光学材料有限公司 | 聚丙烯基散热粉末及其制备方法、应用 |
CN113540279A (zh) * | 2021-07-19 | 2021-10-22 | 苏州易昇光学材料有限公司 | 散热太阳能电池背板及其制备方法 |
CN114516207A (zh) * | 2022-02-17 | 2022-05-20 | 桂林电子科技大学 | 一种夹层结构高导热复合薄膜热界面材料及其制备方法 |
CN114684796A (zh) * | 2020-12-28 | 2022-07-01 | 宁波材料所杭州湾研究院 | 一种基于大长径比氮化硼纳米片、高导热绝缘复合材料及其制备方法 |
CN114989608A (zh) * | 2022-07-01 | 2022-09-02 | 宁夏清研高分子新材料有限公司 | 一种导热聚砜复合材料及其制备方法 |
CN115260627A (zh) * | 2022-07-04 | 2022-11-01 | 苏州市毅鑫新材料科技有限公司 | 一种氮化硼混合改性聚乙烯导热复合材料及其制备方法 |
CN115547691A (zh) * | 2022-11-04 | 2022-12-30 | 深圳市米韵科技有限公司 | 一种高频电容用导热隔膜及其制备方法 |
CN116715902A (zh) * | 2023-05-30 | 2023-09-08 | 宁波杭州湾新材料研究院 | 一种超高面内导热杂化薄膜及其制备方法 |
CN116731428A (zh) * | 2023-05-30 | 2023-09-12 | 服务型制造研究院(杭州)有限公司 | 一种废旧塑料微改性纳米复合材料及其制备方法 |
CN116478449B (zh) * | 2023-05-23 | 2023-10-27 | 哈尔滨理工大学 | 一种一维核壳结构导热填料的制备方法及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102070899A (zh) * | 2010-12-30 | 2011-05-25 | 广东银禧科技股份有限公司 | 一种绝缘导热聚酰胺复合材料及制备方法 |
CN103602060A (zh) * | 2013-11-06 | 2014-02-26 | 上海大学 | 导热耐磨绝缘尼龙6复合材料及其制备方法 |
CN106634653A (zh) * | 2016-12-14 | 2017-05-10 | 苏州中来光伏新材股份有限公司 | 具有三维导热通道的光伏组件封装胶膜及制备方法和组件 |
CN106957519A (zh) * | 2017-04-09 | 2017-07-18 | 广州天宸高新材料有限公司 | 一种无低聚硅氧烷挥发的导热脂组合物及其制备方法 |
CN108641371A (zh) * | 2018-04-09 | 2018-10-12 | 苏州创励新材料科技有限公司 | 一种高导热、高电绝缘性的凝胶片及其制备方法 |
CN109181301A (zh) * | 2018-07-21 | 2019-01-11 | 上海大学 | 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法 |
-
2019
- 2019-06-24 CN CN201910553189.XA patent/CN110734644A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102070899A (zh) * | 2010-12-30 | 2011-05-25 | 广东银禧科技股份有限公司 | 一种绝缘导热聚酰胺复合材料及制备方法 |
CN103602060A (zh) * | 2013-11-06 | 2014-02-26 | 上海大学 | 导热耐磨绝缘尼龙6复合材料及其制备方法 |
CN106634653A (zh) * | 2016-12-14 | 2017-05-10 | 苏州中来光伏新材股份有限公司 | 具有三维导热通道的光伏组件封装胶膜及制备方法和组件 |
CN106957519A (zh) * | 2017-04-09 | 2017-07-18 | 广州天宸高新材料有限公司 | 一种无低聚硅氧烷挥发的导热脂组合物及其制备方法 |
CN108641371A (zh) * | 2018-04-09 | 2018-10-12 | 苏州创励新材料科技有限公司 | 一种高导热、高电绝缘性的凝胶片及其制备方法 |
CN109181301A (zh) * | 2018-07-21 | 2019-01-11 | 上海大学 | 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114684796B (zh) * | 2020-12-28 | 2023-08-15 | 宁波材料所杭州湾研究院 | 一种基于大长径比氮化硼纳米片、高导热绝缘复合材料及其制备方法 |
CN114684796A (zh) * | 2020-12-28 | 2022-07-01 | 宁波材料所杭州湾研究院 | 一种基于大长径比氮化硼纳米片、高导热绝缘复合材料及其制备方法 |
CN113540279A (zh) * | 2021-07-19 | 2021-10-22 | 苏州易昇光学材料有限公司 | 散热太阳能电池背板及其制备方法 |
CN113278227A (zh) * | 2021-07-19 | 2021-08-20 | 苏州易昇光学材料有限公司 | 聚丙烯基散热粉末及其制备方法、应用 |
CN114516207B (zh) * | 2022-02-17 | 2023-09-12 | 桂林电子科技大学 | 一种夹层结构高导热复合薄膜热界面材料及其制备方法 |
CN114516207A (zh) * | 2022-02-17 | 2022-05-20 | 桂林电子科技大学 | 一种夹层结构高导热复合薄膜热界面材料及其制备方法 |
CN114989608A (zh) * | 2022-07-01 | 2022-09-02 | 宁夏清研高分子新材料有限公司 | 一种导热聚砜复合材料及其制备方法 |
CN114989608B (zh) * | 2022-07-01 | 2024-01-30 | 宁夏清研高分子新材料有限公司 | 一种导热聚砜复合材料及其制备方法 |
CN115260627A (zh) * | 2022-07-04 | 2022-11-01 | 苏州市毅鑫新材料科技有限公司 | 一种氮化硼混合改性聚乙烯导热复合材料及其制备方法 |
CN115547691A (zh) * | 2022-11-04 | 2022-12-30 | 深圳市米韵科技有限公司 | 一种高频电容用导热隔膜及其制备方法 |
CN116478449B (zh) * | 2023-05-23 | 2023-10-27 | 哈尔滨理工大学 | 一种一维核壳结构导热填料的制备方法及其应用 |
CN116715902A (zh) * | 2023-05-30 | 2023-09-08 | 宁波杭州湾新材料研究院 | 一种超高面内导热杂化薄膜及其制备方法 |
CN116731428A (zh) * | 2023-05-30 | 2023-09-12 | 服务型制造研究院(杭州)有限公司 | 一种废旧塑料微改性纳米复合材料及其制备方法 |
CN116731428B (zh) * | 2023-05-30 | 2024-02-02 | 服务型制造研究院(杭州)有限公司 | 一种废旧塑料微改性纳米复合材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110734644A (zh) | 一种导热绝缘氮化硼高分子复合材料及制备方法 | |
CN110951254A (zh) | 氮化硼复合高导热绝缘高分子复合材料及其制备方法 | |
CN109666263B (zh) | 一种氮化硼/环氧树脂复合材料的制备方法及产品和应用 | |
Zhao et al. | A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices | |
Xiao et al. | Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure | |
Wu et al. | Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks | |
CN109913185B (zh) | 一种含导热膜的多层结构导热复合材料及其制备方法 | |
CN110128792B (zh) | 一种热界面复合材料及其制备方法和应用 | |
CN106519581B (zh) | 一种高导热低粘度环氧树脂复合材料及其制备方法和应用 | |
CN113881228B (zh) | 一种高导热碳素纤维复合材料及其制备方法 | |
KR101886435B1 (ko) | 팽창 그라파이트에 팽창 고분자 비드가 충전된 하이브리드 필러를 함유한 고방열 복합재 및 그 제조방법 | |
CN102181168B (zh) | 聚合物基复合材料及其制造方法 | |
CN109093108B (zh) | 高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法 | |
Xu et al. | The synergistic effects on enhancing thermal conductivity and mechanical strength of hBN/CF/PE composite | |
CN106987123B (zh) | 石墨烯/氮化硼负载纳米银导热特种高分子材料及制备方法 | |
CN110358255A (zh) | 一种三维复合材料及其制备方法、应用和基板与电子装置 | |
CN102876044A (zh) | 一种磁性金属粉/硅橡胶导热复合材料及其制备方法 | |
CN112778611A (zh) | 一种高导热高强度纳米复合材料及其制备方法 | |
CN113416389B (zh) | 一种环氧基二维片状金属纳米填料的超高各向同性导热材料及其制备方法 | |
CN114716704A (zh) | 一种高导热石墨烯复合薄膜及其制备方法 | |
Wu et al. | Robust polyamide 66 composites with hybrid fillers for thermal management and electromagnetic shielding | |
Wei et al. | Highly thermally conductive composites with boron nitride nanoribbon array | |
CN109988360B (zh) | 一种石墨烯导热高分子材料及其制备方法 | |
CN111548586A (zh) | 聚合物基复合导热材料及其制备方法和应用 | |
Lu et al. | Scalable compliant graphene fiber-based thermal interface material with metal-level thermal conductivity via dual-field synergistic alignment engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200131 |
|
RJ01 | Rejection of invention patent application after publication |