CN103316649A - 一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂 - Google Patents

一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂 Download PDF

Info

Publication number
CN103316649A
CN103316649A CN2013102446436A CN201310244643A CN103316649A CN 103316649 A CN103316649 A CN 103316649A CN 2013102446436 A CN2013102446436 A CN 2013102446436A CN 201310244643 A CN201310244643 A CN 201310244643A CN 103316649 A CN103316649 A CN 103316649A
Authority
CN
China
Prior art keywords
boron
nitrogen
doped nano
nano diamond
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102446436A
Other languages
English (en)
Other versions
CN103316649B (zh
Inventor
全燮
刘艳明
陈硕
于洪涛
张耀斌
赵慧敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201310244643.6A priority Critical patent/CN103316649B/zh
Publication of CN103316649A publication Critical patent/CN103316649A/zh
Application granted granted Critical
Publication of CN103316649B publication Critical patent/CN103316649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明属于电化学领域,涉及一种硼氮共掺杂纳米金刚石电催化氧还原非金属催化剂,该纳米金刚石含氮0~5%、含硼0~5%。本发明的硼氮共掺杂纳米金刚石可用B2H6、N2、H2和CH4以等离子体化学气相沉积法在温度420~600℃、压力4~8kPa、N2和CH4体积分数分别为0.5~2.5%,0.8~3%、B2H6浓度为5000~25000ppm的条件下沉积6~20h制备。该硼氮共掺杂纳米金刚石对于氧还原反应具有电催化活性高和稳定性好等优点,是一种性能优良、价格低廉的非金属氧还原材料,可以广泛地应用于燃料电池、金属-空气电池、防腐蚀和生物传感。

Description

一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂
技术领域
本发明属于电化学技术领域,涉及一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂。
背景技术
氧还原反应是能源转化(燃料电池和金属-空气电池)、防腐蚀和生物传感等领域中的一个重要反应,近年来受到广泛关注和研究。氧还原反应主要有以下两种途径:(1)两电子反应O2+H2O+2e-→HO2 -+OH-;(2)四电子反应O2+H2O+4e-→4OH-。对于燃料电池和金属-空气电池,阴极氧还原按四电子途径反应时电催化效率更高。目前氧还原反应的速率慢和效率低是限制其应用的主要因素,而解决这一问题的关键是开发一种高效的电催化氧还原材料。
贵金属(如铂、钯)及其合金是电催化活性较高的氧还原催化剂,由于其氧还原过电势低、电流密度大而在酸性和碱性环境中广泛使用,但是贵金属稀有,价格昂贵,限制了其应用。专利CN101151745A公开了一种钯钴颗粒氧还原催化剂,通过添加非贵金属来降低贵金属用量,也有一些专利报道了通过添加高比表面积的支撑体材料或开发金属氧化物催化剂来降低贵金属用量,如专利CN100347094C公开了一种锰氧化物氧还原催化剂。近年来,石墨碳纳米材料如氮或硼掺杂的石墨烯、碳纳米管和多孔碳作为一种非金属氧还原催化材料受到广泛研究(Angew.Chem.Int.Ed.2011,50,1-6;ACS Nano2011,6,8904-8912)。但是这些催化剂的催化效率和稳定性还有待进一步提高。因此,开发一种高效和稳定、地球上含量丰富的非金属电催化氧还原材料是非常重要的。
发明内容
本发明的目的是针对现有技术的不足,提供一种高效和稳定的非金属氧还原催化剂用于燃料电池、金属-空气电池、防腐蚀和生物传感等领域。
氧还原反应在能源转化、防腐蚀和生物传感等领域起着重要作用,而缺乏性能优良的催化材料是限制其应用的主要因素。硼氮共掺杂金刚石具有强电催化能力、高化学稳定性,其组成元素在地球上含量丰富,能弥补现有氧还原催化剂的不足,是一种理想的电催化氧还原材料。同时,本发明的制备方法可以制备出纳米金刚石阵列,能从比表面积和电子传递两方面进一步提高电催化效率。
一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂,该氧还原催化剂是掺杂体积百分比不超过5%氮和5%硼的尺寸为10-300nm的纳米金刚石。
采用N2、B2H6、CH4和H2以等离子体化学气相沉积法在温度420~600℃、压力4~8kPa的条件下沉积6~20h制备,其中N2和CH4体积分数分别为0.5~2.5%、0.8~3%,B2H6浓度为5000~25000ppm。
该硼氮共掺杂纳米金刚石制备为粉体、电极或阵列电极,用于燃料电池阴极、金属-空气电池阴极、防腐蚀和生物传感等的氧还原反应,该电极或阵列电极,其基底为玻碳、金属或硅。
按上述方法制备的基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂,可应用于燃料电池、金属-空气电池、防腐蚀和生物传感等氧还原领域。
本发明具有如下特点:
1、硼氮共掺杂纳米金刚石的电催化氧还原活性高,具有过电势低、电流密度大等优点。
2、硼氮共掺杂纳米金刚石按四电子途径反应的效率高,其氧还原活性和效率和商业化的Pt/C催化剂接近,有望取代贵金属用于燃料电池和金属-空气电池阴极。
3、硼氮共掺杂纳米金刚石的组成元素在地壳中含量丰富,而且材料非常稳定,能够多次重复使用,易于实现大规模应用。
4、硼氮共掺杂纳米金刚石能制备成阵列,从增大比表面积和利于电子传递等两方面进一步提高电催化活性。
附图说明
图1是本发明的硼氮共掺杂纳米金刚石的扫描电镜图片。
图2是本发明的硼氮共掺杂纳米金刚石和商业化Pt/C催化剂在O2饱和的0.1M KOH中1800rpm下的线性伏安曲线。
图3是本发明的硼氮共掺杂纳米金刚石氧还原的Koutechy-Levich曲线。
图4是本发明的硼氮共掺杂纳米金刚石在O2饱和的0.1M KOH中的电流-时间曲线。
图中:A是硼氮共掺杂纳米金刚石;B商业化Pt/C
具体实施方式
下面结合实施例,进一步说明采用上述方法制备的硼氮共掺杂纳米金刚石的氧还原反应。
实施例1,硼氮共掺杂纳米金刚石电催化氧还原活性
采用硼氮共掺杂纳米金刚石为工作电极、Pt为对电极、饱和甘汞电极为参比电极,在O2饱和的0.1M KOH中1800rpm下测线性伏安曲线。硼氮共掺杂纳米金刚石的制备参数为:CH4体积分数为1.5%,N2体积分数1.3%,B2H6浓度为10000ppm,压力5.5KPa,550℃沉积6h。由附图2可见,硼氮共掺杂纳米金刚石的氧还原起始电压为-0.04V,和商业化的Pt/C催化剂(0.01V)接近。在1800rpm时,其电流密度在-0.40V时为5.12mA.cm-2,可以类比于商业化的Pt/C催化剂(5.25mA.cm-2)。这表明硼氮共掺杂纳米金刚石是一种高活性的氧还原催化剂。
实施例2,硼氮共掺杂纳米金刚石电催化氧还原效率
采用硼氮共掺杂纳米金刚石为工作电极、Pt为对电极、饱和甘汞电极为参比电极,在O2饱和的0.1M KOH中测不同转速下的线性伏安曲线,再根据其相应的Koutechy-Levich曲线计算氧还原反应的电子转移数。硼氮共掺杂纳米金刚石的制备参数为:CH4体积分数为0.8%,N2体积分数0.5%,B2H6浓度为15000ppm,压力4.3KPa,450℃沉积18h。由附图3可见,硼氮共掺杂纳米金刚石的氧还原的电子转移数为3.95,表明硼氮共掺杂纳米金刚石能高效的按照四电子反应途径进行,是一种理想的燃料电池和金属-空气电池阴极材料。
实施例3,硼氮共掺杂纳米金刚石电催化氧还原稳定性
采用硼氮共掺杂纳米金刚石为工作电极、Pt为对电极、饱和甘汞电极为参比电极,在-0.3V、O2饱和的0.1M KOH中测电流-时间曲线。硼氮共掺杂纳米金刚石的制备参数为:CH4体积分数为2.5%,N2体积分数0.8%,B2H6浓度为20000ppm,压力7.5KPa,500℃沉积12h。由附图4可见,硼氮共掺杂纳米金刚石的氧还原电流比较稳定,长时间运行20000s后电流只下降了6.0%,比商业化Pt/C催化剂的稳定性有明显提高。

Claims (4)

1.一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂,其特征在于,该氧还原催化剂是掺杂体积百分比不超过5%氮和5%硼的尺寸为10-300nm的纳米金刚石。
2.权利要求1所述的硼氮共掺杂纳米金刚石的制备方法,其特征在于,采用N2、B2H6、CH4和H2以等离子体化学气相沉积法在温度420~600℃、压力4~8kPa的条件下沉积6~20h制备,其中N2和CH4体积分数分别为0.5~2.5%、0.8~3%,B2H6浓度为5000~25000ppm。
3.权利要求1所述的一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂,其特征在于,该硼氮共掺杂纳米金刚石为粉体、电极或阵列电极,用于燃料电池阴极、金属-空气电池阴极、防腐蚀和生物传感等氧还原反应。
4.如权利要求3所述的一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂,其特征在于,所述的电极或阵列电极,其基底为玻碳、金属或硅。
CN201310244643.6A 2013-06-19 2013-06-19 一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂 Active CN103316649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310244643.6A CN103316649B (zh) 2013-06-19 2013-06-19 一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310244643.6A CN103316649B (zh) 2013-06-19 2013-06-19 一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂

Publications (2)

Publication Number Publication Date
CN103316649A true CN103316649A (zh) 2013-09-25
CN103316649B CN103316649B (zh) 2015-02-18

Family

ID=49185863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310244643.6A Active CN103316649B (zh) 2013-06-19 2013-06-19 一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂

Country Status (1)

Country Link
CN (1) CN103316649B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938182A (zh) * 2014-04-08 2014-07-23 上海交通大学 硼氮共掺纳米基定向金刚石薄膜的制备方法
CN104710445A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种硼、氮共掺杂石墨烯及其制备和应用
CN105688971A (zh) * 2016-02-29 2016-06-22 大连理工大学 一种基于硼氮共掺杂纳米金刚石的电化学还原co2催化剂、制备方法及其应用
CN107988616A (zh) * 2017-12-26 2018-05-04 深圳先进技术研究院 一种镍硼氮共掺杂金刚石电极及其制备和应用
CN108054473A (zh) * 2017-12-26 2018-05-18 深圳先进技术研究院 一种金属空气电池及其制备方法
CN108110267A (zh) * 2017-12-28 2018-06-01 成都新柯力化工科技有限公司 一种燃料电池的纳米金刚石基非铂催化剂及制备方法
CN108380231A (zh) * 2018-02-11 2018-08-10 青岛大学 一种从氮化碳制备硼-氮-碳三元材料的方法
CN110690425A (zh) * 2019-09-29 2020-01-14 上海应用技术大学 硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法
CN110739464A (zh) * 2019-10-28 2020-01-31 赵效铭 一种氧-金属电池的多孔碳纳米金刚石复合结构空气电极
CN112717972A (zh) * 2019-10-14 2021-04-30 中国石油化工股份有限公司 纳米金刚石的改性方法以及改性纳米金刚石及其应用和乙苯脱氢制备苯乙烯的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154331A (zh) * 2010-09-27 2013-06-12 二A科技有限公司 采用乙硼烷和氮并结合微波等离子化学气相沉积系统生长白色金刚石的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154331A (zh) * 2010-09-27 2013-06-12 二A科技有限公司 采用乙硼烷和氮并结合微波等离子化学气相沉积系统生长白色金刚石的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHUANGYIN WANG, ET AL: "BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 *
李正学等: "硼掺杂纳米金刚石薄膜及其电化学性能研究", 《中国科技论文在线》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710445A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种硼、氮共掺杂石墨烯及其制备和应用
CN104710445B (zh) * 2013-12-15 2017-01-25 中国科学院大连化学物理研究所 一种硼、氮共掺杂石墨烯及其制备和应用
CN103938182B (zh) * 2014-04-08 2016-05-04 上海交通大学 硼氮共掺纳米基定向金刚石薄膜的制备方法
CN103938182A (zh) * 2014-04-08 2014-07-23 上海交通大学 硼氮共掺纳米基定向金刚石薄膜的制备方法
CN105688971A (zh) * 2016-02-29 2016-06-22 大连理工大学 一种基于硼氮共掺杂纳米金刚石的电化学还原co2催化剂、制备方法及其应用
CN105688971B (zh) * 2016-02-29 2018-04-10 大连理工大学 一种基于硼氮共掺杂纳米金刚石的电化学还原co2催化剂、制备方法及其应用
CN108054473B (zh) * 2017-12-26 2024-04-09 深圳先进技术研究院 一种金属空气电池及其制备方法
CN107988616A (zh) * 2017-12-26 2018-05-04 深圳先进技术研究院 一种镍硼氮共掺杂金刚石电极及其制备和应用
CN108054473A (zh) * 2017-12-26 2018-05-18 深圳先进技术研究院 一种金属空气电池及其制备方法
CN108110267A (zh) * 2017-12-28 2018-06-01 成都新柯力化工科技有限公司 一种燃料电池的纳米金刚石基非铂催化剂及制备方法
CN108110267B (zh) * 2017-12-28 2020-04-10 成都新柯力化工科技有限公司 一种燃料电池的纳米金刚石基非铂催化剂及制备方法
CN108380231A (zh) * 2018-02-11 2018-08-10 青岛大学 一种从氮化碳制备硼-氮-碳三元材料的方法
CN110690425A (zh) * 2019-09-29 2020-01-14 上海应用技术大学 硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法
CN110690425B (zh) * 2019-09-29 2021-12-07 上海应用技术大学 硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法
CN112717972A (zh) * 2019-10-14 2021-04-30 中国石油化工股份有限公司 纳米金刚石的改性方法以及改性纳米金刚石及其应用和乙苯脱氢制备苯乙烯的方法
CN112717972B (zh) * 2019-10-14 2023-06-06 中国石油化工股份有限公司 纳米金刚石的改性方法以及改性纳米金刚石及其应用和乙苯脱氢制备苯乙烯的方法
CN110739464A (zh) * 2019-10-28 2020-01-31 赵效铭 一种氧-金属电池的多孔碳纳米金刚石复合结构空气电极

Also Published As

Publication number Publication date
CN103316649B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
CN103316649B (zh) 一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂
Xu et al. Coupling interface constructions of FeNi3-MoO2 heterostructures for efficient urea oxidation and hydrogen evolution reaction
Liu et al. Robust NiCoP/CoP heterostructures for highly efficient hydrogen evolution electrocatalysis in alkaline solution
Lu et al. Highly efficient urea oxidation via nesting nano-nickel oxide in eggshell membrane-derived carbon
He et al. Low-cost Ni2P/Ni0. 96S heterostructured bifunctional electrocatalyst toward highly efficient overall urea-water electrolysis
Song et al. Nitrogen (N), phosphorus (P)-codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions
Tang et al. Ni3S2 nanosheets array supported on Ni foam: A novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions
Xu et al. In situ grown Ni phosphate@ Ni12P5 nanorod arrays as a unique core–shell architecture: competitive bifunctional electrocatalysts for urea electrolysis at large current densities
CN103599805B (zh) 一种氮掺杂石墨烯燃料电池催化剂的制备和应用
Shen et al. CoV2O6–V2O5 coupled with porous N-doped reduced graphene oxide composite as a highly efficient electrocatalyst for oxygen evolution
Chung et al. Role of borate functionalized carbon nanotube catalyst for the performance improvement of vanadium redox flow battery
Huang et al. A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell
CN103007976B (zh) 一种掺杂聚苯胺直接碳化的复合电催化剂、制备方法及应用
Yue et al. Surface engineering of a nickel oxide–nickel hybrid nanoarray as a versatile catalyst for both superior water and urea oxidation
Wei et al. Rational design of carbon-based oxygen electrocatalysts for zinc–air batteries
Mu et al. Controllable synthesis of molybdenum carbide nanoparticles embedded in porous graphitized carbon matrixes as efficient electrocatalyst for hydrogen evolution reaction
He et al. Hybrid nanostructures of bimetallic NiCo nitride/N-doped reduced graphene oxide as efficient bifunctional electrocatalysts for rechargeable Zn–air batteries
Pu et al. Versatile route to fabricate precious-metal phosphide electrocatalyst for acid-stable hydrogen oxidation and evolution reactions
CN106207204A (zh) 氮硫双掺杂碳材料双功能氧催化剂及其制备方法和应用
Pu et al. Efficient strategy for significantly decreasing overpotentials of hydrogen generation via oxidizing small molecules at flexible bifunctional CoSe electrodes
CN106532074B (zh) 一种纳米钴/石墨烯核壳结构电催化剂的制备方法
Li et al. Reducing the charging voltage of a Zn–air battery to 1.6 V enabled by redox radical-mediated biomass oxidation
Gong et al. Duckweed derived nitrogen self-doped porous carbon materials as cost-effective electrocatalysts for oxygen reduction reaction in microbial fuel cells
Tian et al. In situ sulfidation for controllable heterointerface of cobalt oxides–cobalt sulfides on 3D porous carbon realizing efficient rechargeable liquid-/solid-state Zn–air batteries
He et al. NiFe Alloys@ N-doped graphene-like carbon anchored on n-doped graphitized carbon as a highly efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reactions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant