CN108110267A - 一种燃料电池的纳米金刚石基非铂催化剂及制备方法 - Google Patents

一种燃料电池的纳米金刚石基非铂催化剂及制备方法 Download PDF

Info

Publication number
CN108110267A
CN108110267A CN201711453609.4A CN201711453609A CN108110267A CN 108110267 A CN108110267 A CN 108110267A CN 201711453609 A CN201711453609 A CN 201711453609A CN 108110267 A CN108110267 A CN 108110267A
Authority
CN
China
Prior art keywords
nano
fuel cell
preparation
platinum catalyst
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711453609.4A
Other languages
English (en)
Other versions
CN108110267B (zh
Inventor
陈庆
廖健淞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI ZHONGHAILONG HIGH AND NEW TECHNOLOGY RESEARCH INSTITUTE
Original Assignee
Chengdu New Keli Chemical Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu New Keli Chemical Science Co Ltd filed Critical Chengdu New Keli Chemical Science Co Ltd
Priority to CN201711453609.4A priority Critical patent/CN108110267B/zh
Publication of CN108110267A publication Critical patent/CN108110267A/zh
Application granted granted Critical
Publication of CN108110267B publication Critical patent/CN108110267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

本发明属于燃料电池催化剂技术领域,提供一种燃料电池的纳米金刚石基非铂催化剂及制备方法,对硅基片进行表面处理,在硅片表面覆盖掩膜板,通入碳源、硼源沉积P型纳米金刚石薄膜阵列,对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀,在氮源、金属混合作用下热处理,获得自支撑的双掺杂三维金刚石基催化剂。选用的氮源为三聚氰胺、氨水等液态氮源,硼源为硼烷气体,碳源为甲烷气体,酸为浓硫酸或浓硝酸,金属为Cu、Co、Ni等,薄膜厚度大于20um,晶粒为纳米晶型,晶粒大小约5nm,沉积的纳米晶型具有高石墨相的特征。该方法制备的催化剂解决了传统催化剂载体在醇类燃料中易氧化、催化剂易出现CO中毒的情况,同时无Pt等贵金属使用,可以节约制造成本。

Description

一种燃料电池的纳米金刚石基非铂催化剂及制备方法
技术领域
本发明属于燃料电池催化剂技术领域,具体涉及一种燃料电池的纳米金刚石基非铂催化剂及制备方法。
背景技术
质子交换膜燃料电池(proton exchange membrane fuel cell,英文简称PEMFC)是一种燃料电池,在原理上相当于水电解的“逆”装置。其单电池由阳极、阴极和质子交换膜组成,阳极为氢燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂,质子交换膜作为电解质。工作时相当于一直流电源,其阳极即电源负极,阴极为电源正极。
燃料电池的工作过程实际上是电解水的逆过程,其基本原理早在1839年由英国律师兼物理学家威廉.罗泊特.格鲁夫(William Robert Grove)提出,他是世界上第一位实现电解水逆反应并产生电流的科学家。一个半世纪以来,燃料电池除了被用于宇航等特殊领域外,极少受到人们关注。只是到近十几年来,随着环境保护、节约能源、保护有限自然资源的意识的加强,燃料电池才开始得到重视和发展。
PEMFC技术是目前世界上最成熟的一种能将氢气与空气中的氧气化合成洁净水并释放出电能的技术:
1) 氢气通过管道或导气板到达阳极,在阳极催化剂作用下,氢分子解离为带正电的氢离子(即质子)并释放出带负电的电子。
2) 氢离子穿过电解质(质子交换膜)到达阴极;电子则通过外电路到达阴极。电子在外电路形成电流,通过适当连接可向负载输出电能。
3) 在电池另一端,氧气(或空气)通过管道或导气板到达阴极;在阴极催化剂作用下,氧与氢离子及电子发生反应生成水。
燃料电池有多种,各种燃料电池之间的区别在于使用的电解质不同。质子交换膜燃料电池以质子交换膜为电解质,其特点是工作温度低(约70-800C),启动速度快,特别适于用作动力电池。电池内化学反应温度一般不超过80度,故称为“冷燃烧”。
一是用作便携电源、小型移动电源、车载电源、备用电源、不间断电源等,适用于军事、通讯、计算机、地质、微波站、气象观测站、金融市场、医院及娱乐场所等领域,以满足野外供电、应急供电以及高可靠性、高稳定性供电的需要。PEMFC电源的功率最小的只有几瓦,如手机电池。据报道,PEMFC手机电池的连续待机时间可达1000小时,一次填充燃料的通话时间可达100小时(摩托罗拉)。适用于便携计算机等便携电子设备的PEMFC电源的功率范围大致在数十瓦至数百瓦(东芝)。军用背负式通讯电源的功率大约为数百瓦级。卫星通讯车用的车载PEMFC电源的功率一般为数千瓦级。
二是可用作助动车、摩托车、汽车、火车、船舶等交通工具动力,以满足环保对车辆船舶排放的要求。PEMFC的工作温度低,启动速度较快,功率密度较高(体积较小)因此,很适于用作新一代交通工具动力。这是一项潜力十分巨大的应用。由于汽车是造成能源消耗和环境污染的首要原因,因此,世界各大汽车集团竞相投入巨资,研究开发电动汽车和代用燃料汽车。从目前发展情况看,PEMFC是技术最成熟的电动车动力源,PEMFC电动车被业内公认为是电动车的未来发展方向。燃料电池将会成为继蒸汽机和内燃机之后的第三代动力系统。PEMFC可以实现零排放或低排放;其输出功率密度比目前的汽油发动机输出功率密度高得多,可达1.4KW/公斤或1.6KW/升。用作电动自行车、助动车和摩托车动力的PEMFC系统,其功率范围分别是300-500W、500W-2KW、2-10KW。游览车、城市工程车、小轿车等轻型车辆用的PEMFC动力系统的功率一般为10-60KW。公交车的功率则需要100-175KW。PEMFC用作潜艇动力源时,与斯特林发动机及闭式循环柴油机相比,具有效率高、噪声低和低红外辐射等优点,对提高潜艇隐蔽性、灵活性和作战能力有重要意义。美国、加拿大、德国、澳大利亚等国海军都已经装备了以PEMFC为动力的潜艇,这种潜艇可在水下连续潜行一个月之久。
三是可用作分散型电站。PEMFC电站可以与电网供电系统共用,主要用于调峰;也可作为分散型主供电源,独立供电,适于用作海岛、山区、边远地区或新开发地区电站。与集中供电方式相比,分散供电方式有较多的优点:(1)可省去电网线路及配电调度控制系统;(2)有利于热电联供(由于PEMFC电站无噪声,可以就近安装,PEMFC发电所产生的热可以进入供热系统),可使燃料总利用率高达80%以上;(3)受战争和自然灾害等的影响比较小;(4)通过天然气、煤气重整制氢,使得可利用现有天然气、煤气供气系统等基础设施为PEMFC提供燃料,通过生物制氢、太阳能电解制氢方法则可形成循环利用系统(这种循环系统特别适用于广大的农村地区和边远地区),使系统建设成本和运行成本大大降低。因此,PEMFC电站的经济性和环保性均很好。国际上普遍认为,随着燃料电池的推广应用,发展分散型电站将是一个趋势。
现有技术面临的问题在于:质子交换膜燃料电池的催化剂目前基本为Pt基材料,主要为Pt/Pd、Pt/Ru合金负载在碳载体上,而全球的Pt族金属储量仅为71000吨。Pt的稀缺和高昂的价格严重限制其商业化应用。而且Pt/C层作为阴极催化层,在醇类燃料中易被氧化导致CO中毒,使其无法应用于醇类燃料电池,因此对于非Pt催化剂的研究具有十分重要的实际意义。
发明内容
本发明的目的是提供一种燃料电池的纳米金刚石基非铂催化剂及制备方法,该方法制备的催化剂解决了传统催化剂载体在醇类燃料中易氧化、催化剂易出现CO中毒的情况,同时无Pt等贵金属使用,可以节约制造成本。
本发明涉及的具体技术方案如下:
一种燃料电池的纳米金刚石基非铂催化剂制备方法,包括以下步骤:
S01:对硅基片进行表面处理,在硅片表面覆盖掩膜板;
S02:通入碳源、硼源沉积P型纳米金刚石薄膜阵列;
S03:对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;
S04:在氮源、金属混合作用下热处理,获得自支撑的双掺杂三维金刚石基催化剂。
其原理是基于金刚石薄膜基底对于反应气和溶液的抗腐蚀性强,硼掺杂引起表面电荷分布不均,B原子、N原子附近的C原子显正电性,对于醇类燃料具有较强的催化能力,阵列结构可以提高材料的比表面积,从而提高其催化效率。
在半导体制造的整个流程中,其中一部分就是从版图到晶圆(wafer)制造中间的一个过程,即光掩膜或称光罩(mask)制造。这一部分是流程衔接的关键部分,是流程中造价最高的一部分,也是限制最小线宽的瓶颈之一。常见的光掩膜的种类有四种,铬版(chrome)、干版,凸版、液体凸版。主要分两个组成部分,基板和不透光材料。基板通常是高纯度,低反射率,低热膨胀系数的石英玻璃。铬版的不透光层是通过溅射的方法镀在玻璃下方厚约0.1um的铬层。铬的硬度比玻璃略小,虽不易受损但有可能被玻璃所伤害。应用于芯片制造的光掩膜为高敏感度的铬版。干版涂附的乳胶,硬度小且易吸附灰尘,不过干版还有包膜和超微颗粒干版,其中后者可以应用于芯片制造。
在本发明中使用掩膜板由玻璃基片、铬层、氧化铬层和光刻胶层构成的,用以制作掩模板的玻璃必须内部和两表面都物缺陷。必须于光刻胶的曝光波长下有高的光学透射率。被用来制作掩模板的玻璃有好几种,包括:钠钙玻璃、硼硅玻璃、石英玻璃。
在一些情况下,周围温度的变化导致硅片上图形的定位错误,此时就要求选择硼硅玻璃和石英玻璃。石英圆片是超低膨胀系数的玻璃,它的热膨胀系数非常小。石英玻璃同样在深UV和近深UV区域内有很高的穿透系数。石英相当贵,现在倾向于发展高质量的合成石英材料。天然石英通过火焰熔融法加工,用氧氢气溶化岩石晶体。合成石英是用超纯SiCl4,它提供宽的光投射铝区域,低的杂质含量和少的物理缺陷。它的应用随着低膨胀率和深UV的要求变得逐渐广泛。圆片被抛光、清洗,在形成掩模图像之前被检查。抛光是个多重步骤,在图片两个表面连续不断地分级研磨。图片在检测和掩模之前被清洗、冲洗、干燥。
本发明中由于步骤S04是在高温金属下进行的,因此需要膨胀系数低的材料制作掩膜板,故而本发明选择石英玻璃。
作为本方案的进一步改进,所述氮源是液态氮源。
作为本方案的进一步改进,所述液态氮源是三聚氰胺分散液、氨水中的一种或两种的混合。
作为本方案的进一步改进,所述硼源为硼烷气体。
作为本方案的进一步改进,所述碳源为甲烷气体。
作为本方案的进一步改进,所述酸处理中使用的酸是浓硫酸或浓硝酸。
作为本方案的进一步改进,所述金属是Cu、Co、Ni中的一种或多种的混合。
作为本方案的进一步改进,所述P型纳米金刚石薄膜厚度大于20um,晶粒为纳米晶型,晶粒大小3-8nm,沉积的纳米晶型具有高石墨相的特征。
金刚石有各种颜色,天然金刚石从无色到黑色都有,以无色的为特佳。它们可以是透明的,也可以是半透明或不透明。许多金刚石带些黄色,这主要是由于金刚石中含有杂质。 金刚石的折射率非常高,色散性能也很强,这就是金刚石为什么会反射出五彩缤纷闪光的原因。金刚石在X射线照射下会发出蓝绿色荧光。金刚石原生矿仅产出于金伯利岩筒或少数钾镁煌斑岩中。金伯利岩等是它们的母岩,其他地方的金刚石都是被河流、冰川等搬运过去的。金刚石一般为粒状。如果将金刚石加热到1000℃时,它会缓慢地变成石墨。
鉴于金刚石的物理特性,作为本方案的进一步改进,所述热处理的温度低于1000℃,防止金刚石在热处理过程中物理结构发生变化,生产石墨,影响制备得到的催化剂的纯度。
进一步的,由于Cu、Co、Ni三种金属的熔点均在1400℃以上,因此应严格控制热处理的时间,防止金属的热传导,使得金刚石变质,在本发明中热处理的时间控制在15-30秒之间。
最后在完全混合均匀后,通过喷洒的方式将高温的混合溶液迅速降温进行颗粒状,即得到最终的成品自支撑的双掺杂三维金刚石基催化剂。
本发明与现有技术相比,其突出的特点和优异的效果在于:
(1)整个制备过程安全无害,无污染气体产生,环保性能好适用于大范围生产;
(2)本发明中使用的各种原材料储备量巨大,适合大批量生产投入商业应用;
(3)本发明制备得到的自支撑的双掺杂三维金刚石基催化剂应用于质子燃料电池作为催化剂无任何有毒气体产生,使得其使用安全无害;
(4)制备工艺耗时较短,短时间内即可大批量生产,提高了生产效率。
具体实施方式
以下通过具体实施方式对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
实施例1
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Cu混合作用下热处理,热处理温度为900℃,接触时间15秒,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是三聚氰胺;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硫酸。上述P型纳米金刚石薄膜厚度20um,晶粒为纳米晶型,晶粒大小3nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为0.67V,而使用Pt基材料作为催化剂,甲醇氧化电位为0.6V左右,这说明本方案制备得到的纳米金刚石基非铂催化剂与Pt基材料性能大致相同。
实施例2
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Co混合作用下热处理,热处理温度为850℃,接触时间20秒,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是氨水;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硝酸。上述P型纳米金刚石薄膜厚度25um,晶粒为纳米晶型,晶粒大小5nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为0.69V,而使用Pt基材料作为催化剂,甲醇氧化电位为0.6V左右,这说明本方案制备得到的纳米金刚石基非铂催化剂与Pt基材料性能大致相同。
实施例3
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Ni溶液混合作用下热处理,热处理温度为950℃,接触时间20秒,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是三聚氰胺和氨水中的混合;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硝酸。上述P型纳米金刚石薄膜厚度30um,晶粒为纳米晶型,晶粒大小5nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为0.61V,而使用Pt基材料作为催化剂,甲醇氧化电位为0.6V左右,这说明本方案制备得到的纳米金刚石基非铂催化剂与Pt基材料性能大致相同。
实施例4
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Cu、Co混合、混合作用下热处理,热处理温度为900℃,接触时间25秒,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是三聚氰胺、氨水的混合;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硝酸。上述P型纳米金刚石薄膜厚度25um,晶粒为纳米晶型,晶粒大小8nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为0.71V,而使用Pt基材料作为催化剂,甲醇氧化电位为0.6V左右,这说明本方案制备得到的纳米金刚石基非铂催化剂与Pt基材料性能大致相同。
实施例5
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Ni混合作用下热处理,热处理温度为850℃,接触时间25秒,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是氨水;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硝酸。上述P型纳米金刚石薄膜厚度30um,晶粒为纳米晶型,晶粒大小8nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为0.77V,而使用Pt基材料作为催化剂,甲醇氧化电位为0.6V左右,这说明本方案制备得到的纳米金刚石基非铂催化剂与Pt基材料性能大致相同。
实施例6
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Co混合作用下热处理,热处理温度为900℃,接触时间20秒,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是三聚氰胺;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硝酸。上述P型纳米金刚石薄膜厚度大于30um,晶粒为纳米晶型,晶粒大小8nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为0.65V,而使用Pt基材料作为催化剂,甲醇氧化电位为0.6V左右,这说明本方案制备得到的纳米金刚石基非铂催化剂与Pt基材料性能大致相同。
对比例1
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Cu混合作用下热处理,热处理温度为1100℃,接触时间15秒,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是三聚氰胺;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硫酸。上述P型纳米金刚石薄膜厚度20um,晶粒为纳米晶型,晶粒大小3nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为1.1V,与实施例1相比,本方案的区别在于热处理温度高于1000℃,使得金刚石发生变化,最后制得的催化剂用于燃料电池,其催化效果并不明显。
对比例2
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Co混合作用下热处理,热处理温度为850℃,接触时间5分钟,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是氨水;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硝酸。上述P型纳米金刚石薄膜厚度25um,晶粒为纳米晶型,晶粒大小5nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为1.29V,与实施例2相比,本方案的区别在于热处理时间过长,使得金刚石在高温作用下变成石墨,最后制得的催化剂用于燃料电池,其催化效果并不明显。
对比例3
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Ni混合作用下热处理,热处理温度为950℃,接触时间20秒,待其自然冷却,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是三聚氰胺和氨水中的混合;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硝酸。上述P型纳米金刚石薄膜厚度30um,晶粒为纳米晶型,晶粒大小5nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为0.81V,与实施例3相比,本方案的区别在于未迅速对热处理后的混合溶液降温,使得最后制备得到的催化剂性能下降。
对比例4
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Cu、Co混合、混合作用下热处理,热处理温度为900℃,接触时间25秒,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是三聚氰胺、氨水的混合;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硝酸。上述P型纳米金刚石薄膜厚度10um,晶粒为纳米晶型,晶粒大小8nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为0.81V,与实施例4相比,本方案的区别在于金刚石薄膜厚度更薄,使得最后制备得到的催化剂性能下降。
对比例5
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;然后对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;最后在氮源、金属Ni混合作用下热处理,热处理温度为850℃,接触时间25秒,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是氨水;选用的硼源为硼烷气体,碳源为甲烷气体。酸处理中使用的酸是浓硝酸。上述P型纳米金刚石薄膜厚度30um,晶粒为纳米晶型,晶粒大小20nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为0.87V,与实施例5相比,本方案的区别在于晶粒大小20nm大于了实施例中的8nm,使得最后制备得到的催化剂性能下降。
对比例6
一种燃料电池的纳米金刚石基非铂催化剂制备方法,首先对硅基片进行表面处理,在硅片表面覆盖掩膜板,接着通入碳源、硼源沉积P型纳米金刚石薄膜阵列;用氢氟酸将硅基底刻蚀;最后在氮源、金属Co混合作用下热处理,热处理温度为900℃,接触时间20秒,然后迅速降温到100℃以下,获得自支撑的双掺杂三维金刚石基催化剂。本实施例中选用的氮源是液态氮源,具体的液态氮源是三聚氰胺;选用的硼源为硼烷气体,碳源为甲烷气体。上述P型纳米金刚石薄膜厚度30um,晶粒为纳米晶型,晶粒大小8nm,沉积的纳米晶型具有高石墨相的特征。
将本发明制备得到的纳米金刚石基非铂催化剂应用于甲醇燃料电池,测得甲醇氧化电位为0.95V,与实施例5相比,本方案的区别在于未对阵列尖锥进行强氧化性酸处理,使得最后制备得到的催化剂性能下降。

Claims (10)

1.一种燃料电池的纳米金刚石基非铂催化剂的制备方法,其特征在于包括以下步骤:
S01:对硅基片进行表面处理,在硅片表面覆盖掩膜板;
S02:通入碳源、硼源沉积P型纳米金刚石薄膜阵列;
S03:对阵列尖锥进行强氧化性酸处理,用氢氟酸将硅基底刻蚀;
S04:在氮源、金属混合作用下热处理,获得自支撑的双掺杂三维金刚石基催化剂。
2.根据权利要求1所述一种燃料电池的纳米金刚石基非铂催化剂制备方法,其特征在于:所述氮源是液态氮源。
3.根据权利要求2所述一种燃料电池的纳米金刚石基非铂催化剂的制备方法,其特征在于:所述液态氮源是三聚氰胺分散液、氨水中的一种或两种的混合。
4.根据权利要求1所述一种燃料电池的纳米金刚石基非铂催化剂的制备方法,其特征在于:所述硼源为硼烷气体。
5.根据权利要求1所述一种燃料电池的纳米金刚石基非铂催化剂的制备方法,其特征在于:所述碳源为甲烷气体。
6.根据权利要求1所述一种燃料电池的纳米金刚石基非铂催化剂的制备方法,其特征在于:所述酸处理中使用的酸是浓硫酸或浓硝酸。
7.根据权利要求1所述一种燃料电池的纳米金刚石基非铂催化剂的制备方法,其特征在于:所述金属是Cu、Co、Ni中的一种或多种的混合。
8.根据权利要求1所述一种燃料电池的纳米金刚石基非铂催化剂的制备方法,其特征在于:所述P型纳米金刚石薄膜厚度大于20um,晶粒为纳米晶型,晶粒大小3-8nm,沉积的纳米晶型具有高石墨相的特征。
9.根据权利要求1所述一种燃料电池的纳米金刚石基非铂催化剂的制备方法,其特征在于:所述热处理的温度低于1000℃。
10.权利要求1~9任一项所述制备方法制备得到的燃料电池的纳米金刚石基非铂催化剂。
CN201711453609.4A 2017-12-28 2017-12-28 一种燃料电池的纳米金刚石基非铂催化剂及制备方法 Active CN108110267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711453609.4A CN108110267B (zh) 2017-12-28 2017-12-28 一种燃料电池的纳米金刚石基非铂催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711453609.4A CN108110267B (zh) 2017-12-28 2017-12-28 一种燃料电池的纳米金刚石基非铂催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN108110267A true CN108110267A (zh) 2018-06-01
CN108110267B CN108110267B (zh) 2020-04-10

Family

ID=62213692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711453609.4A Active CN108110267B (zh) 2017-12-28 2017-12-28 一种燃料电池的纳米金刚石基非铂催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN108110267B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768711A (zh) * 2021-01-09 2021-05-07 广州市德百顺电气科技有限公司 燃料电池的表面改性蓝钻催化剂及制备方法和燃料电池
CN112768710A (zh) * 2021-01-09 2021-05-07 广州市德百顺电气科技有限公司 燃料电池的纳米蓝钻催化剂及制备方法和燃料电池
CN112768709A (zh) * 2021-01-09 2021-05-07 广州市德百顺电气科技有限公司 燃料电池的纳米蓝钻颗粒催化剂及制备方法和燃料电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957116A (zh) * 2004-05-27 2007-05-02 凸版印刷株式会社 纳米晶体金刚石薄膜、其制造方法及使用纳米晶体金刚石薄膜的装置
CN103316649A (zh) * 2013-06-19 2013-09-25 大连理工大学 一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂
CN103938182A (zh) * 2014-04-08 2014-07-23 上海交通大学 硼氮共掺纳米基定向金刚石薄膜的制备方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957116A (zh) * 2004-05-27 2007-05-02 凸版印刷株式会社 纳米晶体金刚石薄膜、其制造方法及使用纳米晶体金刚石薄膜的装置
CN103316649A (zh) * 2013-06-19 2013-09-25 大连理工大学 一种基于硼氮共掺杂纳米金刚石的电催化氧还原催化剂
CN103938182A (zh) * 2014-04-08 2014-07-23 上海交通大学 硼氮共掺纳米基定向金刚石薄膜的制备方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768711A (zh) * 2021-01-09 2021-05-07 广州市德百顺电气科技有限公司 燃料电池的表面改性蓝钻催化剂及制备方法和燃料电池
CN112768710A (zh) * 2021-01-09 2021-05-07 广州市德百顺电气科技有限公司 燃料电池的纳米蓝钻催化剂及制备方法和燃料电池
CN112768709A (zh) * 2021-01-09 2021-05-07 广州市德百顺电气科技有限公司 燃料电池的纳米蓝钻颗粒催化剂及制备方法和燃料电池
CN112768710B (zh) * 2021-01-09 2022-04-29 广州德百顺蓝钻科技有限公司 燃料电池的纳米蓝钻催化剂及制备方法和燃料电池

Also Published As

Publication number Publication date
CN108110267B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
Yang et al. 2022 roadmap on hydrogen energy from production to utilizations
CN108110267A (zh) 一种燃料电池的纳米金刚石基非铂催化剂及制备方法
Ovshinsky et al. A nickel metal hydride battery for electric vehicles
JP3705795B2 (ja) 燃料電池用電極、その製造法及びそれを採用した燃料電池
US6878651B2 (en) Glass compositions for ceramic electrolyte electrochemical conversion devices
WO2012163226A1 (zh) 一种基于氢能的储能供能一体化系统
TW200824818A (en) Method for manufacturing metal nano particles having hollow structure and metal nano particles manufacturing by the method
Huang et al. Integrated MoSe2 with n+ p-Si photocathodes for solar water splitting with high efficiency and stability
Liang et al. Oxygen reduction reaction mechanism on P, N co-doped graphene: a density functional theory study
CN110335998A (zh) 一种锂离子电池多孔硅碳纳米片复合负极材料及其制备方法
CN111653737A (zh) 一种具有梯度预锂化结构的氧化硅复合材料及其制备方法、应用
CN111446019A (zh) 三维纳米结构氚伏电池
US20090242382A1 (en) Hollow glass microsphere candidates for reversible hydrogen storage, particularly for vehicular applications
Zhu et al. High‐Performance Li‐CO2 Battery Based on Carbon‐Free Porous Ru@ QNFs Cathode
CN101456535B (zh) 一种氢气的制备方法
JPS5963673A (ja) 光電池
Ohata et al. Effect of carbon atoms on the reliability of potassium-ion electrets used in vibration-powered generators
CN112670477B (zh) 一种氮化钒量子点原位植入碳球复合材料及其制备方法和储钠应用
CN108134097A (zh) 一种用于低温固体燃料电池的钙钛矿型阴极的制备方法
CN108134100A (zh) 一种铁酸镧/镍酸镧系燃料电池膜电极材料及其制备方法
WO2018166443A1 (zh) 电燃料储能系统及方法
Rajapriya et al. Hydrogen as a fuel cell
CN218827157U (zh) 一种太阳能电池、电池组件、光伏系统
Auner Silicon as an intermediary between renewable energy and hydrogen
Singal et al. Direct Energy Conversion Technologies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221222

Address after: Room 6241, Building 16, No. 741 Hangzhou Road, Yangpu District, Shanghai 200082

Patentee after: Shanghai Zhonghailong High and New Technology Research Institute

Address before: 610091, Sichuan, Chengdu province Qingyang dragon industrial port, East Sea 4

Patentee before: CHENDU NEW KELI CHEMICAL SCIENCE Co.,Ltd. CHINA