CN110643953A - 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法 - Google Patents

一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法 Download PDF

Info

Publication number
CN110643953A
CN110643953A CN201910974706.0A CN201910974706A CN110643953A CN 110643953 A CN110643953 A CN 110643953A CN 201910974706 A CN201910974706 A CN 201910974706A CN 110643953 A CN110643953 A CN 110643953A
Authority
CN
China
Prior art keywords
substrate
layer
oxide
milling
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910974706.0A
Other languages
English (en)
Other versions
CN110643953B (zh
Inventor
鲜广
赵海波
鲜丽君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201910974706.0A priority Critical patent/CN110643953B/zh
Publication of CN110643953A publication Critical patent/CN110643953A/zh
Application granted granted Critical
Publication of CN110643953B publication Critical patent/CN110643953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公布的适合铣削加工用的氧化铝/钛铝氮复合涂层是由CrAlTiZrY高熵合金粘结层、α‑Cr2O3氧化物模板层、α‑Al2O3氧化物支撑层、TiAlN氮化物耐磨层四个子层构成的整体,这四个子层的顺序是由内至外,涂层总厚度为1.2~3μm。其制备方法为:基底被加热和离子刻蚀后,先利用电弧蒸发镀工艺在基底上沉积CrAlTiZrY层;然后,使用阴极电弧离子镀工艺,再继续依次沉积α‑Cr2O3层、α‑Al2O3层和TiAlN层。强韧性高的高熵合金粘结层与氧化物涂层、氮化物涂层的有机搭配,使得复合涂层具有高的韧性和良好的抗冲击性能,非常适合于断续加工方式的铣削加工,且制备工艺简单,易于实施。

Description

一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备 方法
技术领域
本发明属于切削刀具表面涂层技术领域,具体涉及一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法。
背景技术
铣削加工是切削加工的一种重要加工方式,铣削加工的特点是断续切削,刀具在加工过程中承受冲击载荷。铣削加工要求铣刀及其表面涂层材料具有良好的韧性和抗冲击性能。氮化物涂层是铣刀、车刀等切削刀具广泛使用的涂层材料,如TiAlN、TiAlCrN、TiAlSiN等,氮化物涂层硬度高、耐磨性好。但是,氮化物涂层也存在着不足:脆性偏大,与基底结合强度不够高,在高温铣削条件下的热稳定性能不足。氧化物涂层(如Al2O3)相比于氮化物涂层具有硬度低、韧性好的特点,更为突出的是α-Al2O3涂层结构稳定,在高温条件下仍然具有完整的晶体结构,并具有良好的抗氧化性。为了发挥各涂层的性能优势,采用化学气相沉积方法制备的多层氧化物/(碳)氮化物复合涂层(如TiCN/α-Al2O3/TiN)具有非常优异的综合性能,在切削刀具上获得了广泛应用。但是由于化学气相沉积法的工艺温度高,刀具基底材料在涂层沉积过程中容易发生元素的扩散、化学反应等行为,如硬质合金刀具在高温条件下容易发生脱碳从而在刀具组织中形成脱碳脆性相,进而使刀具的韧性降低,不利于铣削、钻孔等断续加工方式。物理气相沉积法具有沉积温度低、对基底材料性质影响小、表面质量好、工艺灵活等特点,是制备复杂结构复合涂层更有前景的方法。但是,该方法的不足是沉积能量不足,致使其在氧化物涂层制备方面的受到了限制,该方法沉积的Al2O3涂层很难获得性能优异的α结构,这也使得氮氧化物复合涂层的发展受到极大制约。
发明内容
本发明的目的是克服现有技术存在的问题,提供一种适合铣削加工用的氧化铝/钛铝氮复合涂层。
本发明的另一目的是提供一种上述适合铣削加工用的氧化铝/钛铝氮复合涂层的制备方法。
本发明提供的适合铣削加工用的氧化铝/钛铝氮复合涂层,其特征在于,涂层是由高熵合金粘结层、氧化物模板层、氧化物支撑层、氮化物耐磨层四个子层构成的整体,这四个子层的顺序是由内至外,涂层总厚度为1.2~3μm。
其中,上述涂层中,所述高熵合金粘结层为CraAlbTicZrdYe,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,厚度为150~200nm。
其中,上述涂层中,所述氧化物模板层为α-Cr2O3,厚度为150~300nm;所述氧化物支撑层为α-Al2O3,厚度为500~2000nm;所述氮化物耐磨层为TiAlN,厚度为400~800nm。
本发明提供的上述适合铣削加工用的氧化铝/钛铝氮复合涂层的制备方法,包括以下步骤:
A、将清洁的基底材料装入涂层设备真空室中,抽真空并加热;
B、对基底表面进行离子刻蚀;
C、利用电弧蒸镀工艺制备高熵合金粘结层;
D、利用阴极电弧镀膜工艺制备氧化物模板层;
E、利用阴极电弧镀膜工艺制备氧化物支撑层;
F、利用阴极电弧镀膜工艺制备氮化物耐磨层。
其中,上述方法步骤A中,所述抽真空并加热是先将背底真空抽至0.03Pa及以下时,打开炉壁的辅助加热装置对基底进行加热,同时打开机架转动电源使基底在真空室内进行自转和公转运动,至基底温度达到380℃。
其中,上述方法步骤B中,所述离子刻蚀是向真空室中通入氩气,调节氩气流量保证压强为0.1~0.25Pa,然后对基底施加-100~-200V的直流偏压和-200~-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30~90min。
其中,上述方法步骤C中,所述电弧蒸镀工艺制备高熵合金粘结的工作压强为0.1~0.2Pa,蒸镀坩埚上通过的电弧电流为190~230A,蒸镀坩埚内放置的材料为CraAlbTicZrdYe高熵合金, a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,蒸镀时间为8~10min。
其中,上述方法步骤D中,所述阴极电弧镀膜工艺制备氧化物模板层的工作气体为Ar+O2,工作压强为1.5~3.5Pa,工作靶材为Cr电弧靶,靶电流为50~100A,基底施加的偏压为-30~-80V,沉积时间10~20min。
其中,上述方法步骤E中,所述阴极电弧镀膜工艺制备氧化物支撑层的工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为Al电弧靶,靶电流为80~120A,基底施加的偏压为-30~-80V,沉积时间40~150min。
其中,上述方法步骤F中,所述阴极电弧镀膜工艺制备氮化物耐磨层的工作气体为N2,工作压强为1.5~3.5Pa,工作靶材为TiAl合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-80V,沉积时间25~35min。
本发明与现有技术相比,具有如下优点:
1)本发明提供的适合铣削加工用的氧化铝/钛铝氮复合涂层由功能与成分均不同的四个子层构成,首先,高熵合金粘结层相比于传统的Cr、Ti纯金属粘结层及TiAl合金粘结层而言,具有更高的强韧性,能在刀具基底材料与表面涂层材料之间起到很好的粘结作用,使涂层与基底结合稳固;其次,使用的α-Cr2O3氧化物模板层有利于Al2O3按照α-Cr2O3的晶体结构结构外延生长,解决了物理气相沉积法由于温度低制备α-Al2O3困难的问题;再次,α-Al2O3氧化物支撑层与TiAlN氮化物耐磨层相结合,避免了单纯氧化物涂层硬度低、耐磨性不足的问题和单纯氮化物涂层硬度高、韧性不足的问题。
2)本发明提供的适合铣削加工用的氧化铝/钛铝氮复合涂层的制备方法是一种以阴极电弧沉积为主、蒸发镀工艺制备粘结层为辅的组合式离子镀工艺。镀膜前通过加热使基底材料中吸附的杂质释放,同时采用离化的Ar+对基底表面进行轰击刻蚀,增强了涂层与基底的结合;采用电弧蒸镀工艺蒸发高熵合金材料,在基底上沉积高熵合金粘结层,进一步地增强涂层与基底的结合能力且保持良好的韧性,电弧蒸发镀制备粘结层的优势是,沉积速率快,蒸发原料的尺寸、形状几乎不受限制,称重后装入蒸发坩埚内即可,而采用阴极电弧离子镀沉积粘结层,则需要将蒸发原料制成具有一定形状和尺寸的靶材;阴极电弧离子镀过程中的粒子离化率高且离子能量高,相比磁控溅射更容易获得α-Al2O3。在沉积涂层过程中,通过切换不同的电弧靶工作,很容易多层复合涂层的制备,操作工艺简单且易于掌握和控制。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,但本发明保护的内容不局限于以下实施例。
实施例1
将清洁的硬质合金基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.03Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.15Pa,然后对基底施加-200V的直流偏压和-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀90min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.1Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为220A,蒸发原料为Cr0.2Al0.2Ti0.2Zr0.2Y0.2块,蒸发沉积8min;关闭主弧电源,开启Cr电弧靶,靶电流设为100A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为3.5Pa,对基底施加偏压-30V,沉积10min;开启Al电弧靶,靶电流设为120A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为3.0Pa,基底偏压调节为-40V,镀膜70min;开启TiAl合金电弧靶,靶电流设为95A,然后关闭Al电弧靶电源,通入氮气、关闭氧气和氩气,调节气体流量,控制工作压强为2.5Pa,基底偏压调节为-50V,沉积30min结束。制备的适合铣削加工用的氧化铝/钛铝氮复合涂层由CrAlTiZrY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物支撑层和TiAlN氮化物耐磨层共四个子层组成,各个子层之间以及涂层与基底结合牢固,韧性高,耐冲击性能好,在铣削加工时使用寿命长。
实施例2
将清洁的硬质合金基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.03Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.18Pa,然后对基底施加-200V的直流偏压和-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀45min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.18Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为190A,蒸发原料为Cr0.4Al0.15Ti0.15Zr0.15Y0.15块,蒸发沉积10min;关闭主弧电源,开启Cr电弧靶,靶电流设为70A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为1.5Pa,对基底施加偏压-80V,沉积15min;开启Al电弧靶,靶电流设为120A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为3.0Pa,基底偏压保持不变继续镀膜40min;开启TiAl合金电弧靶,靶电流设为80A,然后关闭Al电弧靶电源,通入氮气、关闭氧气和氩气,调节气体流量,控制工作压强为1.5Pa,基底偏压继续保持不变,沉积25min结束。制备的适合铣削加工用的氧化铝/钛铝氮复合涂层由CrAlTiZrY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物支撑层和TiAlN氮化物耐磨层共四个子层组成,各个子层之间以及涂层与基底结合牢固,韧性高,耐冲击性能好,在铣削加工时使用寿命长。
实施例3
将清洁的硬质合金基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.03Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.1Pa,然后对基底施加-200V的直流偏压和-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀60min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.15Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为192A,蒸发原料为Cr0.2Al0.2Ti0.2Zr0.2Y0.2块,蒸发沉积10min;关闭主弧电源,开启Cr电弧靶,靶电流设为70A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为2.5Pa,对基底施加偏压-50V,沉积10min;开启Al电弧靶,靶电流设为80A,然后关闭Cr电弧靶电源,工作压强和基底偏压保持不变继续沉积120min;开启TiAl合金电弧靶,靶电流设为100A,然后关闭Al电弧靶电源,通入氮气、关闭氧气和氩气,调节气体流量,控制工作压强为2.0Pa,基底偏压继续保持不变,沉积35min结束。制备的适合铣削加工用的氧化铝/钛铝氮复合涂层由CrAlTiZrY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物支撑层和TiAlN氮化物耐磨层共四个子层组成,各个子层之间以及涂层与基底结合牢固,韧性高,耐冲击性能好,在铣削加工时使用寿命长。

Claims (10)

1.一种适合铣削加工用的氧化铝/钛铝氮复合涂层,其特征在于,涂层是由高熵合金粘结层、氧化物模板层、氧化物支撑层、氮化物耐磨层四个子层构成的整体,这四个子层的顺序是由内至外,涂层总厚度为1.2~3μm。
2.根据权利要求1所述的一种适合铣削加工用的氧化铝/钛铝氮复合涂层,其特征在于,所述高熵合金粘结层为CraAlbTicZrdYe,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,厚度为150~200nm。
3.根据权利要求1所述的一种适合铣削加工用的氧化铝/钛铝氮复合涂层,其特征在于,所述氧化物模板层为α-Cr2O3,厚度为150~300nm;所述氧化物支撑层为α-Al2O3,厚度为500~2000nm;所述氮化物耐磨层为TiAlN,厚度为400~500nm。
4.一种权利要求1~3任意一项所述的适合铣削加工用的氧化铝/钛铝氮复合涂层的制备方法,其特征在于,包括以下步骤:
A、将清洁的基底材料装入涂层设备真空室中,抽真空并加热;
B、对基底表面进行离子刻蚀;
C、利用电弧蒸镀工艺制备高熵合金粘结层;
D、利用阴极电弧镀膜工艺制备氧化物模板层;
E、利用阴极电弧镀膜工艺制备氧化物支撑层;
F、利用阴极电弧镀膜工艺制备氮化物耐磨层。
5.根据权利要求4所述的适合铣削加工用的氧化铝/钛铝氮复合涂层的制备方法,其特征在于,步骤A中,所述抽真空并加热是先将背底真空抽至0.03Pa及以下时,打开炉壁的辅助加热装置对基底进行加热,同时打开机架转动电源使基底在真空室内进行自转和公转运动,至基底温度达到380℃。
6.根据权利要求4所述的适合铣削加工用的氧化铝/钛铝氮复合涂层的制备方法,其特征在于,步骤B中,所述离子刻蚀是向真空室中通入氩气,调节氩气流量保证压强为0.1~0.25Pa,然后对基底施加-100~-200V的直流偏压和-200~-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30~90min。
7.根据权利要求4所述的适合铣削加工用的氧化铝/钛铝氮复合涂层的制备方法,其特征在于,步骤C中,所述电弧蒸镀工艺制备高熵合金粘结的工作压强为0.1~0.2Pa,蒸镀坩埚上通过的电弧电流为190~230A,蒸镀坩埚内放置的材料为CraAlbTicZrdYe高熵合金, a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,蒸镀时间为8~10min。
8.根据权利要求4所述的适合铣削加工用的氧化铝/钛铝氮复合涂层的制备方法,其特征在于,步骤D中,所述阴极电弧镀膜工艺制备氧化物模板层的工作气体为Ar+O2,工作压强为1.5~3.5Pa,工作靶材为Cr电弧靶,靶电流为50~100A,基底施加的偏压为-30~-80V,沉积时间10~20min。
9.根据权利要求4所述的适合铣削加工用的氧化铝/钛铝氮复合涂层的制备方法,其特征在于,步骤E中,所述阴极电弧镀膜工艺制备氧化物支撑层的工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为Al电弧靶,靶电流为80~120A,基底施加的偏压为-30~-80V,沉积时间40~150min。
10.根据权利要求4所述的适合铣削加工用的氧化铝/钛铝氮复合涂层的制备方法,其特征在于,步骤F中,所述阴极电弧镀膜工艺制备氮化物耐磨层的工作气体为N2,工作压强为1.5~3.5Pa,工作靶材为AlTi合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-80V,沉积时间25~35min。
CN201910974706.0A 2019-10-14 2019-10-14 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法 Active CN110643953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910974706.0A CN110643953B (zh) 2019-10-14 2019-10-14 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910974706.0A CN110643953B (zh) 2019-10-14 2019-10-14 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN110643953A true CN110643953A (zh) 2020-01-03
CN110643953B CN110643953B (zh) 2021-04-30

Family

ID=69012796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910974706.0A Active CN110643953B (zh) 2019-10-14 2019-10-14 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN110643953B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418607A (zh) * 2022-08-25 2022-12-02 株洲钻石切削刀具股份有限公司 含三氧化二铬氧化物层的复合涂层切削刀具
CN115505882A (zh) * 2022-09-14 2022-12-23 广东工业大学 氮化物结合氧化物双涂层的制备方法及涂层刀具
CN115505882B (zh) * 2022-09-14 2024-06-11 广东工业大学 氮化物结合氧化物双涂层的制备方法及涂层刀具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315011A (ja) * 1997-05-15 1998-12-02 Hitachi Metals Ltd 硬質膜被覆工具及び硬質膜被覆ロール並びに硬質膜被覆金型
CN1974205A (zh) * 2005-12-02 2007-06-06 三菱麻铁里亚尔株式会社 表面包覆切削刀片及其制造方法
CN101691654A (zh) * 2007-09-26 2010-04-07 山特维克知识产权股份有限公司 制造涂层切削工具的方法
CN103732785A (zh) * 2011-06-30 2014-04-16 拉米娜科技 阴极电弧沉积法
CN103789723A (zh) * 2014-01-24 2014-05-14 四川大学 一种Cr/CrN/(Ti,Al,Si,Cr)N复合硬质涂层及其制备方法
CN105132908A (zh) * 2015-10-16 2015-12-09 广东电网有限责任公司电力科学研究院 燃气轮机叶片热障涂层粘结层及其制备方法
CN109082641A (zh) * 2018-08-28 2018-12-25 华南理工大学 一种三层膜结构涂层及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315011A (ja) * 1997-05-15 1998-12-02 Hitachi Metals Ltd 硬質膜被覆工具及び硬質膜被覆ロール並びに硬質膜被覆金型
CN1974205A (zh) * 2005-12-02 2007-06-06 三菱麻铁里亚尔株式会社 表面包覆切削刀片及其制造方法
CN101691654A (zh) * 2007-09-26 2010-04-07 山特维克知识产权股份有限公司 制造涂层切削工具的方法
CN103732785A (zh) * 2011-06-30 2014-04-16 拉米娜科技 阴极电弧沉积法
CN103789723A (zh) * 2014-01-24 2014-05-14 四川大学 一种Cr/CrN/(Ti,Al,Si,Cr)N复合硬质涂层及其制备方法
CN105132908A (zh) * 2015-10-16 2015-12-09 广东电网有限责任公司电力科学研究院 燃气轮机叶片热障涂层粘结层及其制备方法
CN109082641A (zh) * 2018-08-28 2018-12-25 华南理工大学 一种三层膜结构涂层及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418607A (zh) * 2022-08-25 2022-12-02 株洲钻石切削刀具股份有限公司 含三氧化二铬氧化物层的复合涂层切削刀具
CN115418607B (zh) * 2022-08-25 2024-02-23 株洲钻石切削刀具股份有限公司 含三氧化二铬氧化物层的复合涂层切削刀具
CN115505882A (zh) * 2022-09-14 2022-12-23 广东工业大学 氮化物结合氧化物双涂层的制备方法及涂层刀具
CN115505882B (zh) * 2022-09-14 2024-06-11 广东工业大学 氮化物结合氧化物双涂层的制备方法及涂层刀具

Also Published As

Publication number Publication date
CN110643953B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Alami et al. High power pulsed magnetron sputtering: Fundamentals and applications
US6503373B2 (en) Method of applying a coating by physical vapor deposition
CN109628896B (zh) 一种梯度结构TiAlSiYN多元纳米涂层及其制备方法
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN108118304A (zh) 纳米复合涂层及其制备工艺
CN110643936B (zh) 一种适合铣削加工用的多层复合涂层及其制备方法
CN110643953B (zh) 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法
CN110616405B (zh) 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法
CN110643951B (zh) 一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法
CN110670019B (zh) 一种抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层及其制备方法
CN110656313B (zh) 一种与硬质合金结合牢固的氮化锆铝/氧化铝复合涂层及其制备方法
WO2024065970A1 (zh) 氧化物硬质涂层的复合沉积方法及涂层刀具
JP2003213402A (ja) 成膜装置、酸化物薄膜成膜用基板及びその製造方法
WO2021072623A1 (zh) 一种钛合金和高温合金加工用的涂层刀具及其制备方法
CN109666887B (zh) 一种TiAlN硬质涂层及其制备方法和应用
JP4402898B2 (ja) 物理的蒸着装置
CN110643935B (zh) 一种抗月牙洼磨损的氮化铝钛/氧化铝复合涂层及其制备方法
CN110643952B (zh) 一种抗氧化的氧化铝/氮化钛硅复合涂层及其制备方法
CN110791733B (zh) 一种耐磨阻扩散的铝铬钛氮与氧化铝多层复合涂层及其制备方法
CN110670020B (zh) 一种与金属陶瓷结合牢固的锆铝氮与氧化铝多层复合涂层及其制备方法
JP3971337B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜で被覆された部材およびその製造方法
CN112941461A (zh) 一种复合超硬强韧涂层材料以及制备方法
CN106967977B (zh) 工模具表面复合氮化物涂层制备工艺
CN107034438A (zh) 高速钢丝锥表面涂层制备方法
KR101054298B1 (ko) 확산박막 증착 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Fresh and wide

Inventor after: Zhao Haibo

Inventor after: Fresh Li Jun

Inventor after: Xiong Ji

Inventor before: Fresh and wide

Inventor before: Zhao Haibo

Inventor before: Fresh Li Jun

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant