CN110690815B - 混模式升压型功因校正转换器 - Google Patents

混模式升压型功因校正转换器 Download PDF

Info

Publication number
CN110690815B
CN110690815B CN201810778994.8A CN201810778994A CN110690815B CN 110690815 B CN110690815 B CN 110690815B CN 201810778994 A CN201810778994 A CN 201810778994A CN 110690815 B CN110690815 B CN 110690815B
Authority
CN
China
Prior art keywords
unit
current detection
current
control unit
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810778994.8A
Other languages
English (en)
Other versions
CN110690815A (zh
Inventor
蔡宪逸
刘宥辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chicony Power Technology Co Ltd
Original Assignee
Chicony Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chicony Power Technology Co Ltd filed Critical Chicony Power Technology Co Ltd
Publication of CN110690815A publication Critical patent/CN110690815A/zh
Application granted granted Critical
Publication of CN110690815B publication Critical patent/CN110690815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4241Arrangements for improving power factor of AC input using a resonant converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/043Conversion of ac power input into dc power output without possibility of reversal by static converters using transformers or inductors only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

本发明有关于一种混模式升压型功因校正转换器,其包含电感单元、开关单元、二极管单元、电流检测单元以及控制单元。电感单元耦接直流输入电源。开关单元耦接电感单元与接地点。二极管单元耦接电感单元与开关单元。电流检测单元接收流经电感单元的电感电流,且提供相应电感电流大小的电流检测信号。控制单元耦接电流检测单元,且接收电流检测信号。当负载为轻载时,控制单元取样电流检测信号的峰值;当负载为重载时,控制单元取样电流检测信号的平均值。

Description

混模式升压型功因校正转换器
技术领域
本发明有关一种升压型功因校正转换器,尤指一种混模式升压型功因校正转换器。
背景技术
传统的升压型功率因数转换器(boost PFC)其控制方式有连续导通模式(continuous-conduction mode,CCM)与临界导通模式(critical-conduction mode,CRM)。因应不同的负载大小,当boost PFC为高瓦特数或重载操作时,通常适用CCM的控制方式,通过检测boost PFC的电感电流的平均值,以作为控制功率开关的切换;反之,当boost PFC为低瓦特数或轻载操作时,通常适用CRM的控制方式,通过检测boost PFC的电感电流的峰值,以作为控制功率开关的切换。
由于CCM的控制方式与CRM的控制方式无法在不同负载状况而同时兼具两者的优势,因此现有相关技术的研发人员对于能够混合两种操作模式的电路设计亦投入研究与开发。常见地,在结合两种操作模式的电路拓朴基础上,通过外加检测电路与逻辑切换电路达成两种操作模式的切换控制。换言之,当检测电路检测到boost PFC为重载操作时,则通过逻辑切换电路切换为CCM控制模式,而当检测电路检测到boost PFC为轻载操作时,则通过逻辑切换电路切换为CRM控制模式。
如此虽可达成因应负载状况,而在两种控制模式之间进行切换以选择适用的控制方式,惟这样的切换方式除了额外增加检测电路与逻辑切换电路的成本外,能否准确地检测boost PFC的负载操作状态而即时地进行两种控制模式之间的切换,也存在着很大的技术瓶颈与挑战。
发明内容
本发明的一目的在于提供一种混模式升压型功因校正转换器,解决因额外增加检测电路与逻辑切换电路提供不同控制模式之间的切换,所造成准确与即时控制的技术瓶颈与挑战。
为达成前揭目的,本发明所提出的混模式升压型功因校正转换器,其包含电感单元、开关单元、二极管单元、电流检测单元以及控制单元。电感单元具有第一端与第二端,第一端耦接直流输入电源。开关单元具有第一端与第二端,第二端耦接接地点。二极管单元具有第一端与第二端,第一端耦接电感单元的第二端与开关单元的第一端,第二端与接地点之间提供直流输出电源以供应负载。电流检测单元接收流经电感单元的电感电流,且提供相应电感电流大小的电流检测信号。控制单元耦接电流检测单元,且接收电流检测信号。当负载为轻载时,控制单元取样电流检测信号的峰值;当负载为重载时,控制单元取样电流检测信号的平均值。
于一实施例中,电流检测单元设置于电感单元提供的储能路径上,且开关单元操作于切换周期与责任周期;当负载为重载时,控制单元于取样时间点取样电流检测信号的平均值,其中取样时间点为
Figure BDA0001732100060000021
其中tsp为取样时间点、ton为开关单元的导通起始点、D为责任周期,以及Tsw为切换周期。
于一实施例中,电流检测单元设置于电感单元提供的释能路径上,且开关单元操作于切换周期与责任周期;当负载为重载时,控制单元于取样时间点取样电流检测信号的平均值,其中取样时间点为
Figure BDA0001732100060000022
其中tsp为取样时间点、toff为开关单元的截止起始点、D为责任周期,以及Tsw为切换周期。
于一实施例中,在同一切换周期内的取样时间点上以及取样时间点的前后对称时间点上,控制单元取样多个电流检测信号,且计算该些电流检测信号的平均值为单一周期平均值。
于一实施例中,在连续周期内,控制单元取样多个电流检测信号的平均值,且计算该些平均值的平均值为连续周期平均值。
于一实施例中,当负载为轻载时,升压型功因校正转换器以临界导通模式操作;当负载为重载时,升压型功因校正转换器以连续导通模式操作。
于一实施例中,电流检测单元为电流检测电阻或霍尔效应感测器。
于一实施例中,开关单元具有寄生电容;电感单元与寄生电容谐振时,在电感单元的第二端与开关单元的第一端的共接点产生谐振电压,且当控制单元检测到谐振电压的波谷值时,控制单元切换开关单元。
于一实施例中,控制单元为数字控制器。
藉由所提出的混模式升压型功因校正转换器,可实现不同操作模式控制的准确性与即时性,提供高灵活性、高可靠度以及高适应性的电感电流检测,并且可节省元件成本与简化控制机制。
为了能更进一步了解本发明为达成预定目的所采取的技术、手段及功效,请参阅以下有关本发明的详细说明与附图,相信本发明特征与特点,当可由此得一深入且具体的了解,然而所附图式仅提供参考与说明用,并非用来对本发明加以限制者。
附图说明
图1:为本发明混模式升压型功因校正转换器的电路方块图。
图2A:为本发明电流检测单元设置于储能路径的示意图。
图2B:为本发明电流检测单元设置于释能路径的示意图。
图3A:为本发明电感电流第一实施例的波形图。
图3B:为本发明电感电流第二实施例的波形图。
图3C:为本发明电感电流第三实施例的波形图。
图4A:为本发明电感储能时电感电流平均值的取样示意图。
图4B:为本发明电感释能时电感电流平均值的取样示意图。
其中,附图标记:
10混模式升压型功因校正转换器
11电流检测单元 12控制单元
LPFC电感单元 DPFC二极管单元
SPFC开关单元 CS寄生电容
RL负载 IL电感电流
VAC交流输入电源 Gnd接地点
Vin直流输入电源 Vout直流输出电源
Co输出电容 Pc共接点
PS储能路径 PR释能路径
SSW开关控制信号
fsw切换频率 Tsw切换周期
D责任周期 tsp取样时间点
ton导通起始点 toff截止起始点
S1~S5检测点
具体实施方式
兹有关本发明的技术内容及详细说明,配合图式说明如下。
请参见图1所示,其为本发明混模式升压型功因校正转换器的电路方块图。混模式升压型功因校正转换器10包含电感单元LPFC、开关单元SPFC、二极管单元DPFC、电流检测单元11以及控制单元12。
电感单元LPFC具有第一端与第二端,电感单元LPFC的第一端耦接直流输入电源Vin。在本实施例中,直流输入电源Vin为交流输入电源VAC经由整流单元,例如桥式全整流器(full-wave rectifier)整流后所获得的直流电源。
开关单元SPFC具有第一端与第二端,并且在第一端与第二端之间具有寄生电容CS。开关单元SPFC的第一端耦接电感单元LPFC的第二端,开关单元SPFC的第二端耦接接地点Gnd。
二极管单元DPFC具有第一端与第二端,在本实施例,第一端为阳极(anode),第二端为阴极(cathode)。二极管单元DPFC的第一端耦接电感单元LPFC的第二端与开关单元SPFC的第一端,二极管单元DPFC的第二端与接地点Gnd之间提供直流输出电源Vout以供应负载RL。在本实施例中,输出电容Co耦接于二极管单元DPFC的第二端与接地点Gnd之间,因此直流输出电源Vout产生于输出电容Co的两端,并且所产生的直流输出电源Vout经由输出电容Co进行滤波和稳压,进而供应负载RL高品质的操作电压。
电流检测单元11接收流经电感单元LPFC的电感电流IL,以检测电感电流IL的大小。进一步地,电流检测单元11根据所检测的电感电流IL大小,提供相应电感电流IL大小的电流检测信号。在一实施例中,电流检测单元11可为电流检测电阻或霍尔效应感测器(Hallsensor),然不以此为限制,只要能够用以检测电感电流IL的元件、电路或装置,皆可作为电流检测单元11之用。再者,图1所示的电流检测单元11虽耦接于开关单元SPFC的第二端与接地点Gnd之间,然而不以此为限制电流检测单元11的设置位置,具体地,电流检测单元11的检测操作将于后文中配合其他图示加以详述之。控制单元12耦接电流检测单元11,且接收电流检测单元11所提供(相应电感电流IL大小)的电流检测信号。在一实施例中,控制单元12可为数字控制器,即其具备数字信号处理、运算以及控制的功能,可为但不限定为微控制器(microcontroller,MCU)、数字信号处理器(digital signal processor,DSP)、现场可编程门阵列(field-programmable gate array,FPGA)或者特殊应用集成电路(application-specific integrated circuit,ASIC)。
进一步地,控制单元12将电流检测单元11所提供模拟的电流检测信号进行数字化处理、运算与计算,以输出开关控制信号SSW,进而控制开关单元SPFC的导通与截止,具体说明详述如后。值得一提,由于电流检测信号大小是相应电感电流IL大小,且为了直观地聚焦在本发明的技术核心为检测电感电流IL的峰值或平均值,因此在后文所记载关于控制单元12检测电感电流IL的操作,实际上乃通过检测数字化处理后的电流检测信号的峰值或平均值所实现,亦即检测到电流检测信号的峰值(或平均值)即表示检测到电感电流IL的峰值(或平均值),在后文不再加以赘述,合先叙明。
请参见图2A所示,其为本发明电流检测单元设置于储能路径的示意图。配合图1所示,在本实施例中,所谓“储能路径”指当控制单元12提供开关控制信号SSW以控制开关单元SPFC为导通(turned on)状态时,电感单元LPFC为储存能量操作时的电流(能量)路径,亦即电感电流IL沿储能路径PS流动。
请参见图2B所示,其为本发明电流检测单元设置于释能路径的示意图。配合图1所示,在本实施例中,所谓“释能路径”指当控制单元12提供开关控制信号SSW以控制开关单元SPFC为截止(turned off)状态时,电感单元LPFC为释放能量操作时的电流(能量)路径,亦即电感电流IL沿释能路径PR流动。
在本发明中,电流检测单元11可设置于储能路径PS(如图2A所示)或释能路径PR(如图2B所示)上的不同检测位置,以灵活地、可靠地检测电感电流IL。以下,针对电感单元LPFC于储能与释能不同状态的操作分别加以说明。
配合参见图2A,对电感单元LPFC为储能状态的操作说明。电流检测单元11设置于电感单元LPFC提供的储能路径PS上,其中储能路径PS耦接至混模式升压型功因校正转换器10的输入侧。即图2A所示的多个检测点S1~S2的任一者皆可为电流检测单元11设置的检测位置,以提供灵活地、准确地检测电感电流IL的大小。具体地,当控制单元12通过开关控制信号SSW控制开关单元SPFC导通时,电感电流IL流经储能路径PS,因此当电流检测单元11设置于上述该些检测点S1~S2的任一者时,皆可准确地检测到电感电流IL的大小。
配合参见图2B,对电感单元LPFC为释能状态的操作说明。电流检测单元11设置于电感单元LPFC提供的释能路径PR上,其中释能路径PR耦接至混模式升压型功因校正转换器10的输出侧。即图2B所示的多个检测点S3~S5的任一者皆可为电流检测单元11设置的检测位置,以提供灵活地、准确地检测电感电流IL的大小。具体地,当控制单元12通过开关控制信号SSW控制开关单元SPFC截止时,电感电流IL流经释能路径PR,因此当电流检测单元11设置于上述该些检测点S3~S5的任一者时,皆可准确地检测到电感电流IL的大小。
请参见图3A所示,其为本发明电感电流第一实施例的波形图。图3A所示的上半部为电感电流IL的电流值,所示的下半部为开关控制信号SSW的电平值。其中,从图3A可清楚看出,当控制单元12输出的开关控制信号SSW为高电平时,高电平的开关控制信号SSW导通开关单元SPFC,因此电感单元LPFC为储能操作,此时电感电流IL逐渐增加,并且电感电流IL流经储能路径PS可对应图2A所示。反之,当控制单元12输出的开关控制信号SSW为低电平时,低电平的开关控制信号SSW截止开关单元SPFC,因此电感单元LPFC为释能操作,此时电感电流IL逐渐减少,并且电感电流IL流经释能路径PR可对应图2B所示。
因此,可通过设置于如图2A所示该些检测点S1~S2的任一者的电流检测单元11,检测到当开关单元SPFC为导通状态下,流经储能路径PS的电感电流IL的大小。再者,亦可通过设置于如图2B所示该些检测点S3~S5的任一者的电流检测单元11,检测到当开关单元SPFC为截止状态下,流经释能路径PR的电感电流IL的大小。换言之,可通过设置于该些检测点S1~S2的任一者的电流检测单元11检测到电流变化斜率为正值的电感电流IL的大小。反之,可通过设置于该些检测点S3~S5的任一者的电流检测单元11检测到电流变化斜率为负值的电感电流IL的大小。
当检测到混模式升压型功因校正转换器10为轻载(即负载RL为轻载)时,包括混模式升压型功因校正转换器10为软启动(soft start)的轻载状态时,控制单元12以临界导通模式(CRM)操作混模式升压型功因校正转换器10,则控制单元12取样电流检测单元11所检测到的电感电流IL的峰值。举例来说,控制单元12通过在开关控制信号SSW由高电平转态为低电平的时间点,取样当时的电感电流IL,则可获得在当下周期时的电感电流IL的峰值,如此达成临界导通模式(CRM)的峰值电流检测。
当检测到混模式升压型功因校正转换器10为重载(即负载RL为重载)时,控制单元12以连续导通模式(CCM)操作混模式升压型功因校正转换器10,则控制单元12取样电流检测单元11所检测到的电感电流IL的平均值。具体操作如下详述。
以下针对电流检测单元11于图2A所示该些检测点S1~S2的任一者的电流(电感电流IL)取样和/或于图2B所示该些检测点S3~S5的任一者的电流(电感电流IL)取样的操作进一步说明。请参见图4A所示,其为本发明电感储能时电感电流平均值的取样示意图,即为图3B的局部放大所示意。另外,请参见图4B,其为本发明电感释能时电感电流平均值的取样示意图,即为图3C的局部放大所示意。图4A与图4B所示的上半部为电感电流IL的电流值,所示的下半部为开关控制信号SSW的电平值。在本实施例中,控制开关单元SPFC导通与截止的开关控制信号SSW具有切换周期Tsw与责任周期D。如图4A所示,开关控制信号SSW的一个周期中的导通(on)周期为切换周期Tsw与责任周期D的乘积,即D×Tsw。如图4B所示,开关控制信号SSW的一个周期中的截止(off)周期则为(1-D)×Tsw。
此外,如图2A与相对应的图3B所示,为电流检测单元11设置于储能路径PS上,因此在开关单元SPFC导通时,电流检测单元11能够有效地检测到电感电流IL的大小,而在开关单元SPFC截止时,则不对电感电流IL进行检测。相反地,如图2B与相对应的图3C所示,为电流检测单元11设置于释能路径PR上,因此在开关单元SPFC截止时,电流检测单元11能够有效地检测到电感电流IL的大小,而在开关单元SPFC导通时,则不对电感电流IL进行检测。
以下具体地以图4A与图4B为例加以说明,当检测到混模式升压型功因校正转换器10为重载(即负载RL为重载)时,控制单元12以连续导通模式(CCM)操作混模式升压型功因校正转换器10,控制单元12如何取样电感电流IL的平均值。
如图4A所示,当开关控制信号SSW为高电平时,开关控制信号SSW在导通起始点ton导通开关单元SPFC,因此电感单元LPFC开始为周期的储能操作,此时电感电流IL逐渐增加。由于开关控制信号SSW的责任周期D与切换周期Tsw为已知,因此,控制单元12可根据计算导通(on)周期到达一半的时间点取样所接收到电感电流IL的大小,即为周期中电感电流IL的平均值,其适用图3A与图3B的开关控制信号SSW的导通(on)周期。其中,上述导通(on)周期到达一半的时间点(取样时间点)为:
Figure BDA0001732100060000081
其中tsp为取样时间点、ton为开关单元SPFC的导通起始点、D为责任周期,以及Tsw为切换周期。以下以假设的合理数据为例加以说明。
假设开关单元SPFC的切换频率fsw为100KHz,责任周期D为0.5,则切换周期Tsw为切换频率fsw的倒数为10μs。因此,电感电流IL的平均值的取样时间点tsp为:
Figure BDA0001732100060000082
即电感电流IL的平均值的取样时间点tsp为开关单元SPFC导通时起算2.5μs的时间点,且在取样时间点tsp所取样到的电感电流IL大小即为周期中电感电流IL的平均值。
同理,若假设开关单元SPFC的切换频率fsw为100KHz(切换周期Tsw为10μs),责任周期D为0.8,则电感电流IL的平均值的取样时间点tsp为:
Figure BDA0001732100060000083
即电感电流IL的平均值的取样时间点tsp为开关单元SPFC导通时起算4μs的时间点,且在取样时间点tsp所取样到的电感电流IL大小即为周期中电感电流IL的平均值。
相较于前述导通(on)周期的取样时间点计算以及电感电流IL的平均值的取样,截止(off)周期相对应的说明如下。如图4B所示,当开关控制信号SSW为低电平时,开关控制信号SSW在截止起始点toff截止开关单元SPFC,因此电感单元LPFC开始为周期的释能操作,此时电感电流IL逐渐减少。由于开关控制信号SSW的责任周期D与切换周期Tsw为已知,因此,控制单元12可根据计算截止(off)周期到达一半的时间点取样所接收到电感电流IL的大小,即为周期中电感电流IL的平均值,其适用图3A与图3C的开关控制信号SSW的截止(off)周期。其中,上述截止(off)周期到达一半的时间点(取样时间点)为:
Figure BDA0001732100060000091
其中tsp为取样时间点、toff为开关单元SPFC的截止起始点、D为责任周期,以及Tsw为切换周期。以下以假设的合理数据为例加以说明。
假设开关单元SPFC的切换频率fsw为100KHz,责任周期D为0.5,则切换周期Tsw为切换频率fsw的倒数为10μs。因此,电感电流IL的平均值的取样时间点tsp为:
Figure BDA0001732100060000092
即电感电流IL的平均值的取样时间点tsp为开关单元SPFC截止时起算2.5μs的时间点,且在取样时间点tsp所取样到的电感电流IL大小即为周期中电感电流IL的平均值。
同理,若假设开关单元SPFC的切换频率fsw为100KHz(切换周期Tsw为10μs),责任周期D为0.8,则电感电流IL的平均值的取样时间点tsp为:
Figure BDA0001732100060000093
即电感电流IL的平均值的取样时间点tsp为开关单元SPFC截止时起算1μs的时间点,且在取样时间点tsp所取样到的电感电流IL大小即为周期中电感电流IL的平均值。
再者,除了上述的导通(on)周期与截止(off)周期在取样时间点tsp取样一次电感电流IL的平均值之外,基于为获得更准确的电感电流IL的平均值,数字式的控制单元12可通过其对信号的快速处理与运算能力的特性,在同一切换周期(导通周期或截止周期)内,控制单元12可取样复数(多个)电感电流IL,例如可在预计的取样时间点tsp,以及取样时间点tsp的前后多组对称时间点上,连续地取样电感电流IL,藉此,通过取样相当数量的电感电流IL,再对其取算术平均值,则可弱化噪声干扰造成电感电流IL异常的影响,使得获得更准确的电感电流IL的平均值。如此,所得到更准确的电感电流IL的平均值,则作为混模式升压型功因校正转换器10为重载的连续导通模式(CCM)操作时,所取样获得电感电流IL的平均值。
举例来说,控制单元12在取样时间点tsp,例如责任周期D为0.5,以及取样时间点tsp前后对称的四个时间点,例如责任周期D为0.5的前后5%与10%,即在责任周期D为0.45、0.475、0.525以及0.55,连续取样共计5个电感电流IL分别为5.55安培(取样点在D=0.45)、5.61安培(取样点在D=0.475)、5.66(取样点在D=0.5)、5.77(取样点在D=0.525)、5.78(取样点在D=0.55),此例仅为说明之用,实际上数字处理的能力可在邻近的时间点连绩取样数十、数百个值。由于其中在D=0.525所取样的5.77安培属于异常的取样值(合理的正常值应约为5.72安培),因此,经过算术平均计算所得的平均值为5.674安培,其与在责任周期D为0.5取样单一的电感电流IL相近,故此可弱化噪声干扰造成电感电流IL异常的影响,使得获得更准确的电感电流IL的平均值。再者,若取样达数十、数百个电流值,则噪声干扰对取样电感电流IL的平均值的影响可谓之微乎其微。
再举另一例说明,控制单元12在取样时间点tsp,例如责任周期D为0.5,以及其邻近的前后的四个时间点,例如责任周期D为0.5邻近的前后5%与10%,即在责任周期D为0.45、0.475、0.525以及0.55,连续共计取样5个电感电流IL分别为5.55安培(取样点在D=0.45)、5.61安培(取样点在D=0.475)、5.71(取样点在D=0.5)、5.72(取样点在D=0.525)、5.78(取样点在D=0.55)。由于其中在D=0.5所取样的5.71安培属于异常的取样值(合理的正常值应约为5.66安培),因此,若仅在责任周期D为0.5取样单一的电感电流IL,则将所取样的5.71安培作为电感电流IL的平均值,如此将造成相当程度的误差。故此,通过取样时间点tsp,以及取样时间点tsp的前后多组对称时间点上,连续地取样电感电流IL,将可弱化噪声干扰造成电感电流IL异常的影响,获得更准确的电感电流IL的平均值。
再者,控制单元12亦可在连续周期内,例如连续的导通(on)周期或者连续的截止(off)周期内,取样复数(多个)电感电流IL的平均值,其中每个周期的电感电流IL的平均值,亦可配合上述的单一周期取样多个电感电流IL所获得的单一周期平均值为准,如此再计算该些平均值的平均值为连续周期平均值,以作为混模式升压型功因校正转换器10为重载的连续导通模式(CCM)操作时,所取样获得电感电流IL的平均值。
综上,对于混模式升压型功因校正转换器10为重载的连续导通模式(CCM)操作时,控制单元12可于电感单元LPFC为储能操作时,以开关单元SPFC的导通起始点ton起计算导通(on)周期到达一半的取样时间点,以及/或者可于电感单元LPFC为释能操作时,以开关单元SPFC的截止起始点toff起计算截止(off)周期到达一半的取样时间点,取样所接收到电感电流IL的大小,以获得所对应周期中电感电流IL的平均值,以达成连续导通模式(CCM)的平均值电流检测。
此外,再请参见图1所示,在一实施例中,开关单元SPFC具有寄生电容Cs。当电感单元LPFC与寄生电容Cs发生谐振时,在电感单元LPFC的第二端与开关单元SPFC的第一端的共接点Pc会产生谐振电压,其中谐振电压为共接点Pc与接地点Gnd之间的电压值。当谐振电压的大小为波谷值(valley)时,控制单元12在此时切换开关单元SPFC导通,如此可大幅地降低开关单元SPFC的切换损失而提高转换效率,并且可省去使用过零检测(zero crossdetection)电路来检测零电感电流,以提供临界导通模式(CRM)时的开关单元SPFC切换。
因此,在另外的实施例中,电流检测单元11由兼具检测电流与检测电压的电流电压检测单元所取代,以作为检测电感电流IL与检测共接点Pc的谐振电压之用,进而将所检测到的电感电流IL与谐振电压传送至控制单元12,以供控制单元12作为控制之用。或者,在另外的实施例中,除电流检测单元11之外,可再使用电压检测单元,作为检测共接点Pc的谐振电压之用,同样地,电流检测单元11与电压检测单元所检测到的电感电流IL与谐振电压传送至控制单元12,以供控制单元12作为控制之用。
综上所述,本发明具有以下的特征与功效:
1、本发明的混模式升压型功因校正转换器可在同一电路拓朴下,即无须额外设置检测电路与逻辑切换电路作为两种操作模式(CCM/CRM)的切换控制,如此不仅可节省元件成本、简化控制机制,并且通过数字式的控制单元12对信号的精准且快速的处理与运算能力特性,实现两种操作模式控制的准确性与即时性。
2、电流检测单元11可设置于储能路径PS或释能路径PR上的不同检测位置,提供高灵活性(high flexibility)、高可靠度(high reliability)以及高适应性(adaptability)的电感电流IL检测。
3、通过单一周期内的对称时间点上,连续地取样电感电流IL再对其取算术平均值以获得单一周期电感电流IL的平均值,以及计算连续周期的电感电流IL的平均值以获得连续周期电感电流IL平均值,可弱化噪声干扰所造成电感电流IL异常的影响,而可获得更准确的电感电流IL的平均值。
4、当控制单元12检测到谐振电压的波谷值时,控制单元12切换开关单元SPFC导通,如此可大幅地降低切换损失而提高转换效率,并且可省去使用过零检测电路来检测零电感电流,以提供临界导通模式(CRM)时的开关单元SPFC切换。
以上所述,仅为本发明较佳具体实施例的详细说明与图式,惟本发明的特征并不局限于此,并非用以限制本发明,本发明的所有范围应以下述的申请专利范围为准,凡合于本发明申请专利范围的精神与其类似变化的实施例,皆应包括于本发明的范畴中,任何熟悉该项技艺者在本发明的领域内,可轻易思及的变化或修饰皆可涵盖在以下本案的专利范围。

Claims (5)

1.一种混模式升压型功因校正转换器,其特征在于,包含:
一电感单元,具有一第一端与一第二端,该第一端耦接一直流输入电源;
一开关单元,具有一第一端与一第二端,该第二端耦接一接地点;
一二极管单元,具有一第一端与一第二端,该第一端耦接该电感单元的该第二端与该开关单元的该第一端,该第二端与该接地点之间提供一直流输出电源以供应一负载;
一电流检测单元,接收流经该电感单元的一电感电流,且提供相应该电感电流大小的一电流检测信号;及
一控制单元,耦接该电流检测单元,且接收该电流检测信号;
其中,该控制单元为数字控制器,且该混模式升压型功因校正转换器无须额外设置逻辑切换电路作为临界导通模式与连续导通模式的切换控制;当该负载为轻载时,该混模式升压型功因校正转换器以临界导通模式操作,且该控制单元取样该电流检测信号的一峰值;当该负载为重载时,该混模式升压型功因校正转换器以连续导通模式操作,且该控制单元取样该电流检测信号的一平均值;
其中该电流检测单元设置于该电感单元提供的一储能路径上,且该开关单元操作于一切换周期与一责任周期;当该负载为重载时,该控制单元于一取样时间点取样该电流检测信号的该平均值,该取样时间点为:
Figure FDA0003233853650000011
其中tsp为该取样时间点、ton为该开关单元的导通起始点、D为该责任周期,以及Tsw为该切换周期;或者
其中该电流检测单元设置于该电感单元提供的一释能路径上,且该开关单元操作于一切换周期与一责任周期;当该负载为重载时,该控制单元于一取样时间点取样该电流检测信号的该平均值,该取样时间点为:
Figure FDA0003233853650000012
其中tsp为该取样时间点、toff为该开关单元的截止起始点、D为该责任周期,以及Tsw为该切换周期。
2.如权利要求1所述的混模式升压型功因校正转换器,其特征在于,在同一切换周期内的该取样时间点上以及该取样时间点的前后对称时间点上,该控制单元取样多个该电流检测信号,且计算该些电流检测信号的平均值为一单一周期平均值。
3.如权利要求1所述的混模式升压型功因校正转换器,其特征在于,在连续周期内,该控制单元取样多个该电流检测信号的该平均值,且计算该些平均值的平均值为一连续周期平均值。
4.如权利要求1所述的混模式升压型功因校正转换器,其特征在于,该电流检测单元为一电流检测电阻或一霍尔效应感测器。
5.如权利要求1所述的混模式升压型功因校正转换器,其特征在于,该开关单元具有一寄生电容;该电感单元与该寄生电容谐振时,在该电感单元的该第二端与该开关单元的该第一端的一共接点产生一谐振电压,且当该控制单元检测到该谐振电压的一波谷值时,该控制单元切换该开关单元。
CN201810778994.8A 2018-07-04 2018-07-16 混模式升压型功因校正转换器 Active CN110690815B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107123137 2018-07-04
TW107123137A TWI685183B (zh) 2018-07-04 2018-07-04 混模式升壓型功因校正轉換器

Publications (2)

Publication Number Publication Date
CN110690815A CN110690815A (zh) 2020-01-14
CN110690815B true CN110690815B (zh) 2021-11-12

Family

ID=68101867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810778994.8A Active CN110690815B (zh) 2018-07-04 2018-07-16 混模式升压型功因校正转换器

Country Status (3)

Country Link
US (1) US10439489B1 (zh)
CN (1) CN110690815B (zh)
TW (1) TWI685183B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995230A (zh) * 2017-12-29 2019-07-09 沃尔缇夫能源系统公司 功率因数校正pfc电路的控制方法、装置、设备及介质
CN110971117B (zh) * 2019-12-23 2020-12-15 东莞市石龙富华电子有限公司 一种开关电源智能多模式功率因数校正方法和电路
IT202000006976A1 (it) * 2020-04-02 2021-10-02 St Microelectronics Srl Procedimento di controllo di un convertitore switching a frequenza variabile, e corrispondente apparecchiatura di convertitore a frequenza variabile
US11211872B1 (en) * 2020-09-28 2021-12-28 Delta Electronics, Inc. Power-factor-correction rectifiers with soft switching
JP2022139406A (ja) * 2021-03-12 2022-09-26 サンケン電気株式会社 臨界モード方式の力率改善回路のデジタル制御を行う集積回路及び方法
CN116131596B (zh) * 2023-04-03 2023-07-14 茂睿芯(深圳)科技有限公司 混合模式功率因数校正变换器及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1558253A (zh) * 1998-09-11 2004-12-29 ��S��Ǯ 测量电池和电池组复阻抗的装置和方法
CN1646926A (zh) * 2002-04-17 2005-07-27 丹福斯驱动器公司 用于测量电机控制器中电流的方法和使用该方法的电机控制器
CN103269159A (zh) * 2013-05-15 2013-08-28 西安交通大学 一种电压模控制dc-dc模式自动转换电路
CN105577004A (zh) * 2016-01-29 2016-05-11 深圳南云微电子有限公司 波谷导通控制电路及其控制方法
CN105897016A (zh) * 2015-02-17 2016-08-24 富士电机株式会社 开关电源电路及功率因数校正电路
CN107979279A (zh) * 2016-10-24 2018-05-01 南京理工大学 一种改进的宽负载升压型功率因数校正变换器
CN207460122U (zh) * 2017-03-28 2018-06-05 杰华特微电子(张家港)有限公司 一种脉冲产生电路、电流检测电路及开关电源

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015682B2 (en) * 2003-01-30 2006-03-21 Hewlett-Packard Development Company, L.P. Control of a power factor corrected switching power supply
ITMI20031315A1 (it) * 2003-06-27 2004-12-28 St Microelectronics Srl Dispositivo per la correzione del fattore di potenza in alimentatori a commutazione forzata.
US7148669B2 (en) * 2004-02-02 2006-12-12 The Regents Of The University Of Colorado, A Body Corporate Predictive digital current controllers for switching power converters
US7317625B2 (en) * 2004-06-04 2008-01-08 Iwatt Inc. Parallel current mode control using a direct duty cycle algorithm with low computational requirements to perform power factor correction
US20080018261A1 (en) * 2006-05-01 2008-01-24 Kastner Mark A LED power supply with options for dimming
US7898218B2 (en) * 2006-09-12 2011-03-01 02Micro International Limited Power supply topologies with PWM frequency control
US8319483B2 (en) * 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US7554473B2 (en) 2007-05-02 2009-06-30 Cirrus Logic, Inc. Control system using a nonlinear delta-sigma modulator with nonlinear process modeling
US7906941B2 (en) * 2007-06-19 2011-03-15 Flextronics International Usa, Inc. System and method for estimating input power for a power processing circuit
TWI382291B (zh) 2008-11-10 2013-01-11 Apollo Energy Technology Co Ltd 多模式功率因素修正器之控制方法與裝置
CN102356537B (zh) * 2009-03-18 2014-12-10 株式会社村田制作所 Pfc变换器
JP5104947B2 (ja) * 2009-03-24 2012-12-19 株式会社村田製作所 スイッチング電源装置
CN102422519B (zh) * 2009-05-15 2014-05-14 株式会社村田制作所 Pfc变换器
US8803489B2 (en) * 2010-07-16 2014-08-12 Virginia Tech Intellectual Properties, Inc. Adaptive on-time control for power factor correction stage light load efficiency
US9510401B1 (en) * 2010-08-24 2016-11-29 Cirrus Logic, Inc. Reduced standby power in an electronic power control system
US8482268B2 (en) * 2010-09-16 2013-07-09 System General Corporation Correction circuit of a switching-current sample for power converters in both CCM and DCM operation
KR20120078947A (ko) * 2011-01-03 2012-07-11 페어차일드코리아반도체 주식회사 스위치제어 회로, 이를 이용하는 컨버터, 및 스위치 제어 방법
GB2491550A (en) * 2011-01-17 2012-12-12 Radiant Res Ltd A hybrid power control system using dynamic power regulation to increase the dimming dynamic range and power control of solid-state illumination systems
JP5947786B2 (ja) 2011-03-07 2016-07-06 ローム株式会社 スイッチング電流制御回路、led調光システムおよびled照明機器
TWI509381B (zh) 2011-03-11 2015-11-21 Champion Microelectronic Corp 功率因數修正器降低電流諧波失真之控制方法與裝置
CN102255490A (zh) 2011-04-29 2011-11-23 佛山市南海赛威科技技术有限公司 基于delta-sigma调制技术的PFC电路及其占空比控制方法
CN102594118B (zh) * 2012-02-29 2014-06-25 矽力杰半导体技术(杭州)有限公司 一种升压型pfc控制器
US8780590B2 (en) * 2012-05-03 2014-07-15 Hong Kong Applied Science & Technology Research Institute Company, Ltd. Output current estimation for an isolated flyback converter with variable switching frequency control and duty cycle adjustment for both PWM and PFM modes
CN102638169B (zh) 2012-05-08 2014-11-05 矽力杰半导体技术(杭州)有限公司 一种反激式变换器的控制电路、控制方法以及应用其的交流-直流功率变换电路
TWI456876B (zh) 2012-10-04 2014-10-11 Univ Nat Taiwan 用於直流/直流轉換器的控制裝置及其控制方法
US8937469B2 (en) * 2012-10-09 2015-01-20 Delta-Q Technologies Corp. Digital controller based detection methods for adaptive mixed conduction mode power factor correction circuit
US9240712B2 (en) * 2012-12-13 2016-01-19 Power Systems Technologies Ltd. Controller including a common current-sense device for power switches of a power converter
CN103490601A (zh) * 2013-09-17 2014-01-01 南京理工大学 低输出电压纹波的DCM Boost PFC变换器
US9479047B2 (en) * 2013-11-27 2016-10-25 Infineon Technologies Austria Ag System and method for controlling a power supply with a feed forward controller
US9632120B2 (en) 2014-12-24 2017-04-25 Infineon Technologies Austria Ag System and method for measuring power in a power factor converter
CN105763051B (zh) * 2016-04-14 2019-01-25 中国科学院上海微系统与信息技术研究所 一种轻载降频模式控制系统
CN106487215B (zh) * 2016-11-11 2019-04-09 南京航空航天大学 Crm升压型pfc变换器变化导通时间的优化控制
JP6947504B2 (ja) * 2016-12-27 2021-10-13 株式会社京三製作所 電源装置、及び電源装置の制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1558253A (zh) * 1998-09-11 2004-12-29 ��S��Ǯ 测量电池和电池组复阻抗的装置和方法
CN1646926A (zh) * 2002-04-17 2005-07-27 丹福斯驱动器公司 用于测量电机控制器中电流的方法和使用该方法的电机控制器
CN103269159A (zh) * 2013-05-15 2013-08-28 西安交通大学 一种电压模控制dc-dc模式自动转换电路
CN105897016A (zh) * 2015-02-17 2016-08-24 富士电机株式会社 开关电源电路及功率因数校正电路
CN105577004A (zh) * 2016-01-29 2016-05-11 深圳南云微电子有限公司 波谷导通控制电路及其控制方法
CN107979279A (zh) * 2016-10-24 2018-05-01 南京理工大学 一种改进的宽负载升压型功率因数校正变换器
CN207460122U (zh) * 2017-03-28 2018-06-05 杰华特微电子(张家港)有限公司 一种脉冲产生电路、电流检测电路及开关电源

Also Published As

Publication number Publication date
CN110690815A (zh) 2020-01-14
TW202007059A (zh) 2020-02-01
TWI685183B (zh) 2020-02-11
US10439489B1 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
CN110690815B (zh) 混模式升压型功因校正转换器
CN102356537B (zh) Pfc变换器
US8154264B2 (en) Method and systems for conduction mode control
US8036008B2 (en) DC/DC power converting apparatus
CN100426640C (zh) 检测直流-直流功率转换器输出电感器电流的方法和设备
US9543836B2 (en) Control device of a power conversion circuit
CN102882372A (zh) 具有分离的ac及dc电流感测路径的开关电源
US20130188405A1 (en) Capacitor discharging circuit and power converter
US20100231189A1 (en) High efficiency buck-boost power converter
US8410765B2 (en) Pulse modulation circuit and method
US10566891B2 (en) Power supply device and control method thereof
US20110115451A1 (en) Driving method of switching element and power supply unit
CN106105394A (zh) Led驱动器
CN110431429A (zh) 功率半导体开关元件的损伤预测装置和损伤预测方法、ac-dc转换器、dc-dc转换器
CN109088536B (zh) 改善谐波的有源功率因数校正电路、方法及驱动系统
CN110365202B (zh) 无桥pfc转换器及其控制方法和封装式ic装置
CN105684286B (zh) 电源装置
CN112953181B (zh) 固定导通时间电源转换器的电流检测电路及方法
JP2013046489A (ja) スイッチング電源装置、出力電流検出装置、および出力電流検出方法
CN113131722B (zh) 开关变换器的检测电路和控制电路
CN209961889U (zh) 负载状态检测装置
US10948525B2 (en) Fault detection device and method for switch driving circuit, and electronic device
JP2013038847A (ja) 電源装置及び寿命検知装置
CN102710131A (zh) 变换器及其驱动方法及包含该变换器的功率因数校正装置
KR101979622B1 (ko) 동적으로 전류를 센싱하는 컨버터

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant