CN1107041C - 柔性石墨片及其制备方法 - Google Patents
柔性石墨片及其制备方法 Download PDFInfo
- Publication number
- CN1107041C CN1107041C CN98808425A CN98808425A CN1107041C CN 1107041 C CN1107041 C CN 1107041C CN 98808425 A CN98808425 A CN 98808425A CN 98808425 A CN98808425 A CN 98808425A CN 1107041 C CN1107041 C CN 1107041C
- Authority
- CN
- China
- Prior art keywords
- size
- mixture
- graphite
- natural graphite
- embedded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3496—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member use of special materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/536—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
- Ceramic Products (AREA)
- Paper (AREA)
Abstract
柔性石墨片是通过压缩一种相对较大的剥落的、膨胀的嵌入式天然石墨颗粒和较小的剥落的、膨胀的嵌入式天然石墨颗粒的混合物来制备的。所得柔性石墨片沿薄片厚度方向(“c”方向)的导电性增加,垂直于“c”方向的密封能力得到改善。
Description
发明领域
本发明涉及一种制备柔性石墨片的方法,就电阻率而言,这种柔性石墨片的的各向异性降低,使沿薄片厚度方向的导电性增加,就密封能力而言,这种柔性石墨片的各向异性降低,在垂直于柔性石墨片厚度方向的密封能力得到改善(泄漏减少)。
发明背景
石墨是由碳原子的六方形排列或网络的层状平面组成的。这些六方形排列的碳原子层状平面基本上是平直的、定向的或有序的,因此相互之间基本上平行和等距。这些基本上平直且平行等距的碳原子片或层(通常指的是基准平面)相互连接或键合在一起,由此排列成微晶。高度有序的石墨是由相当多尺寸的微晶组成的:微晶之间高度线性排列或定向排列,并且含有很好的有序碳层。换言之,高度有序的石墨具有很大程度的优选微晶取向。值得注意的是:石墨具有各向异性结构,因此表现出或具有一些高度定向性。简言之,石墨以碳的层状结构为特征,即该结构是由通过弱范德瓦尔斯力连接在一起的碳原子叠层或薄片组成的。当考虑石墨结构时,通常需注明两个轴或方向,即“c”轴或“c”方向和“a”轴或“a”方向。为了简单化,“c”轴或“c”方向可以被看成是垂直于碳层的方向。“a”轴或“a”方向可以被看成是平行于碳层的方向或垂直于“c”轴的方向。天然石墨具有高度定向性。
如上所述,平行碳原子层之间的键合力只是弱范德瓦尔斯力。天然石墨可以经过处理,通过将重叠的碳层或薄片之间的间距略微增大,从而使垂直于碳层的方向(即“c”方向)显著膨胀,形成一种膨胀的石墨结构,其层状特征基本上保持不变。
可以使天然石墨片高度膨胀,更具体而言,膨胀成最终厚度或“c”方向尺寸至少为最初“c”方向尺寸的80倍或更多倍,而不需要在粘合的或完整的薄片(例如织物、纸、条和带等)中使用任何一种粘合剂。不采用任何粘合材料就可能形成最终厚度或“c”尺寸至少为最初“c”方向尺寸的80倍的膨胀石墨颗粒,相信可能是由于大量膨胀的石墨颗粒之间具有优良的机械联锁性能或内聚力。
除上面指出的柔性外,我们已经发现:上述片状材料还具有高度的各向异性,例如:关于电性能和热性能的各向异性。因此,可以制备柔性好、强度高和高度定向的片状材料。
简言之,制备不含粘合剂的柔性石墨片状材料(例如:织物、纸、条、带、箔和簇等)的方法包括:在预定载荷和没有粘合剂的条件下,压缩“c”方向尺寸至少为最初颗粒80倍的膨胀石墨颗粒,形成一种基本上平直、柔性和完整的石墨片。膨胀石墨颗粒在外观上通常为螺旋形或蠕虫状,一经压缩,就将保持其压缩形状。片状材料的密度和厚度可以通过控制压缩程度来改变。片状材料的密度范围大约为5磅/立方英寸~125磅/立方英寸。这种柔性石墨片状材料表现出明显的各向异性,例如:就电阻率而言,其各向异性的程度随辊压后片状材料密度的增加而增加。在辊压后具有各向异性的片状材料中,厚度,即垂直于薄片表面的方向,包括“c”方向,沿长度和宽度排列即顺着或平行于表面的方向包括“a”方向。
附图简述
图1是一张尺寸范围为20×50目的天然石墨片的扫描电子显微镜(STM)图像,原始放大倍数为100X。
图2是一张尺寸范围为50×100目的天然石墨片的扫描电子显微镜(STM)图像,原始放大倍数为100X。
发明详述
石墨是碳的一种结晶形态,它包括键合在平直的层状平面中的碳原子,平面之间通过弱键相连。用一种嵌入试剂,如一种硫酸和硝酸溶液,来处理如天然石墨片这样的石墨颗粒,使之与石墨的晶体结构发生反应,形成一种石墨和嵌入试剂的化合物。这种被处理过的石墨颗粒在此之后被称作“嵌入式石墨颗粒”。通过将其暴露在高温条件下,这种嵌入式石墨颗粒在“c”方向(即垂直于石墨结晶面的方向)上以象手风琴一样的方式膨胀至最初体积的80倍或更多倍。这种剥落的石墨颗粒在外观上是蠕虫状,因此通常被称作旋管。这些旋管可以被压缩在一起形成柔性薄片,与最初的石墨片不同,它们可以被切割成各种形状。
Shane等人在美国专利No.3,404,061中描述了一种由柔性石墨制备石墨箔的普通方法,在此引入其公开内容作为参考。在Shane等人方法的典型实践中,通过将天然石墨片浸入到一种包含如硝酸和硫酸混合物的氧化剂中,使之嵌入薄片。嵌入溶液包含在技术领域中已知的氧化剂和其它嵌入试剂。实例包括那些含氧化剂和氧化混合物的溶液,例如包含硝酸、氯酸钾、铬酸、高锰酸钾、铬酸钾、重铬酸钾和高氯酸等的溶液;或者混合物,例如浓硝酸和氯酸盐、铬酸和磷酸、硫酸和硝酸;或者一种强有机酸,例如三氟乙酸,与一种在该有机酸中可溶的强氧化剂的混合物。
在一个优选实施方案中,嵌入试剂是硫酸、或硫酸和磷酸与一种氧化剂的混合溶液,其中,氧化剂即是硝酸、高氯酸、重铬酸钾、过氧化氢、碘酸或高碘酸等。虽然并非优选,但是嵌入溶液可以包含金属卤化物,例如氯化铁、氯化铁和硫酸的混合物,或者一种卤化物例如溴和硫酸的溶液,或者溴在一种有机溶剂中的溶液。
薄片被嵌入后,从薄片中排出所有多余的溶液。经排出溶液后,保留在薄片上的嵌入溶液的量的范围为20~150重量份数/100重量份数石墨片(pph),更典型的为大约50~120pph。另外,可选择将嵌入溶液的量限制在10~50pph之间,这样就可以如美国专利No.4,895,713中所描述的一样免去洗涤步骤,在此引入其公开内容作为参考。在超过700℃,典型地是1000℃,或更高的温度条件下,通过将石墨片在火焰中暴露仅几秒钟,使嵌入式石墨片剥落成柔性石墨。然后,压缩该剥落的石墨颗粒或旋管,接着辊压成所需密度和厚度的紧密压缩的柔性石墨箔片,并且就电阻率和其它物理性能而言,其各向异性大为增加。适当的剥落方法和将剥落的石墨颗粒压缩成薄薄的箔片的方法在前面所述的Shane等人的美国专利No.3,404,061中已经公开了。通常是将剥落旋管与第一阶段或前阶段的压缩产品一起分阶段压缩,成为本领域中所称的“柔性石墨板”,其密度约为3~10磅/立方英寸,厚度为0.1~1英寸。然后,将该柔性石墨板进一步辊压成一种预选厚度的标准密度薄片或箔。柔性石墨板可以被辊压成密度达到理论密度、厚度为2~180密尔的薄片或箔,但是,在大部分应用中可接受的密度大约为70磅/立方英寸,合适密度为10~100磅/立方英寸。
在本发明的一个特殊实施方案中,将尺寸为20×50目的颗粒的重量百分比至少为80%的第一批天然石墨片颗粒(如图1所示,原始放大倍数为100X),即天然存在的石墨片浸入到一种如上所述的嵌入溶液中进行处理。第一批薄片被嵌入后,排出薄片中多余的溶液,然后用水洗涤并干燥。按照与第一批石墨片相同的处理方式,用一种嵌入溶液处理第二批尺寸为50×100目的颗粒的重量百分比至少为80%的尺寸较小的天然石墨片(如图2所示,原始放大倍数为100X),同样水洗并干燥。将这些未剥落的嵌入式天然石墨片(尺寸为50×100目的颗粒的重量百分比至少为80%)与第一批未剥落的颗粒混合,使混合物中较小尺寸的未剥落的嵌入式天然石墨片的重量百分比约为25%~75%。方便地混合这些未剥落的嵌入式天然石墨片颗粒,得到充分均匀混合的未剥落的、未膨胀的片状颗粒。例如,通过将较小的未剥落的天然石墨颗粒铺展在放置于振动桌上的较大的未剥落的天然石墨颗粒上,就可以实现均匀混合。
将干燥的薄片混合物在火焰中暴露仅几秒钟,这种嵌入式片状颗粒膨胀,即剥落成蠕虫状、螺旋形颗粒,其体积大约是最初干燥嵌入式薄片的80~1000倍。
我们已经发现,当所用较小尺寸颗粒的重量百分比超过80%时,得到不具有良好抗张强度的易碎的薄片产物;当所用较小尺寸颗粒的重量百分比小于25%时,就电阻率而言,对所得柔性石墨片的各向异性的影响不显著。
将大的和小的剥落的石墨颗粒混合物辊压成一般厚度为0.002~0.180英寸、密度至少为10磅/立方英寸的薄片或箔。所得薄片或箔以电阻率降低为特征,即沿薄片或箔的厚度方向(“c”方向)的导电性增加。当较小尺寸颗粒(50×100目)的百分含量增加时,在薄片或箔的“c”方向的导电性增加,这在将薄片或箔用作燃料电池电极的一种组份时是很重要的,如美国专利5,300,370所述,参照UCAR碳公司的柔性石墨产品的商品设计“GRAFOIL”。
实施例1(现有技术)
在一种硫酸(重量百分比为90%)和硝酸(重量百分比为10%)的混合物中处理尺寸为20×50目的颗粒的重量百分比为80%的天然石墨片(图1)。这种经过处理的嵌入式天然石墨薄片经过水洗后,干燥至水的重量百分含量大约为1%。将一部分处理过的、受热可膨胀的嵌入式天然石墨片放入温度为2500°F的炉子中,薄片快速膨胀,得到1磅蠕虫状的、螺旋形的颗粒,其体积大约为未膨胀的嵌入式薄片的325倍。
将该螺旋形的热膨胀的嵌入式石墨片辊压成大约厚度为0.030英寸、宽度为24英寸、密度为45磅/立方英寸的薄片。在薄片的厚度方向(“c”方向)上,0.030英寸厚的薄片样品的电阻率为10,500μmΩm(微欧米)。实施例2(本发明)
在一种硫酸(重量百分比为90%)和硝酸(重量百分比为10%)的混合物中处理第一批尺寸为20×50目的颗粒的重量百分比为80%的天然石墨片(图1)。将这种处理过的嵌入式天然石墨片用水洗涤后,干燥至水的重量百分含量约为1%。
按照与第一批较大尺寸的天然石墨的相同方式,在一种硫酸和硝酸的混合物中处理第二批尺寸为50×100目的颗粒的重量百分比为80%的较小尺寸的天然石墨片(图2),用水洗涤后,得到未膨胀的、受热可膨胀的嵌入式天然石墨片。
将不同量的第二批较小尺寸的未膨胀的、受热可膨胀的嵌入式天然石墨片与1磅第一批未膨胀的、受热可膨胀的嵌入式天然石墨片混合,得到较小尺寸的未膨胀的天然石墨片的重量百分含量约为25~75%的混合物。
将干燥薄片的混合物在火焰中暴露仅几秒钟,该嵌入式片状颗粒膨胀,即剥落成蠕虫状、螺旋形的颗粒,其体积大约为最初干燥的嵌入式薄片的80~1000倍。
将这种热膨胀的螺旋形天然石墨颗粒的混合物辊压成一种大约厚0.030英寸、宽24英寸、密度为45磅/立方英寸的薄片。
对照实施例1,测试实施例2的薄片样品(直径为2.5英寸),结果列于下表。同样,测试了密度为80磅/立方英寸、厚0.030英寸的圆环形式(60mm内径×90mm外径,如DIN28090-1所指定)的垫圈形样品的密封能力,结果列于下表:
较小起始颗粒(50×100目)的重量百分比(%) | 电阻率(mΩm) | 密封能力(DIN28090-)ml/min |
0 | 10,500 | |
25 | 5,200 | 0.77 |
75 | 2,800 | 0.48 |
如上所示,当较小颗粒的添加量为25%时,电阻率大约降低一半,添加量为75%时,电阻率大约为原来的四分之一,同时,基本上保持了商业用材料所需要的可应用性能(强度和柔性)。在样品压力为225psi的条件下,采用Keithley2001Multimeter和四探针金板测得电阻率。
*此处所用的目尺寸是美国筛系列。
Claims (3)
1.沿厚度方向的电阻率降低和垂直于薄片厚度方向(“c”方向)的密封能力得到改善的柔性石墨片的制备方法,包括:
i)准备第一批尺寸相对较大的天然石墨片,其中至少80%(重量)的尺寸为20×50目;
ii)准备第二批较小尺寸的天然石墨片,其中至少80%(重量)的尺寸为50×100目;
iii)将上述第一批和第二批石墨片混合,得到一种所含第二批较小尺寸天然石墨片的重量百分比为25-75%的混合物;
iv)用一种嵌入溶液处理该混合物,得到受热可膨胀的嵌入式石墨片混合物;
v)将步骤(iii)中的嵌入式天然石墨片混合物暴露在升高温度的条件下,使之剥落成相对较大尺寸和较小尺寸的、膨胀的、蠕虫状的旋管形石墨颗粒混合物;和
vi)将步骤(v)的混合物通过加压辊,形成该混合物的预定厚度的、粘附的、辊压的压缩片,沿该压缩片厚度方向的电阻率随步骤(iii)的混合物中较小尺寸的天然石墨片(步骤(ii))的添加量的增加而降低。
2.根据权利要求1所述的方法,其中,步骤(vi)的混合物被辊压成一种厚度为2-180密尔、密度至少为10-100磅/立方英寸的薄片。
3.通过压缩一种尺寸较大的、剥落的、膨胀的嵌入式天然石墨颗粒和尺寸较小的、剥落的、膨胀的嵌入式天然石墨颗粒的掺混混合物制得的柔性石墨片,其特征为:与只由尺寸较大的、剥落的、膨胀的嵌入式天然石墨颗粒制得的柔性石墨片相比,该石墨片沿厚度方向的导电性增加,其中,该较小颗粒由至少80%(重量)的尺寸为50×100目的天然石墨颗粒形成,并且该较小颗粒在混合物中的含量为25-75%(重量),该较大颗粒由至少80%(重量)的尺寸为20×50目的天然石墨颗粒形成。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/883,386 US5846459A (en) | 1997-06-26 | 1997-06-26 | Method of forming a flexible graphite sheet with decreased anisotropy |
US08/883,386 | 1997-06-26 | ||
US08/883386 | 1997-06-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1268102A CN1268102A (zh) | 2000-09-27 |
CN1107041C true CN1107041C (zh) | 2003-04-30 |
Family
ID=25382482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN98808425A Expired - Fee Related CN1107041C (zh) | 1997-06-26 | 1998-06-12 | 柔性石墨片及其制备方法 |
Country Status (9)
Country | Link |
---|---|
US (2) | US5846459A (zh) |
EP (1) | EP0994828A1 (zh) |
JP (1) | JP2002506416A (zh) |
KR (1) | KR20010014058A (zh) |
CN (1) | CN1107041C (zh) |
AU (1) | AU8057898A (zh) |
CA (1) | CA2294986A1 (zh) |
TW (1) | TW438719B (zh) |
WO (1) | WO1999000340A1 (zh) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2733747B1 (fr) * | 1995-05-05 | 1997-07-25 | Lacroix Soc E | Composes d'intercalation, leur procede de preparation et leur utilisation notamment en pyrotechnique |
US5985452A (en) * | 1997-03-18 | 1999-11-16 | Ucar Carbon Technology Corporation | Flexible graphite composite sheet and method |
US5902762A (en) * | 1997-04-04 | 1999-05-11 | Ucar Carbon Technology Corporation | Flexible graphite composite |
US6087034A (en) * | 1998-07-09 | 2000-07-11 | Ucar Graph-Tech Inc. | Flexible graphite composite |
US6923631B2 (en) * | 2000-04-12 | 2005-08-02 | Advanced Energy Technology Inc. | Apparatus for forming a resin impregnated flexible graphite sheet |
AU762158B2 (en) * | 1999-04-07 | 2003-06-19 | Graftech Inc. | Flexible graphite article and method of manufacture |
US20020054995A1 (en) * | 1999-10-06 | 2002-05-09 | Marian Mazurkiewicz | Graphite platelet nanostructures |
US6387462B1 (en) * | 1999-12-10 | 2002-05-14 | Ucar Graph-Tech Inc. | Thermal insulating device for high temperature reactors and furnaces which utilize highly active chemical gases |
WO2001054218A2 (en) * | 2000-01-19 | 2001-07-26 | Manhattan Scientifics, Inc. | Fuel cell stack with cooling fins and use of expanded graphite in fuel cells |
WO2001053620A1 (en) * | 2000-01-24 | 2001-07-26 | Graftech Inc. | Flexible graphite article |
US6451486B1 (en) | 2000-05-01 | 2002-09-17 | The Gillette Company | Battery cathode including a mixture of manganese dioxide with carbon particles of expanded and non-expanded graphite |
WO2002066245A1 (en) | 2000-11-02 | 2002-08-29 | Graftech Inc. | Flexible graphite sheet having increased isotropy |
US6521369B1 (en) * | 2000-11-16 | 2003-02-18 | Graftech Inc. | Flooding-reducing fuel cell electrode |
US6517964B2 (en) * | 2000-11-30 | 2003-02-11 | Graftech Inc. | Catalyst support material for fuel cell |
US20020164483A1 (en) * | 2001-04-04 | 2002-11-07 | Mercuri Robert Angelo | Graphite article having predetermined anisotropic characteristics and process therefor |
US20020182476A1 (en) * | 2001-05-31 | 2002-12-05 | Reynolds Robert Anderson | Method for preparing fuel cell component substrate of flexible graphite material having improved thermal and electrical properties |
US6613252B2 (en) | 2001-06-01 | 2003-09-02 | Advanced Energy Technology Inc. | Molding of materials from graphite particles |
US6921610B2 (en) | 2001-07-11 | 2005-07-26 | The Gillette Company | Battery |
US20060128505A1 (en) * | 2001-10-09 | 2006-06-15 | Sullivan Michael J | Golf ball layers having improved barrier properties |
US6802784B2 (en) * | 2002-05-29 | 2004-10-12 | Acushnet Company | Golf ball containing graphite nanosheets in a polymeric network |
US6886233B2 (en) | 2002-05-13 | 2005-05-03 | Egc Enterprises, Inc. | Method for decreasing the thickness of flexible expanded graphite sheet |
US6667100B2 (en) | 2002-05-13 | 2003-12-23 | Egc Enterprises, Inc. | Ultra-thin flexible expanded graphite heating element |
US20060241237A1 (en) * | 2002-09-12 | 2006-10-26 | Board Of Trustees Of Michigan State University | Continuous process for producing exfoliated nano-graphite platelets |
US8501858B2 (en) * | 2002-09-12 | 2013-08-06 | Board Of Trustees Of Michigan State University | Expanded graphite and products produced therefrom |
US20040127621A1 (en) * | 2002-09-12 | 2004-07-01 | Board Of Trustees Of Michigan State University | Expanded graphite and products produced therefrom |
US20040121122A1 (en) * | 2002-12-20 | 2004-06-24 | Graftech, Inc. | Carbonaceous coatings on flexible graphite materials |
FR2859376B1 (fr) * | 2003-09-04 | 2006-05-19 | Spine Next Sa | Implant rachidien |
US7645341B2 (en) * | 2003-12-23 | 2010-01-12 | Lam Research Corporation | Showerhead electrode assembly for plasma processing apparatuses |
US7430986B2 (en) | 2005-03-18 | 2008-10-07 | Lam Research Corporation | Plasma confinement ring assemblies having reduced polymer deposition characteristics |
JP4299261B2 (ja) * | 2005-03-31 | 2009-07-22 | 東洋炭素株式会社 | 伝熱シート、放熱構造体および伝熱シートの使用方法 |
WO2007136559A2 (en) * | 2006-05-16 | 2007-11-29 | Michigan State University | Conductive coatings produced by monolayer deposition on surfaces |
US8017228B2 (en) * | 2006-05-16 | 2011-09-13 | Board Of Trustees Of Michigan State University | Conductive composite compositions with fillers |
US20090311436A1 (en) * | 2006-05-16 | 2009-12-17 | Board Of Trustees Of Michigan State University | Conductive composite materials with graphite coated particles |
KR100698727B1 (ko) | 2006-07-27 | 2007-03-23 | 자화전자(주) | 흑연시트와 그 제조방법 |
US8119288B2 (en) * | 2007-11-05 | 2012-02-21 | Nanotek Instruments, Inc. | Hybrid anode compositions for lithium ion batteries |
JP5887494B2 (ja) * | 2012-03-22 | 2016-03-16 | パナソニックIpマネジメント株式会社 | グラファイトシートの製造方法 |
WO2017044712A1 (en) | 2015-09-11 | 2017-03-16 | Laird Technologies, Inc. | Devices for absorbing energy from electronic components |
DE202017100275U1 (de) | 2017-01-09 | 2017-03-15 | Imerys Tc | Thermisch-Fotovoltaisches Solarsystem, Anlagen, die termisch-fotovoltaische Solarsystem umfassen, und deren Verwendung |
US10590789B2 (en) * | 2017-04-26 | 2020-03-17 | Borgwarner Inc. | Turbocharger radial seal |
CN110371968B (zh) * | 2019-07-09 | 2021-09-14 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | 一种低析出物石墨原板的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3404061A (en) * | 1962-03-21 | 1968-10-01 | Union Carbide Corp | Flexible graphite material of expanded particles compressed together |
JPS60101359A (ja) * | 1983-11-04 | 1985-06-05 | Uchiyama Mfg Corp | 繊維補強膨張黒鉛ガスケツトとその製造方法 |
JPS6372780A (ja) * | 1986-09-12 | 1988-04-02 | Nippon Reinz Co Ltd | 黒鉛シ−ト |
EP0388481A1 (en) * | 1989-03-20 | 1990-09-26 | Zhejiang Ci Xi Seal Material Factory | General packing of expanded graphite and its packing material |
DE4007060A1 (de) * | 1990-03-07 | 1991-09-12 | Bayer Ag | Intumeszierende flaechengebilde |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3492197A (en) * | 1965-03-22 | 1970-01-27 | Dow Chemical Co | Novel compressed cohered graphite structures and method of preparing same |
US4565649A (en) * | 1974-08-23 | 1986-01-21 | Intercal Company | Graphite intercalation compounds |
US4146401A (en) * | 1975-08-02 | 1979-03-27 | Hitachi Chemical Company, Ltd. | Graphite material having compressibility and recovering property and method for manufacturing the same |
US4102960A (en) * | 1976-12-15 | 1978-07-25 | Stackpole Carbon Company | Process for making high strength flexible graphite foil |
DE2748135C2 (de) * | 1977-10-27 | 1982-10-14 | Sigri Elektrographit Gmbh, 8901 Meitingen | Flexibler Graphitschichtstoff |
JPS5488911A (en) | 1977-12-26 | 1979-07-14 | Matsushita Electric Ind Co Ltd | Production of thin ceramic sheet |
JPS6016385B2 (ja) | 1977-12-28 | 1985-04-25 | 日本カ−ボン株式会社 | 可撓性黒鉛製品の製造法 |
US4190257A (en) | 1978-02-01 | 1980-02-26 | Union Carbide Corporation | Packing ring containing flexible graphite |
US4199628A (en) * | 1978-03-23 | 1980-04-22 | The Dow Chemical Company | Vermicular expanded graphite composite material |
US4915925A (en) * | 1985-02-11 | 1990-04-10 | Chung Deborah D L | Exfoliated graphite fibers and associated method |
US4642201A (en) | 1985-08-27 | 1987-02-10 | Intercal Company | Compositions for improving the stability of intercalated graphite structural members |
JPS6287407A (ja) * | 1985-10-12 | 1987-04-21 | Res Dev Corp Of Japan | フイルム状グラフアイト層間化合物及びその製造方法 |
JPS63157747A (ja) | 1986-12-22 | 1988-06-30 | Tokyo Yogyo Co Ltd | 連続鋳造用浸漬ノズル |
JP2503497B2 (ja) | 1987-03-30 | 1996-06-05 | 日立化成工業株式会社 | 黒鉛・繊維複合材料 |
US4895713A (en) * | 1987-08-31 | 1990-01-23 | Union Carbide Corporation | Intercalation of graphite |
JPH01123991A (ja) | 1987-11-09 | 1989-05-16 | Nikkiso Co Ltd | 内熱式高温高圧装置の断熱構造体 |
US5225379A (en) * | 1988-02-09 | 1993-07-06 | Ucar Carbon Technology Corporation | Composites of flexible graphite particles and amorphous carbon |
US4826181A (en) | 1988-02-09 | 1989-05-02 | Union Carbide Corporation | Seal utilizing composites of flexible graphite particles and amorphous carbon |
US5228701A (en) | 1988-03-22 | 1993-07-20 | Ucar Carbon Technology Corporation | Flexible graphite articles with an amorphous carbon phase at the surface |
JPH064482B2 (ja) * | 1988-06-08 | 1994-01-19 | 三井鉱山株式会社 | 葉片状黒鉛粉末及びその製造方法 |
US4911972A (en) | 1988-08-12 | 1990-03-27 | Union Carbide Corporation | Insulating composite gasket |
US5186919A (en) * | 1988-11-21 | 1993-02-16 | Battelle Memorial Institute | Method for producing thin graphite flakes with large aspect ratios |
US5149518A (en) * | 1989-06-30 | 1992-09-22 | Ucar Carbon Technology Corporation | Ultra-thin pure flexible graphite calendered sheet and method of manufacture |
US4988583A (en) | 1989-08-30 | 1991-01-29 | Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Novel fuel cell fluid flow field plate |
US5108849A (en) | 1989-08-30 | 1992-04-28 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Fuel cell fluid flow field plate |
US5376403A (en) * | 1990-02-09 | 1994-12-27 | Capote; Miguel A. | Electrically conductive compositions and methods for the preparation and use thereof |
US5225262A (en) | 1991-04-29 | 1993-07-06 | A. W. Chesterton Co. | Braided high-temperature packing comprising a core of folded flexible graphite sheet |
US5376450A (en) * | 1991-06-25 | 1994-12-27 | Ucar Carbon Technology Corporation | Low surface acid intercalated graphite and method |
US5176863A (en) * | 1991-08-06 | 1993-01-05 | Ucar Carbon Technology Corporation | Flexible graphite composite fire retardant wallpaper and method |
US5300370A (en) | 1992-11-13 | 1994-04-05 | Ballard Power Systems Inc. | Laminated fluid flow field assembly for electrochemical fuel cells |
US5683778A (en) | 1992-12-09 | 1997-11-04 | Crosier; Robert A. | Braided graphite-foil and method of production |
DE69506950T2 (de) * | 1994-06-20 | 2000-01-13 | Sgl Technic Inc., | Graphitschaummaterialien und Verfahren zur Herstellung derselben |
US5494056A (en) * | 1994-07-18 | 1996-02-27 | Reynolds; Justine B. | Method for application of cosmetics |
JP2619818B2 (ja) | 1994-11-21 | 1997-06-11 | 日本ピラー工業株式会社 | 熱膨張性無機質繊維シール材 |
JPH08169478A (ja) | 1994-12-20 | 1996-07-02 | Taiyo Chem Kk | マイクロ波加熱調理用発熱シート及びその製造方法 |
US5531454A (en) | 1994-12-29 | 1996-07-02 | Indian Head Industries, Inc. | Expandable gasket, sealed joint and method of forming same |
US5494506A (en) | 1995-01-17 | 1996-02-27 | Ucar Carbon Technology Corporation | Gas filtering device for air bag gas generator |
US5698088A (en) * | 1996-07-08 | 1997-12-16 | The Hong Kong University Of Science And Technology | Formic acid-graphite intercalation compound |
US5981072A (en) * | 1997-04-04 | 1999-11-09 | Ucar Carbon Technology Corporation | Oxidation and corrosion resistant flexible graphite composite sheet and method |
-
1997
- 1997-06-26 US US08/883,386 patent/US5846459A/en not_active Expired - Lifetime
-
1998
- 1998-06-08 TW TW087109070A patent/TW438719B/zh active
- 1998-06-12 CN CN98808425A patent/CN1107041C/zh not_active Expired - Fee Related
- 1998-06-12 KR KR19997012094A patent/KR20010014058A/ko not_active Application Discontinuation
- 1998-06-12 CA CA002294986A patent/CA2294986A1/en not_active Abandoned
- 1998-06-12 JP JP50554999A patent/JP2002506416A/ja active Pending
- 1998-06-12 AU AU80578/98A patent/AU8057898A/en not_active Abandoned
- 1998-06-12 EP EP98928884A patent/EP0994828A1/en not_active Withdrawn
- 1998-06-12 WO PCT/US1998/011492 patent/WO1999000340A1/en not_active Application Discontinuation
- 1998-08-13 US US09/133,237 patent/US6254993B1/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3404061A (en) * | 1962-03-21 | 1968-10-01 | Union Carbide Corp | Flexible graphite material of expanded particles compressed together |
JPS60101359A (ja) * | 1983-11-04 | 1985-06-05 | Uchiyama Mfg Corp | 繊維補強膨張黒鉛ガスケツトとその製造方法 |
JPS6372780A (ja) * | 1986-09-12 | 1988-04-02 | Nippon Reinz Co Ltd | 黒鉛シ−ト |
EP0388481A1 (en) * | 1989-03-20 | 1990-09-26 | Zhejiang Ci Xi Seal Material Factory | General packing of expanded graphite and its packing material |
DE4007060A1 (de) * | 1990-03-07 | 1991-09-12 | Bayer Ag | Intumeszierende flaechengebilde |
Also Published As
Publication number | Publication date |
---|---|
AU8057898A (en) | 1999-01-19 |
CN1268102A (zh) | 2000-09-27 |
US6254993B1 (en) | 2001-07-03 |
EP0994828A1 (en) | 2000-04-26 |
JP2002506416A (ja) | 2002-02-26 |
KR20010014058A (ko) | 2001-02-26 |
WO1999000340A1 (en) | 1999-01-07 |
CA2294986A1 (en) | 1999-01-07 |
TW438719B (en) | 2001-06-07 |
US5846459A (en) | 1998-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1107041C (zh) | 柔性石墨片及其制备方法 | |
US5149518A (en) | Ultra-thin pure flexible graphite calendered sheet and method of manufacture | |
US6143218A (en) | Method of forming a flexible graphite composite sheet | |
US6432336B1 (en) | Flexible graphite article and method of manufacture | |
US5981072A (en) | Oxidation and corrosion resistant flexible graphite composite sheet and method | |
CA2346686C (en) | Flexible graphite with non-carrier pressure sensitive adhesive backing and release liner | |
US6923631B2 (en) | Apparatus for forming a resin impregnated flexible graphite sheet | |
EP1783097B1 (en) | Exfoliated graphite sheet | |
KR20150089028A (ko) | 단일 그래핀 층 또는 그래핀 단결정 | |
JP2002509569A (ja) | 軟質黒鉛複合シートならびに方法 | |
CA2020148C (en) | Ultra-thin, pure flexible graphite | |
JP2004269319A (ja) | 発泡グラファイトシートの製造方法 | |
EP0971863B1 (en) | Oxidation and corrosion resistant flexible graphite composite sheet and method | |
Dai et al. | Ultra-low energy processing of graphite: A fast-track journey towards carbon neutrality | |
CN112636022B (zh) | 一种输变电系统防雷接地石墨基柔性复合材料 | |
MXPA99012037A (en) | Flexible graphite sheet with decreased anisotropy | |
CN116812926A (zh) | 一种可膨胀石墨及其制备方法和应用 | |
JPH06171007A (ja) | 膨張黒鉛シート積層品及びその製造方法 | |
CN116037681A (zh) | 一种金刚石颗粒均匀增强铜基复合材料的制备方法 | |
JPH02177264A (ja) | 燃料電池用シート化マトリクス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |