CN110670139B - 一种有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法 - Google Patents

一种有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法 Download PDF

Info

Publication number
CN110670139B
CN110670139B CN201910870275.3A CN201910870275A CN110670139B CN 110670139 B CN110670139 B CN 110670139B CN 201910870275 A CN201910870275 A CN 201910870275A CN 110670139 B CN110670139 B CN 110670139B
Authority
CN
China
Prior art keywords
vessel
inorganic hybrid
organic
solution
lead halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910870275.3A
Other languages
English (en)
Other versions
CN110670139A (zh
Inventor
王奉友
张玉红
杨丽丽
范琳
孙云飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Normal University
Original Assignee
Jilin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Normal University filed Critical Jilin Normal University
Priority to CN201910870275.3A priority Critical patent/CN110670139B/zh
Publication of CN110670139A publication Critical patent/CN110670139A/zh
Application granted granted Critical
Publication of CN110670139B publication Critical patent/CN110670139B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种有机‑无机杂化铅卤化物钙钛矿纳米晶的制备方法,本发明的目的是提供一种制备过程简单、可重复性高,能够可控合成不同尺寸有机‑无机杂化铅卤化物钙钛矿纳米晶的方法,该方法首先在器皿中装入多元斥溶剂溶液,然后将过滤筛固定在器皿的顶部,最后将整个器皿放在加热基板上进行加热。利用过滤筛的渗透作用,向过滤筛中倒入钙钛矿前驱体溶液和粘合剂的混合液,通过重力沉降,当钙钛矿前驱体溶液与多元斥溶剂溶液接触时生成钙钛矿纳米晶。本发明通过控制过滤筛孔径目数即可很容易的控制纳米晶尺寸。

Description

一种有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法
技术领域
本发明属于晶体材料制备工艺技术领域,具体地涉及有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法。
背景技术
有机-无机杂化铅卤化物钙钛矿材料具有优异的性能:高吸收系数、高电子和空穴的双极性载流子传输能力、长而相对平衡的电子和空穴扩散长度、较低的激子束缚能、较高的摩尔消光系数;除上述优点外,钙钛矿材料的组分可调、钙钛矿活性层的制备工艺丰富,因而受到广泛的关注。以该材料为基础制备的纳米晶在光伏、场效应晶体管、光电探测器、自旋器件等光电功能器件,都具有广阔的应用前景。
目前,从采用仪器设备的复杂情况来分类,制备钙钛矿纳米晶的方法大致可分为两大类,即物理真空蒸镀法和化学沉积法。物理真空蒸镀法以碘化铅(溴化铅或氯化铅)和甲基胺盐为原料,采用共蒸发的方式,可以得到表面均匀,厚度可控的高质量的钙钛矿纳米晶,但是它需要昂贵的真空设备和复杂的制备过程,不利于大面积推广;而化学沉积法则又分为一步旋涂法和两步溶液法。一步旋涂法是在钙钛矿前驱体溶液旋涂过程中滴加反溶剂,从而将原溶剂去除使钙钛矿快速结晶析出的方法,其在操作工艺和处理时间上占据优势。这种方法的过程较为简单,但是得到的钙钛矿纳米晶表面较为粗糙,缺陷较多,同时也存在铅残留的问题。两步溶液法首先通过旋转涂法在衬底上制备碘化铅(溴化铅或氯化铅)薄膜,然后通过在甲基胺盐的溶液中浸泡或者在甲基胺盐的蒸汽中处理或在薄膜上面继续旋涂甲基胺盐溶液,从而转化成钙钛矿薄膜,但是这种转化方法常常造成钙钛矿薄膜的剥落和铅的残留,由此可见化学沉积法对于制备高质量的钙钛矿纳米晶也是有一些缺陷的。
目前,人们对于制备高质量的钙钛矿纳米晶已经提出了很多解决方法,例如钙钛矿前驱体溶液的组成、溶剂的选择、退火条件等方面进行优化。尽管取得一些成果,但在如何控制钙钛矿晶粒尺寸和结晶性,开发简单易行,不需要复杂设备的低成本制备从而获得高质量的钙钛矿纳米晶仍少见报道。
发明内容
针对现有技术中的缺陷和不足,本发明的目的在于提供一种制备过程简单、可重复性高并且能够通过控制过滤筛孔径目数与利用钙钛矿前驱体溶液重力沉降,制备不同尺寸的有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法。
本发明中有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法是首先在器皿中装入多元斥溶剂溶液,然后将过滤筛固定在器皿的顶部,最后将整个器皿放在加热基板上进行加热。利用过滤筛的渗透作用,向过滤筛中倒入钙钛矿前驱体溶液和粘合剂的混合液,通过重力沉降,当钙钛矿前驱体溶液与多元斥溶剂溶液接触时生成钙钛矿纳米晶。所生长钙钛矿纳米晶的尺寸可达到微米级别。
该制备方法具体步骤如下:
1)准备长宽高比为1:1:4的器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往器皿里面放入多元斥溶剂溶液,多元斥溶剂溶液占整个器皿的五分之三,然后将过滤筛固定在器皿的顶部;所述的多元斥溶剂由A组分和B组分混合而成,其中A组分为氯苯、甲苯和异丙醇中的2~3种,B组分为吡啶或氯仿,A组分中各溶剂等比例混合,且A组分和B组分的体积比为1:1;
2)将装有多元斥溶剂溶液的器皿放在加热基板上进行加热,加热15-20min;所述的加热基板设置的加热温度为65-100℃;
3)在器皿上方放置过滤筛,将5g浓度为1-2g/mL的有机-无机杂化铅卤化物钙钛矿前驱体溶液和0.5g浓度为10g/mL粘合剂的混合液倒入过滤筛中;有机-机杂化铅卤化物钙钛矿前驱体溶液和粘合剂的混合液利用重力沉降缓慢通过不锈钢分样筛的小孔滴落在器皿里,当钙钛矿前驱体溶液与多元斥溶剂溶液接触时,生成有机-无机杂化铅卤化物钙钛矿纳米晶并沉淀在器皿的底部。
所述的有机-无机杂化铅卤化物前驱体溶液由溶质A、溶质B和混合溶剂组成,溶质A为PbI2、PbCl2或PbBr2,溶质B为CH3NH3I、CH3NH3Cl或CH3NH3Br,溶质A与溶质B的摩尔比为(0.9~1.1):1;混合溶剂为HCON(CH3)2和(CH3)2SO的混合溶液,混合溶剂中HCON(CH3)2和(CH3)2SO的体积比7:3;
所述的有机-无机杂化铅卤化物钙钛矿纳米晶粒径为0.3~1.5μm;
其中,所述的器皿材质为不锈钢、玻璃或陶瓷;所述的有机-无机杂化铅卤化物为CH3NH3PbI3、CH3NH3PbCl3或CH3NH3PbBr3;所述的粘合剂为PMMA、环氧丁晴或环氧树脂。
优选地,所述的过滤筛的目数为2800目、150目或18目;
本发明的优点和积极效果:
本发明提供了一种不同尺寸的有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法及其应用,通过利用过滤筛的渗透作用和重力沉降,使钙钛矿前驱体溶液与多元斥溶剂溶液接触时生成钙钛矿纳米晶。本发明提供的制备方法及合成工艺简单且易于实施,并且通过调整过滤筛孔径目数和钙钛矿前驱体溶液浓度能够控制生长不同尺寸的钙钛矿纳米晶,节省反应时间。本发明方法可用于制备高性能钙钛矿太阳电池的吸收层。
具体实施方式
下面以实施例的方式对本发明所述的技术方案作进一步的解释和说明。
实施例1
本实施例的钙钛矿纳米晶通过以下方法制备得到:
1)准备长宽高比为1:1:4的不锈钢器皿,依次用去离子水、酒精、丙酮和酒精超声清洗器皿20min,最后吹干,往不锈钢器皿里面放入体积比为1:1:2的氯苯、甲苯和吡啶的混合溶液,氯苯、甲苯和吡啶的混合溶液占整个器皿的五分之三,然后将孔径尺寸为18目的过滤筛固定在器皿的顶部;
2)将装有氯苯、甲苯和吡啶的混合溶液的不锈钢器皿放在温度为65℃加热基板上进行加热,加热15-20min,配置钙钛矿前驱体溶液,具体步骤如下:
将3.4g的PbI2和1.2g的CH3NH3I加入到2mL HCON(CH3)2和(CH3)2SO的混合溶剂中,在30℃下溶解,将所得溶液通过混合溶剂稀释处理,配置出浓度为2g/mL的CH3NH3PbI3前驱体溶液,混合溶剂中HCON(CH3)2和(CH3)2SO的体积比7:3。
3)将配制好的5g的CH3NH3PbI3前驱体溶液和0.5g浓度为2g/mL的PMMA溶液混合,将混合液倒入过滤筛中;当混合液与氯苯、甲苯和吡啶的混合溶液接触时,缓慢生成钙钛矿纳米晶,钙钛矿纳米晶最终落在器皿的底部,得到直径尺寸为1.5μm的纳米晶。
实施例2
本实施例的钙钛矿纳米晶通过以下方法制备得到:
1)准备长宽高比为1:1:4的不锈钢器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往不锈钢器皿里面放入体积比为1:1:2的氯苯、甲苯和吡啶的混合溶液,氯苯、甲苯和吡啶的混合溶液占整个器皿的五分之三,然后将孔径尺寸为18目的过滤筛固定在器皿的顶部;
2)将装有氯苯、甲苯和吡啶的混合溶液的不锈钢器皿放在温度为100℃加热基板上进行加热,加热15-20min,配置钙钛矿前驱体溶液,具体步骤如下:
将3.4g的PbI2和1.2g的CH3NH3I加入到2mL HCON(CH3)2和(CH3)2SO的混合溶剂中,在30℃下溶解,将所得溶液通过混合溶剂稀释处理,配置出浓度为2g/mL的CH3NH3PbI3前驱体溶液,混合溶剂中HCON(CH3)2和(CH3)2SO的体积比7:3。
将配制好的5g的CH3NH3PbI3前驱体溶液和0.5g浓度为2g/mL的PMMA溶液混合,将混合液倒入过滤筛中。
3)当钙钛矿前驱体溶液与氯苯、甲苯和吡啶的混合溶液接触时,快速生成钙钛矿纳米晶,钙钛矿纳米晶最终落在器皿的底部,得到直径尺寸为1μm的纳米晶。
实施例3
本实施例的钙钛矿纳米晶通过以下方法制备得到:
1)准备长宽高比为1:1:4的不锈钢器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往不锈钢器皿里面放入体积比为1:1:2的氯苯、甲苯和吡啶的混合溶液,氯苯、甲苯和吡啶的混合溶液占整个器皿的五分之三,然后将孔径尺寸为150目的过滤筛固定在器皿的顶部;
2)将装有氯苯、甲苯和吡啶的混合溶液的不锈钢器皿放在温度为65℃加热基板上进行加热,加热15-20min,配置钙钛矿前驱体溶液,具体步骤如下:
将3.4g的PbI2和1.2g的CH3NH3I加入到2mL HCON(CH3)2和(CH3)2SO的混合溶剂中,在30℃下溶解,将所得溶液通过混合溶剂稀释处理,配置出浓度为2g/mL的CH3NH3PbI3溶液,混合溶剂中HCON(CH3)2和(CH3)2SO的体积比7:3。
将配制好的5g的CH3NH3PbI3前驱体溶液和0.5g浓度为2g/mL的PMMA溶液倒入过滤筛中。
3)当钙钛矿前驱体溶液与氯苯、甲苯和吡啶的混合溶液接触时,缓慢生成钙钛矿纳米晶,钙钛矿纳米晶最终落在器皿的底部,得到直径尺寸为0.7μm的纳米晶。
实施例4
本实施例的钙钛矿纳米晶通过以下方法制备得到:
1)准备长宽高比为1:1:4的不锈钢器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往不锈钢器皿里面放入体积比为1:1:2的氯苯、甲苯和吡啶的混合溶液,氯苯、甲苯和吡啶的混合溶液占整个器皿的五分之三,然后将孔径尺寸为150目的过滤筛固定在器皿的顶部;
2)将装有氯苯、甲苯和吡啶的混合溶液的不锈钢器皿放在温度为100℃加热基板上进行加热,加热15-20min,配置钙钛矿前驱体溶液,具体步骤如下:
将3.4g的PbI2和1.2g的CH3NH3I加入到2mL HCON(CH3)2和(CH3)2SO的混合溶剂中,在30℃下溶解,将所得溶液通过混合溶剂稀释处理,配置出浓度为2g/mL的CH3NH3PbI3溶液,混合溶剂中HCON(CH3)2和(CH3)2SO的体积比7:3。
将配制好的5g的CH3NH3PbI3前驱体溶液和0.5g浓度为2g/mL的PMMA溶液倒入过滤筛中。
3)当钙钛矿前驱体溶液与氯苯、甲苯和吡啶的混合溶液接触时,快速生成钙钛矿纳米晶,钙钛矿纳米晶最终落在器皿的底部,得到直径尺寸为0.5μm的纳米晶。
实施例5
本实施例的钙钛矿纳米晶通过以下方法制备得到:
1)准备长宽高比为1:1:4的不锈钢器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往不锈钢器皿里面放入体积比为1:1:2的氯苯、甲苯和吡啶的混合溶液,氯苯、甲苯和吡啶的混合溶液占整个器皿的五分之三,然后将孔径尺寸为18目的过滤筛固定在器皿的顶部;
2)将装有氯苯、甲苯和吡啶的混合溶液的不锈钢器皿放在温度为65℃加热基板上进行加热,加热15-20min,配置钙钛矿前驱体溶液,具体步骤如下:
将3.4g的PbI2和1.2g的CH3NH3I加入到2mL HCON(CH3)2和(CH3)2SO的混合溶剂中,在30℃下溶解,将所得溶液通过混合溶剂稀释处理,配置出浓度为1g/mL的CH3NH3PbI3溶液,混合溶剂中HCON(CH3)2和(CH3)2SO的体积比7:3。
将配制好的5g的CH3NH3PbI3前驱体溶液和0.5g浓度为2g/mL的PMMA溶液倒入过滤筛中。
3)当钙钛矿前驱体溶液与氯苯、甲苯和吡啶的混合溶液接触时,缓慢生成钙钛矿纳米晶,钙钛矿纳米晶最终落在器皿的底部,得到直径尺寸为0.6μm的纳米晶。
实施例6
本实施例的钙钛矿纳米晶通过以下方法制备得到:
1)准备长宽高比为1:1:4的不锈钢器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往不锈钢器皿里面放入体积比为1:1:2的氯苯、甲苯和吡啶的混合溶液,氯苯、甲苯和吡啶的混合溶液占整个器皿的五分之三,然后将孔径尺寸为150目的过滤筛固定在器皿的顶部;
2)将装有氯苯、甲苯和吡啶的混合溶液的不锈钢器皿放在温度为100℃加热基板上进行加热,加热15-20min,配置钙钛矿前驱体溶液,具体步骤如下:
将3.4g的PbI2和1.2g的CH3NH3I加入到2mL HCON(CH3)2和(CH3)2SO的混合溶剂中,在30℃下溶解,将所得溶液通过混合溶剂稀释处理,配置出浓度为1g/mL的CH3NH3PbI3溶液,混合溶剂中HCON(CH3)2和(CH3)2SO的体积比7:3。
将配制好的5g的CH3NH3PbI3前驱体溶液和0.5g浓度为2g/mL的PMMA溶液倒入过滤筛中。
3)当钙钛矿前驱体溶液与氯苯、甲苯和吡啶的混合溶液接触时,快速生成钙钛矿纳米晶,钙钛矿纳米晶最终落在器皿的底部,得到直径尺寸为0.3μm的纳米晶。
实施例7
本实施例的钙钛矿纳米晶通过以下方法制备得到:
1)准备长宽高比为1:1:4的不锈钢器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往不锈钢器皿里面放入体积比为1:1:2的的氯苯、甲苯和吡啶的混合溶液,氯苯、甲苯和吡啶的混合溶液占整个器皿的五分之三,然后将孔径尺寸为18目的过滤筛固定在器皿的顶部;
2)将装有氯苯、甲苯和吡啶的混合溶液的不锈钢器皿放在温度为100℃的加热基板上进行加热,加热15-20min,配置钙钛矿前驱体溶液,具体步骤如下:
将3.4g的PbI2和1.2g的CH3NH3Br加入到2mL HCON(CH3)2和(CH3)2SO的混合溶剂中,在30℃下溶解,将所得溶液通过混合溶剂稀释处理,配置出浓度为2g/mL的CH3NH3PbBr3溶液,混合溶剂中HCON(CH3)2和(CH3)2SO的体积比7:3。
将配制好的5g的CH3NH3PbI3前驱体溶液和0.5g浓度为2g/mL的PMMA溶液倒入过滤筛中。
3)当钙钛矿前驱体溶液与氯苯、甲苯和吡啶的混合溶液接触时,快速生成钙钛矿纳米晶,钙钛矿纳米晶最终落在器皿的底部,得到直径尺寸为1.5μm的纳米晶。
实施例8
本实施例的钙钛矿纳米晶通过以下方法制备得到:
1)准备长宽高比为1:1:4的不锈钢器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往不锈钢器皿里面放入体积比为1:1:2的氯苯、甲苯和吡啶的混合溶液,氯苯、甲苯和吡啶的混合溶液占整个器皿的五分之三,然后将孔径尺寸为150目的过滤筛固定在器皿的顶部;
2)将装有氯苯、甲苯和吡啶的混合溶液的不锈钢器皿放在100℃加热基板上进行加热,加热15-20min,配置钙钛矿前驱体溶液,具体步骤如下:
将3.4g的PbI2和1.2g的CH3NH3Br加入到2mL HCON(CH3)2和(CH3)2SO的混合溶剂中,在30℃下溶解,将所得溶液通过混合溶剂稀释处理,配置出浓度为1g/mL的CH3NH3PbBr3溶液,混合溶剂中HCON(CH3)2和(CH3)2SO的体积比7:3。
将配制好的5g的CH3NH3PbBr3前驱体溶液和0.5g浓度为2g/mL的PMMA溶液倒入过滤筛中。
3)当钙钛矿前驱体溶液与氯苯、甲苯和吡啶的混合溶液接触时,快速生成钙钛矿纳米晶,钙钛矿纳米晶最终落在器皿的底部,得到直径尺寸为0.3μm的纳米晶。
实施例9
本实施例的钙钛矿纳米晶通过以下方法制备得到:
1)准备长宽高比为1:1:4的不锈钢器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往不锈钢器皿里面放入体积比为1:1:2的氯苯、甲苯和吡啶的混合溶液,氯苯、甲苯和吡啶的混合溶液占整个器皿的五分之三,然后将孔径尺寸为150目的过滤筛固定在器皿的顶部;
2)将装有氯苯、甲苯和吡啶的混合溶液的不锈钢器皿放在温度为65℃加热基板上进行加热,加热15-20min,配置钙钛矿前驱体溶液,具体步骤如下:
将3.4g的PbI2和1.2g的CH3NH3Br加入到2mL HCON(CH3)2和(CH3)2SO的混合溶剂中,在30℃下溶解,将所得溶液通过混合溶剂稀释处理,配置出浓度为1g/mL的CH3NH3PbBr3溶液,混合溶剂中(CH3)2SO和(CH3)2SO的体积比7:3。
将配制好的5g的CH3NH3PbBr3前驱体溶液和0.5g浓度为2g/mL的PMMA溶液倒入过滤筛中。
3)当钙钛矿前驱体溶液与氯苯、甲苯和吡啶的混合溶液接触时,缓慢生成钙钛矿纳米晶,钙钛矿纳米晶最终落在器皿的底部,得到直径尺寸为0.4μm的纳米晶。
实施例10
本实施例的钙钛矿纳米晶通过以下方法制备得到:
1)准备长宽高比为1:1:4的不锈钢器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往不锈钢器皿里面放入体积比为1:1:1:3的氯苯、甲苯异丙醇和氯仿的混合溶液,氯苯、甲苯和吡啶的混合溶液占整个器皿的五分之三,然后将孔径尺寸为150目的过滤筛固定在器皿的顶部;
2)将装有氯苯、甲苯和吡啶的混合溶液的不锈钢器皿放在温度为65℃加热基板上进行加热,加热15-20min,配置钙钛矿前驱体溶液,具体步骤如下:
将3.4g的PbI2和1.2g的CH3NH3Br加入到2mL HCON(CH3)2和(CH3)2SO的混合溶剂中,在30℃下溶解,将所得溶液通过混合溶剂稀释处理,配置出浓度为1g/mL的CH3NH3PbBr3溶液,混合溶剂中(CH3)2SO和(CH3)2SO的体积比7:3。
将配制好的5g的CH3NH3PbBr3前驱体溶液和0.5g浓度为2g/mL的PMMA溶液倒入过滤筛中。
3)当钙钛矿前驱体溶液与氯苯、甲苯和吡啶的混合溶液接触时,缓慢生成钙钛矿纳米晶,钙钛矿纳米晶最终落在器皿的底部,得到直径尺寸为0.4μm的纳米晶。
综上,本发明提供了一种有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法及其应用,该方法合成工艺简单且易于实施,并且通过调整过滤筛孔径目数和钙钛矿前驱体溶液浓度能够控制生长不同尺寸的纳米晶,节省反应时间。当然,本发明的实施例中并未给出涵盖本发明所有实施方式,如器皿仅以不锈钢器皿作为实施例进行了描述,但玻璃器皿或陶瓷器皿同样可适用于本发明中;在实施例中有机-无机杂化铅卤化物钙钛矿纳米晶公开了CH3NH3PbI3和CH3NH3PbBr3材料,但CH3NH3PbCl3材料同样适用于本发明;在实施例中粘合剂公开了PMMA,而环氧丁晴、环氧树脂同样可作为粘合剂。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法,其特征在于,该方法的具体步骤如下:
1)准备长宽高比为1:1:4的器皿,依次用去离子水、酒精、丙酮和酒精超声清洗20min,最后吹干,往器皿里面放入多元斥溶剂溶液,多元斥溶剂溶液占整个器皿的五分之三,然后将过滤筛固定在器皿的顶部;所述的多元斥溶剂由A组分和B组分混合而成,其中A组分为氯苯、甲苯和异丙醇中的2~3种,B组分为吡啶或氯仿,A组分中各溶剂等体积比混合,且A组分和B组分的体积比为1:1;
2)将装有多元斥溶剂溶液的器皿放在加热基板上进行加热,加热15-20min;所述的加热基板设置的加热温度为65-100℃;
3)在器皿上方放置过滤筛,将5g浓度为1-2g/mL的有机-无机杂化铅卤化物钙钛矿前驱体溶液和0.5g浓度为10g/mL粘合剂的混合液倒入过滤筛中;有机-机杂化铅卤化物钙钛矿前驱体溶液和粘合剂的混合液利用重力沉降缓慢通过不锈钢分样筛的小孔滴落在器皿里,当钙钛矿前驱体溶液与多元斥溶剂溶液接触时,生成有机-无机杂化铅卤化物钙钛矿纳米晶并沉淀在器皿的底部;
所述的有机-无机杂化铅卤化物前驱体溶液由溶质A、溶质B和混合溶剂组成,溶质A为PbI2、PbCl2或PbBr2,溶质B为CH3NH3I、CH3NH3Cl或CH3NH3Br,溶质A与溶质B的摩尔比为(0.9~1.1):1;混合溶剂为HCON(CH3)2和(CH3)2SO的混合溶液,混合溶剂中HCON(CH3)2和(CH3)2SO的体积比7:3;所述的有机-无机杂化铅卤化物为CH3NH3PbI3、CH3NH3PbCl3或CH3NH3PbBr3
所述的有机-无机杂化铅卤化物钙钛矿纳米晶粒径为0.3~1.5μm;所述的粘合剂为PMMA。
2.根据权利要求1所述的有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法,其特征在于,通过控制过滤筛的目数,以控制有机-无机杂化铅卤化物钙钛矿纳米晶的尺寸,目数越高则尺寸越小。
3.根据权利要求1所述的有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法,其特征在于,所述的过滤筛的目数为2800目、150目或18目。
4.根据权利要求1所述的有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法,其特征在于,多元斥溶剂A组分为等体积的氯苯和甲苯。
5.根据权利要求1所述的有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法,其特征在于,多元斥溶剂B组分为吡啶。
6.根据权利要求1所述的有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法,其特征在于,所述的器皿材质为不锈钢、玻璃或陶瓷。
CN201910870275.3A 2019-09-16 2019-09-16 一种有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法 Expired - Fee Related CN110670139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910870275.3A CN110670139B (zh) 2019-09-16 2019-09-16 一种有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910870275.3A CN110670139B (zh) 2019-09-16 2019-09-16 一种有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法

Publications (2)

Publication Number Publication Date
CN110670139A CN110670139A (zh) 2020-01-10
CN110670139B true CN110670139B (zh) 2021-04-27

Family

ID=69078329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910870275.3A Expired - Fee Related CN110670139B (zh) 2019-09-16 2019-09-16 一种有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法

Country Status (1)

Country Link
CN (1) CN110670139B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916783A (zh) * 2015-06-11 2015-09-16 华中科技大学 钙钛矿纳米线、光电探测器和太阳能电池的制备及应用
CN107217303A (zh) * 2017-05-12 2017-09-29 郑州大学 直径可调的CH3NH3PbI3钙钛矿微米线的合成方法
CN107170890B (zh) * 2017-05-13 2019-06-11 河北工业大学 一种可控甲胺铅碘纳米线的制备方法
CN107287656B (zh) * 2017-06-13 2018-02-27 华中科技大学 一种iii‑v族量子点诱导生长钙钛矿晶体的方法
CN107325812A (zh) * 2017-07-03 2017-11-07 苏州虹霞晶体科技有限公司 一种钙钛矿结构发光材料及其基于抗溶剂的生产方法
CN108034989B (zh) * 2017-12-04 2020-09-29 山东大学 可控反溶剂扩散法生长大尺寸甲胺溴铅晶体的方法及装置
CN109134265B (zh) * 2018-09-07 2021-03-30 南京邮电大学 一种有机-无机杂化钙钛矿纳米线的制备方法
CN209465034U (zh) * 2019-01-03 2019-10-08 大连理工大学 一种制备均匀尺寸甲胺铅卤钙钛矿纳米晶的装置

Also Published As

Publication number Publication date
CN110670139A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
Huang et al. Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing
CN104250723B (zh) 一种基于铅单质薄膜原位大面积控制合成钙钛矿型CH3NH3PbI3薄膜材料的化学方法
CN110886017B (zh) 一种全无机铯铅卤族钙钛矿纳米晶薄膜的制备方法
CN108682745A (zh) 一种基于反溶剂动态旋涂制备钙钛矿薄膜的方法
Wang et al. A modified sequential method used to prepare high quality perovskite on ZnO nanorods
CN112186106A (zh) 一种绿色无毒反溶剂制备甲胺铅碘钙钛矿薄膜的方法
CN112397649A (zh) 一种大面积钙钛矿半导体单晶薄膜的制备方法
CN105777800A (zh) 氧化铅薄膜制备有机钙钛矿甲基胺基碘化铅薄膜的方法
CN107217303A (zh) 直径可调的CH3NH3PbI3钙钛矿微米线的合成方法
CN110670139B (zh) 一种有机-无机杂化铅卤化物钙钛矿纳米晶的制备方法
CN109536893A (zh) 一种太阳能电池薄膜的制备设备及其制备方法
CN110311038A (zh) 一种增大钙钛矿太阳能电池钙钛矿膜层晶粒尺寸的方法
CN101698963B (zh) 一种微波水热制备CdS薄膜的方法
CN107245689A (zh) 一种大面积制备卤化甲胺铅光电薄膜的化学方法
CN108520918B (zh) 一种有机-无机钙钛矿半导体材料的制备方法
Morkoç Karadeniz et al. A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods
CN112640140A (zh) 一种形成类似钙钛矿材料的薄膜的方法
KR20120011859A (ko) 목표하는 셀렌화구리 함량 및 전구체 조성을 가지는 구리 셀레늄 전구체 조성물의 제조 방법 및 그로부터 얻은 박막
CN109023483A (zh) 一种硒化锡薄膜及其制备方法
US12006574B2 (en) Low temperature formation of perovskite films in supercritical fluids
CN114686811A (zh) 基于高通量气相共蒸制备稳定CsPbI2Br无机钙钛矿薄膜的方法
CN102557110A (zh) 低温蒸汽中ZnO纳米棒阵列的制备方法
CN111647848A (zh) 一种磁控溅射制备大面积CsPbBr3光电薄膜的方法和应用
CN106298449B (zh) 一种提高ZnO薄膜均匀性和分散性的低温处理方法
CN110552066A (zh) 四方平板状的(C6H5CH2CH2NH3)2MnCl4微纳单晶的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210427

Termination date: 20210916

CF01 Termination of patent right due to non-payment of annual fee