CN110653380A - 一种常温下在醇相中快速制备金纳米颗粒的方法 - Google Patents

一种常温下在醇相中快速制备金纳米颗粒的方法 Download PDF

Info

Publication number
CN110653380A
CN110653380A CN201911049336.6A CN201911049336A CN110653380A CN 110653380 A CN110653380 A CN 110653380A CN 201911049336 A CN201911049336 A CN 201911049336A CN 110653380 A CN110653380 A CN 110653380A
Authority
CN
China
Prior art keywords
chloroauric acid
ethylene glycol
sodium borohydride
gold nanoparticles
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911049336.6A
Other languages
English (en)
Other versions
CN110653380B (zh
Inventor
鲁颖炜
杨浩
仲洪海
程继贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Polytechnic University
Original Assignee
Hefei Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Polytechnic University filed Critical Hefei Polytechnic University
Priority to CN201911049336.6A priority Critical patent/CN110653380B/zh
Publication of CN110653380A publication Critical patent/CN110653380A/zh
Application granted granted Critical
Publication of CN110653380B publication Critical patent/CN110653380B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种常温下在醇相中快速制备金纳米颗粒的方法,是以硼氢化钠为还原剂,聚乙烯吡咯烷酮为保护剂,在乙二醇中将氯金酸还原成金纳米颗粒。本发明提供的制备方法操作简便、反应条件温和、反应速度快。本发明制备的金纳米颗粒Zeta电位绝对值较大,具有较好的稳定性。

Description

一种常温下在醇相中快速制备金纳米颗粒的方法
技术领域
本发明涉及一种常温下在醇相中快速制备金纳米颗粒的方法。
背景技术
金纳米颗粒由于具有良好的生物相容性、表面等离子共振频率可调性等特点而在纳米电子、生物医学以及催化化学等领域有着广阔的应用前景,因此受到了研究者的广泛关注。金纳米颗粒的制备主要有两种方法:一种是机械粉碎、物理气相沉积等物理方法,另一种是还原含金元素化合物(主要是氯金酸)的化学方法。其中化学法,特别是在水相中合成金纳米颗粒的技术,由于成本较低、产物纯度高等优点被广泛使用。但是,在制备复杂纳米结构(如核壳、空心结构等)时,通常需要将在水相中合成的金纳米颗粒转移到醇相中进行下一步反应。而该转移过程不但具有操作复杂、转移效率低的缺陷,而且还容易导致金纳米颗粒的团聚。而使用化学法在醇相中直接合成金纳米颗粒,则可以省去转移过程,大大提高工作效率,节省成本。但已报道的醇相合成方法通常需要较为复杂的反应条件,且反应时间较长。比如:中国专利CN102962474A公开了一种将反应温度加热到185℃并在氮气保护下制备金纳米颗粒的方法;中国专利CN1978096A公开了一种在80~180℃下反应9~15h制备金纳米粒子的方法;文献“化工新型材料,2009,37(1):20-22.”公开一种采用超声方法并且需要在水的参与下合成金纳米颗粒的方法,反应时间长达4h。
发明内容
在水相中使用硼氢化钠还原氯金酸制备金纳米颗粒时,通常是将硼氢化钠粉末配置成溶液,并加入到氯金酸和聚乙烯吡咯烷酮的混合溶液中,但在醇相中依照此方法却无法制备。本发明针对上述现有技术的不足,提供了一种常温下在醇相中快速制备金纳米颗粒的方法。本发明直接使用硼氢化钠粉末(不需要配置溶液)并改变添加顺序,将氯金酸和聚乙烯吡咯烷酮混合溶液加入到硼氢化钠粉末中,进行还原反应,制备出Zeta电位绝对值较大,稳定性好的金纳米颗粒。
具体包括以下步骤:
步骤1:将氯金酸溶解在乙二醇中,配制成浓度为10mg/mL的氯金酸乙二醇溶液,备用;
步骤2:量取一定量的乙二醇,向其中滴加一定量步骤1获得的氯金酸乙二醇溶液,再加入一定量聚乙烯吡咯烷酮(PVP),磁力搅拌均匀,备用;
步骤3:称取一定量的硼氢化钠,将步骤2的反应液加入其中,并急速搅拌10min,将制得的金纳米颗粒溶液放置在4℃冰箱中静置保存。
步骤2中,向乙二醇中滴加氯金酸乙二醇溶液后,体系中氯金酸的浓度为0.2mg/mL。
步骤2中,加入PVP后体系中PVP的浓度为0.2-0.4mg/mL。
步骤3中,加入硼氢化钠后硼氢化钠在体系中的浓度为0.084-0.112mg/mL。
步骤3中,所述急速搅拌的搅拌速度为1500-2600r/min。
与现有技术相比,本发明具有如下优点:
1、本发明提供的制备方法工艺简单、操作简便、常温下就可以快速合成。
2、制备的金纳米颗粒在520nm附近有较为明显的特征吸收峰,具有良好的表面等离子体共振特性。
3、本发明制备的金纳米颗粒稳定性高,Zeta电位绝对值较大,具有较好的稳定性。
附图说明
图1是实施例1、实施例2和实施例4制备的金纳米颗粒乙二醇溶液。
图2是实施例1~5中金纳米颗粒溶液Zeta电位的3次测试结果,表明此时金纳米颗粒表面带负电荷并且制备的金纳米颗粒十分稳定,可以保存较长时间。
图3是实施例1~5制备的金纳米颗粒的紫外-可见吸收光谱。
具体实施方式
实施例1:
1、将氯金酸溶解在乙二醇中,配置成浓度为10mg/mL的氯金酸乙二醇溶液,备用;
2、量取一定量的乙二醇,滴加一定量步骤1中的氯金酸乙二醇溶液,使其浓度为0.2mg/mL,再加入一定量的聚乙烯吡咯烷酮(PVP),使PVP的浓度为0.2mg/mL,磁力搅拌均匀,备用;
3、称量一定量硼氢化钠,将步骤2的反应液加入其中,使硼氢化钠的浓度为0.084mg/mL,并以1500r/min的搅拌速度急速搅拌10min,将制得的金纳米颗粒溶液放置在4℃冰箱中静置保存。
实施例2:
1、将氯金酸溶解在乙二醇中,配置成浓度为10mg/mL的氯金酸乙二醇溶液,备用;
2、量取一定量的乙二醇,滴加一定量步骤1中的氯金酸乙二醇溶液,使其浓度为0.2mg/mL,再加入一定量的聚乙烯吡咯烷酮(PVP),使PVP的浓度为0.2mg/mL,磁力搅拌均匀,备用;
3、称量一定量硼氢化钠,将步骤2的反应液加入其中,使硼氢化钠的浓度为0.112mg/mL,并以2600r/min的搅拌速度急速搅拌10min,将制得的金纳米颗粒溶液放置在4℃冰箱中静置保存。
实施例3:
1、将氯金酸溶解在乙二醇中,配置成浓度为10mg/mL的氯金酸乙二醇溶液,备用;
2、量取一定量的乙二醇,滴加一定量步骤1中的氯金酸乙二醇溶液,使其浓度为0.2mg/mL,再加入一定量的聚乙烯吡咯烷酮(PVP),使PVP的浓度为0.3mg/mL,磁力搅拌均匀,备用;
3、称量一定量硼氢化钠,将步骤2的反应液加入其中,使硼氢化钠的浓度为0.112mg/mL,并以1500r/min的搅拌速度急速搅拌10min,将制得的金纳米颗粒溶液放置在4℃冰箱中静置保存。
实施例4:
1、将氯金酸溶解在乙二醇中,配置成浓度为10mg/mL的氯金酸乙二醇溶液,备用;
2、量取一定量的乙二醇,滴加一定量步骤1中的氯金酸乙二醇溶液,使其浓度为0.2mg/mL,再加入一定量的聚乙烯吡咯烷酮(PVP),使PVP的浓度为0.4mg/mL,磁力搅拌均匀,备用;
3、称量一定量硼氢化钠,将步骤2的反应液加入其中,使硼氢化钠的浓度为0.084mg/mL,并以2600r/min的搅拌速度急速搅拌10min,将制得的金纳米颗粒溶液放置在4℃冰箱中静置保存。
实施例5:
1、将氯金酸溶解在乙二醇中,配置成浓度为10mg/mL的氯金酸乙二醇溶液,备用;
2、量取一定量的乙二醇,滴加一定量步骤1中的氯金酸乙二醇溶液,使其浓度为0.2mg/mL,再加入一定量的聚乙烯吡咯烷酮(PVP),使PVP的浓度为0.4mg/mL,磁力搅拌均匀,备用;
3、称量一定量硼氢化钠,将步骤2的反应液加入其中,使硼氢化钠的浓度为0.112mg/mL,并以2600r/min的搅拌速度急速搅拌10min,将制得的金纳米颗粒溶液放置在4℃冰箱中静置保存。

Claims (6)

1.一种常温下在醇相中快速制备金纳米颗粒的方法,其特征在于:
是以硼氢化钠为还原剂,聚乙烯吡咯烷酮为保护剂,在乙二醇中将氯金酸还原成金纳米颗粒。
2.根据权利要求1所述的方法,其特征在于包括以下步骤:
步骤1:将氯金酸溶解在乙二醇中,配制成浓度为10mg/mL的氯金酸乙二醇溶液,备用;
步骤2:量取一定量的乙二醇,向其中滴加一定量步骤1获得的氯金酸乙二醇溶液,再加入一定量聚乙烯吡咯烷酮,磁力搅拌均匀,备用;
步骤3:称取一定量的硼氢化钠,将步骤2的反应液加入其中,并急速搅拌10min,将制得的金纳米颗粒溶液放置在4℃冰箱中静置保存。
3.根据权利要求2所述的方法,其特征在于:
步骤2中,向乙二醇中滴加氯金酸乙二醇溶液后,体系中氯金酸的浓度为0.2mg/mL。
4.根据权利要求2所述的方法,其特征在于:
步骤2中,加入PVP后体系中PVP的浓度为0.2-0.4mg/mL。
5.根据权利要求2所述的方法,其特征在于:
步骤3中,加入硼氢化钠后硼氢化钠在体系中的浓度为0.084-0.112mg/mL。
6.根据权利要求2所述的方法,其特征在于:
步骤3中,所述急速搅拌的搅拌速度为1500-2600r/min。
CN201911049336.6A 2019-10-31 2019-10-31 一种常温下在醇相中快速制备金纳米颗粒的方法 Active CN110653380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911049336.6A CN110653380B (zh) 2019-10-31 2019-10-31 一种常温下在醇相中快速制备金纳米颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911049336.6A CN110653380B (zh) 2019-10-31 2019-10-31 一种常温下在醇相中快速制备金纳米颗粒的方法

Publications (2)

Publication Number Publication Date
CN110653380A true CN110653380A (zh) 2020-01-07
CN110653380B CN110653380B (zh) 2022-08-19

Family

ID=69042372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911049336.6A Active CN110653380B (zh) 2019-10-31 2019-10-31 一种常温下在醇相中快速制备金纳米颗粒的方法

Country Status (1)

Country Link
CN (1) CN110653380B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060009735A (ko) * 2004-07-26 2006-02-01 한국표준과학연구원 금 나노 구조체 및 그의 제조 방법
TW200635861A (en) * 2005-04-13 2006-10-16 De-Huan Huang Method for preparing the nanometer aurum solution
CN1978096A (zh) * 2005-12-10 2007-06-13 中国科学院合肥物质科学研究院 对近红外光具有吸收性能的金纳米片及其制备方法
EP1818431A1 (en) * 2006-02-13 2007-08-15 CRF Societa'Consortile per Azioni Process for the manufacture of a noble metal having fibrous morphology
WO2008105456A1 (ja) * 2007-02-27 2008-09-04 Mitsubishi Materials Corporation 金属ナノ粒子分散液及びその製造方法並びに金属ナノ粒子の合成方法
CN101618462A (zh) * 2008-07-03 2010-01-06 东进世美肯株式会社 金属纳米颗粒的制造方法
JP2011219466A (ja) * 2010-03-23 2011-11-04 Tokyo Metropolitan Univ エタノール酸化用金触媒およびそれを用いたアセトアルデヒド、酢酸の製造方法
CN102672196A (zh) * 2012-05-15 2012-09-19 大连理工大学 一种常温制备金属胶体的方法
CN102989014A (zh) * 2012-11-13 2013-03-27 东华大学 基于第二代聚酰胺-胺树状大分子/金纳米颗粒的ct造影剂的制备方法
US20130084385A1 (en) * 2010-06-13 2013-04-04 Mingjie Zhou Method for producing core-shell magnetic alloy nanoparticle
CN104985174A (zh) * 2015-05-26 2015-10-21 江苏大学 一种快速且大批量制备金银合金纳米管的方法
CN107020387A (zh) * 2016-02-01 2017-08-08 北京化工大学 一种常温常压快速制备铜纳米线-金属有机骨架zif-8复合材料的方法
CN108436101A (zh) * 2018-04-27 2018-08-24 同济大学 一种微波辅助快速合成Bi纳米球的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060009735A (ko) * 2004-07-26 2006-02-01 한국표준과학연구원 금 나노 구조체 및 그의 제조 방법
TW200635861A (en) * 2005-04-13 2006-10-16 De-Huan Huang Method for preparing the nanometer aurum solution
CN1978096A (zh) * 2005-12-10 2007-06-13 中国科学院合肥物质科学研究院 对近红外光具有吸收性能的金纳米片及其制备方法
EP1818431A1 (en) * 2006-02-13 2007-08-15 CRF Societa'Consortile per Azioni Process for the manufacture of a noble metal having fibrous morphology
WO2008105456A1 (ja) * 2007-02-27 2008-09-04 Mitsubishi Materials Corporation 金属ナノ粒子分散液及びその製造方法並びに金属ナノ粒子の合成方法
CN101618462A (zh) * 2008-07-03 2010-01-06 东进世美肯株式会社 金属纳米颗粒的制造方法
JP2011219466A (ja) * 2010-03-23 2011-11-04 Tokyo Metropolitan Univ エタノール酸化用金触媒およびそれを用いたアセトアルデヒド、酢酸の製造方法
US20130084385A1 (en) * 2010-06-13 2013-04-04 Mingjie Zhou Method for producing core-shell magnetic alloy nanoparticle
CN102672196A (zh) * 2012-05-15 2012-09-19 大连理工大学 一种常温制备金属胶体的方法
CN102989014A (zh) * 2012-11-13 2013-03-27 东华大学 基于第二代聚酰胺-胺树状大分子/金纳米颗粒的ct造影剂的制备方法
CN104985174A (zh) * 2015-05-26 2015-10-21 江苏大学 一种快速且大批量制备金银合金纳米管的方法
CN107020387A (zh) * 2016-02-01 2017-08-08 北京化工大学 一种常温常压快速制备铜纳米线-金属有机骨架zif-8复合材料的方法
CN108436101A (zh) * 2018-04-27 2018-08-24 同济大学 一种微波辅助快速合成Bi纳米球的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TANJA JURKIN等: "Synthesis of gold nanoparticles under highly oxidizing conditions", 《GOLD BULLETIN》 *
陈闻超等: "液相还原法制备纳米Ag粉的研究", 《粉末冶金技术》 *

Also Published As

Publication number Publication date
CN110653380B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
CN109433205B (zh) 一种草酸二甲酯加氢的铜基催化剂及其制备方法与应用
CN103100725B (zh) 一种银/碳量子点复合纳米材料的制备方法
CN109331839A (zh) 一种生产甲基丙烯酸甲酯的催化剂的制备方法及其应用
CN108436098B (zh) 一种银纳米环的制备方法
CN110368933B (zh) 一种以Ce-Ti复合氧化物为载体的钌基氨合成催化剂及其制备方法
CN107282940B (zh) 一种利用三七提取液制备金纳米颗粒的方法
CN111579600B (zh) 一种山茶花状ZnO/SnO-SnO2复合材料及其制备方法和应用
CN101748484A (zh) 一种溶剂热合成纳米氧化铋单晶片的方法
CN111495388B (zh) 一种co气相偶联亚硝酸乙酯合成草酸二乙酯催化剂及其制备方法
CN106745282B (zh) 一种具有蛋黄‑蛋壳结构三氧化二锰的制备方法
CN107029769A (zh) 一种负载型铜氧化物催化剂的制备及其应用
CN102382644B (zh) 稀土氧化物发光材料及其制备方法
CN110653380B (zh) 一种常温下在醇相中快速制备金纳米颗粒的方法
CN102728847A (zh) 一种金铜双金属纳米球的制备方法
CN107297510B (zh) 一种银盐中间体分级还原制备纳米级银颗粒粉的方法
CN102436886B (zh) 一种制备金包磁复合纳米粒子的方法
CN110078116B (zh) 一种钙钛矿CsPbBr3量子点及其制备方法和应用
CN108816227A (zh) 金属框架衍生负载型铜基催化剂及其制备方法
CN106278926B (zh) 二元合金催化合成3-氨基-4-甲氧基乙酰苯胺的方法
CN102921956A (zh) 一种有机相制备Au和Agx(Au)1-x纳米晶的方法
CN108658787B (zh) 乙胺的制备方法
CN114433868B (zh) 一种分支状CuAu合金纳米晶及其制备方法
CN113663710B (zh) 一种磁性固体酸催化剂及其在催化果糖水解反应中的应用
CN102838469B (zh) 一种乙酰丙酮钯的制备方法
CN115651644A (zh) 一种室温下制备水溶性银铟硫量子点材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant