CN110690425B - 硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法 - Google Patents

硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法 Download PDF

Info

Publication number
CN110690425B
CN110690425B CN201910937138.7A CN201910937138A CN110690425B CN 110690425 B CN110690425 B CN 110690425B CN 201910937138 A CN201910937138 A CN 201910937138A CN 110690425 B CN110690425 B CN 110690425B
Authority
CN
China
Prior art keywords
carbon nanotube
composite material
boron
oxide composite
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910937138.7A
Other languages
English (en)
Other versions
CN110690425A (zh
Inventor
成汉文
罗谨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201910937138.7A priority Critical patent/CN110690425B/zh
Publication of CN110690425A publication Critical patent/CN110690425A/zh
Application granted granted Critical
Publication of CN110690425B publication Critical patent/CN110690425B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种硼掺杂还原碳纳米管负载氧化铁复合材料的制备方法及其制备方法,该制备方法包括以下步骤:(1)将可溶性铁盐的水溶液和多壁氨基碳纳米管分散液混合后稀释;(2)加入硼氢化钠,反应生成氧化铁纳米晶核;(3)水热反应,得到纳米粒子,固液分离、冻干,得到所述的硼掺杂还原碳纳米管负载氧化铁复合材料。与现有技术相比,本发明的制备方法简单,制备的材料导电性能良好,N、B共掺杂形成协同作用使得材料在电化学性能方面具有良好的效果,适合应用于电催化析氢、析氧、超级电容器以及锂离子电池等。

Description

硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法
技术领域
本发明属于能源材料技术领域,尤其是涉及一种R-CNTs-Fe2O3-B复合材料及其制备方法。
背景技术
碳纳米管自被发现以来,人们对其合成方法、性能和应用等方面展开了大量研究。例如高性能复合材料的增强基、纳米管场发射体、能量存储材料和催化剂载体等。目前,采用碳纳米管取代活性炭制备活性更高的复合催化剂已成为一个新的研究热点。
碳纳米管除了具有纳米级管腔结构、较高的比表面积、类石墨的多层管壁和优良的导电性等特点外,还具有可以裁剪以及表面修饰的特性,可满足作为催化剂载体的特殊需要,同时可作为模板制备纳米催化剂,使它在作为催化剂载体方面有着良好的应用前景。目前,在碳纳米管负载金属的催化应用方面已有一些尝试性工作。这些工作主要集中在利用碳纳米管作为贵金属催化剂的载体,使活性贵金属和促进剂的前驱体得到充分的分散,从而提高贵金属的利用率,防止金属粒子烧结;而且由于碳纳米管与活性贵金属之间的强相互作用,提高了金属催化剂的活性、选择性和稳定性。此外,在碳纳米管上负载金属氧化物如氧化钡、氧化铝、氧化铁催化剂的研究也有报道。Fe2O3在合成氨与F-T合成催化方面是一类重要的催化剂,已有报道采用双氧水与硫酸亚铁对碳纳米管进行表面修饰的同时,在管壁上均匀吸附铁的氢氧化物,再通过不同气氛的热处理得到不同结构的碳纳米管负载Fe2O3催化剂,但对Fe2O3负载的机理并未作深入研究。
过渡金氧化物用作电极材料的缺点,在充放电过程中会出现体积效应,循环稳定较差。此种材料的反动力学比较左,而且充放电电滞后现象比较严。过渡金属氧化物电化学稳定性差主要有三点:第一是导电性较差,离子或电子扩散系数不大,降低了电极反应的可逆性;第二是过渡金属氧化物活性颗粒之间、集体流和活性颗粒之间失去电接触,丧失触点的粒子不再参与电极反应,电化学性能开始衰减;第三是过渡金属氧化物作为电极材料多次发生反应后可能生成金属纳米颗粒,这些颗粒在多次循环后产生团聚,从活性物质变少,电化学性能减弱。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种充分协调了金属与非金属之间以及非金属与非金属之间的协同作用,电化学性能良好的硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法。
本发明的目的可以通过以下技术方案来实现:
本发明提供一种硼掺杂还原碳纳米管负载氧化铁(R-CNTs-Fe2O3-B)复合材料的制备方法,包括以下步骤:
(1)将可溶性铁盐的水溶液和多壁氨基碳纳米管分散液混合后稀释;
(2)加入硼氢化钠,反应生成氧化铁纳米晶核;
(3)水热反应,得到纳米粒子,固液分离、冻干,得到所述的R-CNTs-Fe2O3-B复合材料。
优选地,步骤(1)中,所述的可溶性铁盐为九水合硝酸铁。
优选地,步骤(1)中,所述的可溶性铁盐的水溶液为采用九水合硝酸铁配制的0.2~2M的水溶液。
优选地,步骤(1)中,多壁氨基碳纳米管分散液的浓度为10wt.%,多壁氨基碳纳米管与可溶性铁盐的质量之比为1:(4-40)。
进一步优选地,步骤(1)中,多壁氨基碳纳米管采用市售的先丰纳米生产的编号为XFWDM、货号为100320的多壁氨基碳纳米管。
优选地,步骤(1)中,稀释到原体积的4-10倍。
优选地,步骤(2)中硼氢化钠的用量为0.1-0.5mmol。
优选地,步骤(2)中,反应在高温下进行,加热的温度为60~90℃,加热时间为12~18h。
优选地,步骤(3)中,水热反应的温度为120~180℃,水热反应时间为6~24h。
本发明还提供一种上述制备方法制得的硼掺杂还原碳纳米管负载氧化铁(R-CNTs-Fe2O3-B)复合材料。
与现有技术相比,本发明具有以下有益效果:
(1)本发明以多壁氨基碳纳米管负载氧化铁纳米颗粒,多壁氨基碳纳米管具有较大的比表面积,而且二维碳纳米材料具有良好的导电性,这增强了材料的电化学性能。
(2)氮掺杂碳材料——多壁氨基碳纳米管由于层两种材料类似的电子层结构,可以在保证导电率的同时,增加法拉第电容反应,即是在电极表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附,脱附或氧化,还原反应。
本发明以NaBH4为还原剂,一方面掺入了B元素,与多壁氨基碳纳米管中的C与N元素形成了协同作用,进一步增强了材料的电化学性能;此外,NaBH4是强还原剂,使得CNTs还原成了R-CNTs,增加了材料的石墨化缺陷程度,在电化学领域有着较好的性能。
(3)本发明的方法制备出的电极材料具有蓬松多孔结构,这种结构孔径分布均一,具有高的比表面积,在吸附、超级电容器、锂离子电池甚至催化等领域具有广泛的应用前景。
附图说明
图1(a)为实施例1得到的硼掺杂还原碳纳米管负载氧化铁(R-CNTs-Fe2O3-B)复合材料的拉曼曲线图,图1(b)和图1(c)为实施例1得到R-CNTs-Fe2O3-B复合材料在应用实施例1中的电催化析氢性能曲线图;
图2(a)和图2(b)为实施例2得到R-CNTs-Fe2O3-B复合材料在应用实施例2的电催化析氢性能曲线图;
图3(a)和图3(b)为实施例3得到R-CNTs-Fe2O3-B复合材料在应用实施例3的电催化析氢性能曲线图。
具体实施方式
一种硼掺杂还原碳纳米管负载氧化铁复合材料的制备方法,包括以下步骤:
(1)将可溶性铁盐的水溶液和多壁氨基碳纳米管分散液混合后稀释;
(2)加入硼氢化钠,反应生成氧化铁纳米晶核;
(3)水热反应,得到纳米粒子,固液分离、冻干,得到所述的R-CNTs-Fe2O3-B复合材料。
优选地,步骤(1)中,所述的可溶性铁盐为九水合硝酸铁。
优选地,步骤(1)中,所述的可溶性铁盐的水溶液为采用九水合硝酸铁配制的0.2~2M的水溶液。
优选地,步骤(1)中,多壁氨基碳纳米管分散液的浓度为10wt.%,多壁氨基碳纳米管与可溶性铁盐的质量之比为1:(4-40)。
优选地,步骤(1)中,稀释到原体积的4-10倍。
优选地,步骤(2)中硼氢化钠的用量为0.1-0.5mmol。
优选地,步骤(2)中,反应在高温下进行,加热的温度为60~90℃,加热时间为12~18h。
优选地,步骤(3)中,水热反应的温度为120~180℃,水热反应时间为6~24h。
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
本实施例硼掺杂还原碳纳米管负载氧化铁(R-CNTs-Fe2O3-B)复合材料的原料配方如下:
Figure BDA0002221870460000041
R-CNTs-Fe2O3-B复合材料的制备方法,该方法包括以下步骤:首先,将Fe(NO3)3·9H2O配成1mL溶液,接着取0.2mL 10wt.%多壁氨基CNTs混匀,用去离子水将混合液稀释至10mL,称量4mg NaBH4加入溶液中,在80℃下搅拌12h,将溶液转移到水热釜中,150℃下水热6h,然后冷却,离心分离,用水和乙醇的混合液洗两次,最后冻干,得到R-CNTs-Fe2O3-B复合材料,材料具有良好的石墨化缺陷和堆垛结构,材料的拉曼表征如图1a所示。
应用实施例1
将实施例1的样品进行研磨,将玻碳电极表面使用0.05μm的氧化铝研磨干净,除去残留样品,使用乙醇和水冲洗干净,晾干。
(1)用无水甲醇配Nafion溶液0.5wt.%。称取1mg上述杂化催化剂(R-CNTs-Fe2O3-B复合材料)溶解在100μL配制好的Nafion溶液与甲醇混合液中,在超声下均匀分散两个小时。然后再将该溶液吸取12μL于玻碳电极上,自然晾干。
(2)配制1M的KOH水溶液作为电催化的电解液,通入氮气赶跑空气,用1M的KOH水溶液清洗玻碳电极的电极表面,接着将玻碳电极、Ag/AgCl电极、铂电极接上电化学工作站,在碱性溶液中测得该电极材料电催化析氢的性能,该材料在电流密度为10mA cm-2的过电位为240mV(图1b),Tafel斜率为143mV dec-1(图1c)。
实施例2
本实施例的R-CNTs-Fe2O3-B复合材料的原料配方如下:
Figure BDA0002221870460000051
R-CNTs-Fe2O3-B复合材料的制备方法,该方法包括以下步骤:首先,将Fe(NO3)3·9H2O配成2mL溶液,接着取0.2mL 10wt.%多壁氨基CNTs混匀,用去离子水将混合液稀释至10mL,称量8mg NaBH4加入溶液中,在80℃下搅拌18h,将溶液转移到水热釜中,180℃下水热12h,然后冷却,离心分离,用水和乙醇的混合液洗两次,最后冻干,得到R-CNTs-Fe2O3-B复合材料。
应用实施例2
将实施例2的样品进行研磨,将玻碳电极表面使用0.05μm的氧化铝研磨干净,除去残留样品,使用乙醇和水冲洗干净,晾干。
(1)用无水甲醇配Nafion溶液0.5wt.%。称取1mg上述杂化催化剂溶解在100μL配制好的Nafion溶液与甲醇混合液中,在超声下均匀分散两个小时。然后再将该溶液吸取12μL于玻碳电极上,自然晾干。
(2)配制1M的KOH水溶液作为电催化的电解液,通入氮气赶跑空气,用1M的KOH水溶液清洗玻碳电极的电极表面,接着将玻碳电极、Ag/AgCl电极、铂电极接上电化学工作站,在碱性溶液中测得该电极材料电催化析氢的性能,该材料在电流密度为10mA cm-2的过电位为329mV(图2a),Tafel斜率为131mV dec-1(图2b)。
实施例3
本实施例R-CNTs-Fe2O3-B复合材料的原料配方如下:
Figure BDA0002221870460000061
本实施例R-CNTs-Fe2O3-B复合材料的制备方法,该方法包括以下步骤:首先,将Fe(NO3)3·9H2O配成1mL溶液,接着取0.5mL 10wt.%多壁氨基CNTs混匀,用去离子水将混合液稀释至10mL,称量18mg NaBH4加入溶液中,在90℃下搅拌12h,将溶液转移到水热釜中,180℃下水热6h,然后冷却,离心分离,用水和乙醇的混合液洗两次,最后冻干,得到R-CNTs-Fe2O3-B复合材料。
应用实施例3
将实施例3的样品进行研磨,将玻碳电极表面使用0.05μm的氧化铝研磨干净,除去残留样品,使用乙醇和水冲洗干净,晾干。
(1)用无水甲醇配Nafion溶液0.5wt.%。称取1mg上述杂化催化剂溶解在100μL配制好的Nafion溶液与甲醇混合液中,在超声下均匀分散两个小时。然后再将该溶液吸取12μL于玻碳电极上,自然晾干。
(2)配制1M的KOH水溶液作为电催化的电解液,通入氮气赶跑空气,用1M的KOH水溶液清洗玻碳电极的电极表面,接着将玻碳电极、Ag/AgCl电极、铂电极接上电化学工作站,在碱性溶液中测得该电极材料电催化析氢的性能,该材料在电流密度为10mA cm-2的过电位为417mV(图3a),Tafel斜率为133mV dec-1(图3b)。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (9)

1.一种硼掺杂还原碳纳米管负载氧化铁复合材料的制备方法,其特征在于,包括以下步骤:
(1)将可溶性铁盐的水溶液和多壁氨基碳纳米管分散液混合后稀释;
(2)加入硼氢化钠,反应生成氧化铁纳米晶核;
(3)水热反应,得到纳米粒子,固液分离、冻干,得到R-CNTs-Fe2O3-B复合材料。
2.根据权利要求1所述的硼掺杂还原碳纳米管负载氧化铁复合材料的制备方法,其特征在于,步骤(1)中,所述的可溶性铁盐为九水合硝酸铁。
3.根据权利要求2所述的硼掺杂还原碳纳米管负载氧化铁复合材料的制备方法,其特征在于,步骤(1)中,所述的可溶性铁盐的水溶液为采用九水合硝酸铁配制的0.2~2M的水溶液。
4.根据权利要求1所述的硼掺杂还原碳纳米管负载氧化铁复合材料的制备方法,其特征在于,步骤(1)中,多壁氨基碳纳米管分散液的浓度为10wt.%,多壁氨基碳纳米管与可溶性铁盐的质量之比为1:(4-40)。
5.根据权利要求1所述的硼掺杂还原碳纳米管负载氧化铁复合材料的制备方法,其特征在于,步骤(1)中,稀释到原体积的4-10倍。
6.根据权利要求1所述的硼掺杂还原碳纳米管负载氧化铁复合材料的制备方法,其特征在于,步骤(2)中硼氢化钠的用量为0.1-0.5mmol。
7.根据权利要求1所述的硼掺杂还原碳纳米管负载氧化铁复合材料的制备方法,其特征在于,步骤(2)中,反应在高温下进行,加热的温度为60~90℃,加热时间为12~18h。
8.根据权利要求1所述的硼掺杂还原碳纳米管负载氧化铁复合材料的制备方法,其特征在于,步骤(3)中,水热反应的温度为120~180℃,水热反应时间为6~24h。
9.一种如权利要求1~8任一所述的制备方法制得的硼掺杂还原碳纳米管负载氧化铁复合材料。
CN201910937138.7A 2019-09-29 2019-09-29 硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法 Active CN110690425B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910937138.7A CN110690425B (zh) 2019-09-29 2019-09-29 硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910937138.7A CN110690425B (zh) 2019-09-29 2019-09-29 硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110690425A CN110690425A (zh) 2020-01-14
CN110690425B true CN110690425B (zh) 2021-12-07

Family

ID=69111187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910937138.7A Active CN110690425B (zh) 2019-09-29 2019-09-29 硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110690425B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786869B (zh) * 2021-02-09 2022-04-01 四川轻化工大学 一种三氧化二铁/螺旋纳米碳纤维复合负极材料的制备方法
CN113260244B (zh) * 2021-05-14 2022-10-04 同济大学 一种复合材料及其制备方法和用途
CN113388374A (zh) * 2021-06-16 2021-09-14 北京建筑大学 一种磁性碳纳米管应用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244238A (zh) * 2011-06-21 2011-11-16 刘剑洪 一种类石墨烯包覆掺杂铁系化合物负极材料及其制备方法
CN102886260A (zh) * 2012-10-24 2013-01-23 南京大学 一种钯钌/多壁碳纳米管催化剂及其制备方法
CN103316649A (zh) * 2013-06-19 2013-09-25 大连理工大学 一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂
CN103560255A (zh) * 2013-10-23 2014-02-05 中国科学院金属研究所 一种锌空气电池用氧还原催化剂的载体材料及其制备方法
CN105596366A (zh) * 2015-09-25 2016-05-25 福州大学 具有三明治夹层结构Ag/CNTs/GO复合物的制备
CN105742632A (zh) * 2016-03-29 2016-07-06 宁波大学 一种梯度结构包覆的Fe3+,B3+掺杂氟化铜锂电正极材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355501C (zh) * 2005-09-29 2007-12-19 华东师范大学 碳纳米管负载氧化铁纳米薄膜的制备方法
CN105609733A (zh) * 2016-02-19 2016-05-25 钟玲珑 一种硼氮共掺杂三维结构锂硫电池正极材料的制备方法
CN106001599B (zh) * 2016-05-27 2018-02-13 浙江工业大学 多壁碳纳米管/纳米级双金属零价铁复合材料的制备方法
CN108183213B (zh) * 2017-12-27 2021-03-26 肇庆市华师大光电产业研究院 一种三氧化二铁/碳/碳纳米管锂离子电池负极材料的制备方法
CN108199055A (zh) * 2018-01-02 2018-06-22 珠海光宇电池有限公司 一种硼氮共掺杂的碳载铂催化剂及其制备方法
CN108565478B (zh) * 2018-03-12 2020-08-18 华南理工大学 一种氨基碳纳米管负载钴酸镍复合电催化材料及制备与应用
CN109037717A (zh) * 2018-08-23 2018-12-18 成都新柯力化工科技有限公司 一种碱性燃料电池的铁基催化剂及制备方法
CN109775762A (zh) * 2019-01-23 2019-05-21 郑州轻工业学院 一种空心分等级结构的Fe2O3及Fe2O3/CNT复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244238A (zh) * 2011-06-21 2011-11-16 刘剑洪 一种类石墨烯包覆掺杂铁系化合物负极材料及其制备方法
CN102886260A (zh) * 2012-10-24 2013-01-23 南京大学 一种钯钌/多壁碳纳米管催化剂及其制备方法
CN103316649A (zh) * 2013-06-19 2013-09-25 大连理工大学 一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂
CN103560255A (zh) * 2013-10-23 2014-02-05 中国科学院金属研究所 一种锌空气电池用氧还原催化剂的载体材料及其制备方法
CN105596366A (zh) * 2015-09-25 2016-05-25 福州大学 具有三明治夹层结构Ag/CNTs/GO复合物的制备
CN105742632A (zh) * 2016-03-29 2016-07-06 宁波大学 一种梯度结构包覆的Fe3+,B3+掺杂氟化铜锂电正极材料及其制备方法

Also Published As

Publication number Publication date
CN110690425A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
Liu et al. Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting
Liu et al. A facile preparation of CoFe 2 O 4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction
Li et al. Hierarchically porous Fe-N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction
Liu et al. Preparation of Pd/MnO2-reduced graphene oxide nanocomposite for methanol electro-oxidation in alkaline media
Li et al. Low content of Fe3C anchored on Fe, N, S-codoped graphene-like carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
Vilian et al. Pt-Au bimetallic nanoparticles decorated on reduced graphene oxide as an excellent electrocatalysts for methanol oxidation
Shi et al. FeNi-functionalized 3D N, P doped graphene foam as a noble metal-free bifunctional electrocatalyst for direct methanol fuel cells
Wen et al. The improved electrocatalytic activity of palladium/graphene nanosheets towards ethanol oxidation by tin oxide
CN110690425B (zh) 硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法
Wang et al. Low-loading Pt nanoparticles combined with the atomically dispersed FeN4 sites supported by FeSA-NC for improved activity and stability towards oxygen reduction reaction/hydrogen evolution reaction in acid and alkaline media
Pan et al. Platinum assisted by carbon quantum dots for methanol electro-oxidation
Wang et al. Cobalt-gluconate-derived high-density cobalt sulfides nanocrystals encapsulated within nitrogen and sulfur dual-doped micro/mesoporous carbon spheres for efficient electrocatalysis of oxygen reduction
CN107583662A (zh) 一种氧还原催化剂及其制备方法和应用
Huang et al. Fine platinum nanoparticles supported on polyindole-derived nitrogen-doped carbon nanotubes for efficiently catalyzing methanol electrooxidation
Pan et al. Remarkably improved oxygen evolution reaction activity of cobalt oxides by an Fe ion solution immersion process
CN109546162A (zh) 一种微孔化铁-氮掺杂碳催化剂材料的可循环制备方法
CN113198470B (zh) 一种负载氧化亚铜和还原氧化石墨烯的碳基底复合催化剂及其制备方法与应用
Tong et al. Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction
Shi et al. A novel Pt/pyridine ionic liquid polyoxometalate/rGO tri-component hybrid and its enhanced activities for methanol electrooxidation
Dou et al. Wall thickness-tunable AgNPs-NCNTs for hydrogen peroxide sensing and oxygen reduction reaction
Shi et al. Biomass-derived precious metal-free porous carbon: Ca-N, P-doped carbon materials and its electrocatalytic properties
CN112436156B (zh) 一种锌-空气电池及其制备方法与应用
Kong et al. Soft-confinement conversion of Co-Salen-organic-frameworks to uniform cobalt nanoparticles embedded within porous carbons as robust trifunctional electrocatalysts
Tan et al. Amorphous nickel coating on carbon nanotubes supported Pt nanoparticles as a highly durable and active electrocatalyst for methanol oxidation reaction
CN105977501A (zh) 一种高性能氧还原MnO2-Mn3O4/碳纳米管复合催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant