CN106967977B - 工模具表面复合氮化物涂层制备工艺 - Google Patents

工模具表面复合氮化物涂层制备工艺 Download PDF

Info

Publication number
CN106967977B
CN106967977B CN201710305268.XA CN201710305268A CN106967977B CN 106967977 B CN106967977 B CN 106967977B CN 201710305268 A CN201710305268 A CN 201710305268A CN 106967977 B CN106967977 B CN 106967977B
Authority
CN
China
Prior art keywords
tool
mould surface
preparation process
mould
surface recombination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710305268.XA
Other languages
English (en)
Other versions
CN106967977A (zh
Inventor
赵海波
刘亚
鲜广
梁红樱
但秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Tianke Precision Manufacturing Co Ltd
Chengdu Rui Rui Technology Coating Technology Co Ltd
Sichuan University
Original Assignee
Chengdu Tianke Precision Manufacturing Co Ltd
Chengdu Rui Rui Technology Coating Technology Co Ltd
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Tianke Precision Manufacturing Co Ltd, Chengdu Rui Rui Technology Coating Technology Co Ltd, Sichuan University filed Critical Chengdu Tianke Precision Manufacturing Co Ltd
Priority to CN201710305268.XA priority Critical patent/CN106967977B/zh
Publication of CN106967977A publication Critical patent/CN106967977A/zh
Application granted granted Critical
Publication of CN106967977B publication Critical patent/CN106967977B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Abstract

本发明公开了一种工模具表面复合氮化物涂层制备工艺,属于微纳米涂层技术领域,该工艺是在镀膜时,采用了真空离子蒸发镀与磁控溅射离子镀相结合的二元蒸发源技术;在N2与Ar的混合气氛下,通过电子束蒸发源蒸发Ti元素,形成传统的TiN薄膜,在沉积形成TiN膜的同时,通过磁控溅射源植入Me元素,在工模具表面镀制(Ti,Me)N层;所述Me为Ti、Al、Cr、Si中的至少一种。本发明工艺能够提高工模具的综合性能。

Description

工模具表面复合氮化物涂层制备工艺
技术领域
本发明属于微纳米涂层技术领域,具体涉及一种工模具表面复合氮化物涂层制备工艺。
背景技术
表面涂层技术作为现代切削刀具应用新技术的一种,其通过化学或物理的方法在刀具表面上获得微纳米级的薄膜,因具有硬度高、润滑性好、高温性能优异等特点,可使切削刀具获得优良的综合机械性能,有效地延长刀具使用寿命、改善刀具切削性能、提高机械加工效率。
1980年后,物理气相沉积(PVD)的TiN涂层技术已广泛应用于工模具。TiN涂层的优越性,制备工艺过程的清洁性,促进了该项技术的迅速发展。随着现代切削技术的发展,对涂层的综合性能要求也越来越高,为更好的满足硬切削、干式切削、高速高效加工的要求,发展多元合金复合反应涂层技术是一种行之有效的途径。因此在单一TiN涂层的基础上,近年来已发展起诸多薄膜材料。
TiN是一种非常理想的薄膜体系,有着广泛的制备基础,如CAE、MS、HCD等方法皆可满足工业化生产要求。TiN具有优异的物理、化学性能,如硬度高、摩擦系数低、良好的化学相容性等,是低速切削加工刀具的理想涂层材料,它可以减轻切削刃部与被加工材的粘附,增加刀具的使用寿命和提高加工效率,仍是目前应用较多的薄膜材料之一。但传统的TiN硬度相对较低、耐磨性欠缺、热稳定性差,限制了其更广泛的应用。
工模具硬质涂层的制备主要采用物理气相沉积技术,其原理在真空条件下利用热蒸发、弧光或辉光放电、离子轰击等物理方法将待镀材料汽化成分子、原子或电离,使之与反应气体如氮气作用,在基体表面沉积一层具有特殊性能的涂层。物理气相沉积过程可分为三个阶段:待镀材料的汽化,即成膜材料的蒸发、升华、被溅射;气化或溅射出的原子、分子或离子向基体表面的运动,包括运动过程中与其它粒子的碰撞、结合等;原子或分子被基体表面吸附、迁移、形核和堆积生长。物理气相沉积技术又可分为以下三类:
①真空蒸发镀技术。
真空镀膜技术是PVD刀具涂层中最早出现的技术,在真空条件下,利用电阻加热、高频感应加热或高能离子束加热沉积材料,使之转变为汽态,然后沉积在刀具表面。蒸发镀膜过程中工作压强比较低,一般小于等于10-2Pa,原子或分子在向基体接近的过程中与其它粒子的碰撞较少,因此这些原子或分子的能量比较大,形成的涂层与基体结合牢固,沉积速率也较快,镀膜效率高。
②离子镀技术。
离子镀膜技术是在刀具基体与蒸发源之间施加一电场,在适当的压强下使刀具与蒸发源之间产生冷致弧光放电,利用电弧辐射的热量加热靶材并将其熔化、蒸发,在弧光区,靶材原子与电子和气体离子发生碰撞,产生离化,在电场的作用下加速飞向刀具基体,并发生碰撞,最终附着在刀具表面形成涂层。若在镀膜过程中通入N2、O2等则会发生反应,形成相应的化学物涂层。离子镀的优点是沉积原子或分子的能量大,离化率高,沉积速率大,涂层组织好,涂层与基体的结合强度高。工业上常用的离子镀技术主要是空心阴极离子镀和电弧离子镀,由于电弧离子镀制备的涂层组织致密,质量好,而且效率高,因而是目前使用的最广泛的物理涂层技术。
③反应磁控溅射技术。
反应磁控溅射技术是利用电子或离子对靶材表面进行轰击,使靶材原子从表面逸出,逸出的原子在向基体靠近的过程中与其它原子或气体分子或电子发生碰撞,能量降低,也有部分原子发生离化,形成正离子,最终沉积到基体表面与活性气体分子或原子发生化学反应,形成化合物。一般通入的活性气体为氮气,因此可在基体表面形成氮化物涂层。总压强、气体成分和流量、基体偏压、基体温度是溅射镀膜的主要参数,它们与沉积原子或离子的能量密切相关,从而影响到沉积速率和涂层组织。
反应磁控溅射技术与离子镀技术相比,沉积效率较低,原子的离化率也比较低,制备的涂层组织中存在的应力也较大,因此涂层与基体的结合强度往往不如离子镀制备的涂层。但反应磁控溅射技术在镀膜过程中,不存在“熔滴”现象,获得的涂层表面平整,表面光洁度好,涂层内部组织致密。反应磁控溅射技术近几年发展迅速,它是物理气相沉积技术中广泛使用的一种涂层或薄膜制备方法,具有很好的发展前景。
发明内容
本发明所要解决的技术问题是提供一种工模具表面复合氮化物涂层制备工艺,该工艺能够提高工模具的综合性能。
本发明解决其技术问题所采用的技术方案是:工模具表面复合氮化物涂层制备工艺,镀膜时,采用了真空离子蒸发镀与磁控溅射离子镀相结合的二元蒸发源技术;在N2与Ar的混合气氛下,通过电子束蒸发源蒸发Ti元素,形成传统的TiN薄膜,在沉积形成TiN膜的同时,通过磁控溅射源植入Me元素,在工模具表面镀制(Ti,Me)N层;所述Me为Ti、Al、Cr、Si中的至少一种。
本领域技术人员理解的是,TiN是一种非常理想的薄膜体系,有着广泛的制备基础,如CAE、MS、HCD等方法皆可满足工业化生产要求。TiN具有优异的物理、化学性能,是低速切削加工刀具的理想涂层材料。但传统的TiN硬度相对较低、耐磨性欠缺、热稳定性差,限制了其更广泛的应用。从现在的发展理念解析,过渡族金属的二元氮化物、碳化物往往可以彼此互溶,通过向TiN膜中添加某些元素,可形成所谓复合型氮化合物,进而可以从根本上改变TiN薄膜的性能,改善其抗磨损性和热稳定性。以TiN为基,多元合金化可改变控制薄膜的物相结构,获得所谓的(TiX,Mel-X)N膜系,Me表示金属,X表示百分含量。本发明对Ti和Me含量无具体要求,要求保护工艺,所以本发明将其表示为(Ti,Me)N,这也是本领域常规表示方式。
本发明所指的工模具主要是指高速钢工模具或硬质合金刀具。
其中,上述工艺包括如下步骤:
a、镀膜前准备工序;
b、镀膜;
(1)镀制Ti层;
(2)镀制TiN层;
(3)镀制(Ti,Me)N层。
进一步的,上述工艺步骤(3)镀制(Ti,Me)N层时,开启蒸发源和溅射靶源,控制灯丝电流170~230A,氩气流量23~35Sccm,磁场电流23~35A,氮气流量80~120Sccm,弧电流200A,溅射电流1~2A,偏压100~150V。
进一步的,上述工艺步骤(2)镀制TiN层时,开启蒸发源,控制灯丝电流170~230A,氩气流量23~35Sccm,磁场电流23~35A,氮气流量80~120Sccm,弧电流200A,偏压调至180V。
进一步的,上述工艺步骤(1)镀制Ti层时,开启蒸发源,控制灯丝电流170~230A,氩气流量23~35Sccm,磁场电流23~35A,偏压调至电压直流0~200V、脉冲300~500V,弧电流200A。
进一步的,上述工艺步骤a镀膜前准备工序包括如下步骤:
(1)工模具处理及设备检查;
(2)抽真空及预加热;
(3)电子束加热;
(4)气体等离子刻蚀。
进一步的,上述工艺步骤(4)气体等离子刻蚀时,控制灯丝电流170~230A,弧电流100~120A,磁场电流6~8A,真空室压强2×10-1Pa,Ar气流量50~65Sccm;启开偏压电源,逐渐加电压至直流200V、脉冲300~500V。
再进一步的,上述工艺气体等离子刻蚀时间50~90min。
上述工艺步骤b镀膜后将工模具冷却60~120min。
本发明的有益效果是:
本发明工艺,可有效控制膜的结晶、生长模式,改变传统的(111)面的单一取向,呈现出(111)、(200)、(220)三重取向晶体微观结构,使得涂层产品的耐磨性得到提高;本发明制备的(Ti,Me)N膜具有更为均匀致密的结晶结构,光整的表面形貌,更高的显微硬度;(Ti,Me)N具有更为良好的膜基结合力,有利于厚膜的制备;相对于TiN,(Ti,Me)N寿命可提高50%~100%,稳定性良好,可用于高速钢、硬质合金刀具、模具的涂覆。
附图说明
图1是用本发明方法工模具表面制备的涂层(b为(Ti,AlTiCr)N层)与AIP法得到的工模具表面TiN涂层(a)的1600倍表面形貌对比图;
从图1可知,常规的TiN表面存在明显的堆积现象,而复合型(Ti,AlTiCr)N层几乎观察不到此类堆积的存在。从薄膜沉积、生长角度分析,造成这种现象的主要原因在于,过快的沉积速率,抑制了粒子的有效迁移,促使薄膜沿某一特定晶面的快速生长。在后续的成膜过程中,则易导致柱状晶体的断裂与膜脱落。
图2是用本发明方法在工模具表面制备的涂层(b为(Ti,AlTiCr)N涂层)与AIP法得到的工模具表面TiN涂层(a)的7000倍断口形貌对比图;
从图2可知,常规的TiN膜为典型的柱状晶体结构,随着沉积过程的延续,柱状尺寸逐步增大,并存在断裂分层现象;复合型(Ti,AlTiCr)N膜呈短细柱状,致密,随着沉积过程的延续,结晶体尺寸未呈现明显变化,一致性较好,也未发现断裂分层现象,薄膜沉积厚度易于控制,在相同条件下,复合型(Ti,AlTiCr)N的膜厚约增加30%。
图3是用本发明方法在工模具表面制备的涂层(b为(Ti,AlTiCr)N涂层)与AIP法得到的工模具表面TiN涂层(a)的200倍压痕形貌对比图;
从图3可知,常规的TiN压痕显示出更为明显的裂纹,薄膜脆性更大;复合型(Ti,AlTiCr)N层则表现出好的韧性。
图4是用本发明方法在工模具表面制备的涂层(b为(Ti,AlTiCr)N涂层)与AIP法得到的工模具表面TiN涂层(a)的1600倍努氏硬度压痕形貌对比图;
从图4可知,常规的TiN表面硬度值约为2335HK,复合型(Ti,AlTiCr)N其表面硬度值2505HK,提升幅度约为7.2%。
图5是用本发明方法在工模具表面制备的涂层(b为(Ti,AlTiCr)N涂层)与AIP法得到的工模具表面TiN涂层(a)的XRD衍射对比图谱;
从图5可知,常规的TiN在(111)面呈现强烈的择优取向,I(111)衍射峰值达到481;复合型(Ti,AlTiCr)N(111)面的择优取向大幅调低,I(111)衍射峰值降低至254,约50%。
具体实施方式
下面通过具体实施方式及实施例对本发明做进一步的说明。
本发明方法具体可以采用以下方式实施:
工模具表面复合氮化物涂层制备工艺,镀膜时,采用了真空离子蒸发镀与磁控溅射离子镀相结合的二元蒸发源技术;在N2与Ar的混合气氛下,通过电子束蒸发源蒸发Ti元素,形成传统的TiN薄膜,在沉积形成TiN膜的同时,通过磁控溅射源植入Me元素,在工模具表面镀制(Ti,Me)N层;所述Me为Ti、Al、Cr、Si中的至少一种;具体包括如下步骤:
(1)工模具前处理及设备检查;
(2)抽真空及预加热;
(3)电子束加热;真空室压强调至2.5×10-1Pa,Ar气流量90~110Sccm;开灯丝电源,缓慢升电流至170~230A;开磁场电流调至12~20A;开弧电源,引起电弧,电流逐渐加至于180A;加热时间40~100min;
(4)气体等离子刻蚀;控制灯丝电流170~230A,弧电流100~120A,磁场电流6~8A,真空室压强2×10-1Pa,Ar气流量50~65Sccm;启开偏压电源,逐渐加电压至直流200V、脉冲300~500V;刻蚀时间50~90min;
(5)镀膜;
①镀制Ti层;开启蒸发源,控制灯丝电流170~230A,氩气流量23~35Sccm,磁场电流23~35A,偏压调至电压直流0~200V、脉冲300~500V,弧电流200A;
②镀制TiN层;开启蒸发源,控制灯丝电流170~230A,氩气流量23~35Sccm,磁场电流23~35A,氮气流量80~120Sccm,弧电流200A,偏压调至180V,涂层5~10min;
③镀制(Ti,Me)N层;开启溅射靶源,控制灯丝电流170~230A,氩气流量23~35Sccm,磁场电流23~35A,氮气流量80~120Sccm,弧电流200A,溅射电流1~2A,偏压100~150V,镀膜时间20~50min;
(6)工模具冷却60~120min。
本领域技术人眼可以理解的是,高工模具前处理主要是进行清洗和干燥工作。设备检查工序主要检查是否需要更换电弧、靶材,更换视窗玻璃,清洁炉体,选择夹具装入工件等。
抽真空及预加热工序,可以将真空室真空度抽至小于1×10-1Pa时,送人40~60Sccm的Ar气,并开启辅助加热,工件转动,对工模具进行预加热。
电子束加热原理在于,使工件成为导体,电子束流通过工件形成自发热过程。其特点在于内部加热方式,更有利于工件内部残余气体的析出,从而提高涂层质量。
气体离子刻蚀清洗、辅助沉积方法,利用气体等离子体对待镀工件表面进行轰击,实现待镀工件表面的气体离子刻蚀清洗。气体离子刻蚀清洗过程对工件表面的损伤程度较低,同时实现工件表面的彻底清洁和活化。
下面通过实施例对本发明具体实施方式作进一步的说明,但并不因此将本发明的保护范围限制在实施例之中。
实施例本发明方法制备高速钢或硬质合金刀具表面涂层
(1)前处理:
镀膜前,高速钢或硬质合金刀具(无需特殊抛光处理)经常规弱碱性清洗剂和无水酒精超声波清洗后干燥,置于镀膜室内;
(2)设备检查:
①真空室充气,打开炉门;
②根据需要更换溅射靶材料,更换视窗玻璃;
③蒸镀源回位,并添加新的蒸发材料20~30g(Ti);
④用高压气枪清洁炉体各个部位,压强0.6MPa;
⑤选择适当的夹具,装入工件(刀具),确认夹具运动可靠无误;
⑥确认电子枪、蒸发源、溅射源、辅助阳极、工件夹具的绝缘状况,其阻值应大于100KΩ;
⑦升底盘,关闭蒸镀室、关闭放气阀。
(3)抽真空及预加热
①启动冷水机组;
②维持泵、直连泵、打开预抽阀;
③启动复合真空计,打开热偶规1,测试前级管道真空,真空小于5Pa
④启动分子泵;
⑤当分子泵进入正常工作状态,并真空室真空度满足小于5Pa后,关闭预抽阀、开启前级阀、高真空阀;
⑥当真空值小于1×10-1Pa时,送人40~60Sccm的Ar气,并开启辅助加热;
⑦开启工件转动,调频20Hz;
⑧40min后准备进入复合加热阶段。
(4)电子束加热
①真空室压强调至2.5×10-1Pa,Ar气流量90~110Sccm;
②开灯丝电源,缓慢升电流至170~230A;
③开磁场电流调至12~20A;
④开弧电源,开关转至加热挡;
⑤引起电弧,电流逐渐加至于180A;
⑥复合加热时段40~100min。
(5)气体等离子刻蚀
①灯丝电流维持在170~230A;
②弧电流减至100~120A;
③磁场电流减至6~8A;
④真空室压强调至2×10-1Pa,Ar气流量50~65Sccm;
⑤启开偏压电源,逐渐加电压至直流0~200V、脉冲300~500V;
⑥离子刻蚀时段约为50~90min。
(6)镀层
①灯丝电流维持在170~230A;
②氩气调至23~35Sccm,
③磁场电流调至25~35A;
④偏压调至电压直流0~200V、脉冲300~500V;
⑤加弧电流至200A(5min);
⑥做Ti金属过渡层5~10min;
⑦送氮气80~120Sccm;
⑧偏压调至180V(10min);
⑨做TiN层5~10min;
⑩开启溅射靶源,1.0~2.0A;
⑾偏压调至100~150V;
⑿镀膜时段20~50min;
⒀关闭溅射靶源;
⒁关闭弧源、灯丝电源、磁场电源、加热源、N2源、关闭分子泵启动电源;
⒂送氩气至30Pa;
(7)冷却:工艺时间60~120min。
采用上述方法制备的工模具表面涂层相关检测数据及对比情况请见说明书附图及附图说明。
另外,将实施例方法得到的高速钢丝锥和硬质合金成型车刀与常规方法得到的高速钢丝锥和硬质合金成型车刀做切削试验,试验结果如表1和表2所示:
表1高速钢丝锥切削试验对比
表2硬质合金成型车刀切削试验对比

Claims (7)

1.工模具表面复合氮化物涂层制备工艺,其特征在于:镀膜时,采用了真空离子蒸发镀与磁控溅射离子镀相结合的二元蒸发源技术;在N2与Ar的混合气氛下,通过电子束蒸发源蒸发Ti元素,形成传统的TiN薄膜,在沉积形成TiN膜的同时,通过磁控溅射源植入Me元素,在工模具表面镀制(Ti,Me)N层;所述Me为Ti、Al、Cr、Si中的至少一种;
包括如下步骤:
a、镀膜前准备工序;
b、镀膜;
(1)镀制Ti层;
(2)镀制TiN层;
(3)镀制(Ti,Me)N层;开启蒸发源和溅射靶源,控制灯丝电流170~230A,氩气流量23~35Sccm,磁场电流23~35A,氮气流量80~120Sccm,弧电流200A,溅射电流1~2A,偏压100~150V。
2.根据权利要求1所述的工模具表面复合氮化物涂层制备工艺,其特征在于:步骤(2)镀制TiN层时,开启蒸发源,控制灯丝电流170~230A,氩气流量23~35Sccm,磁场电流23~35A,氮气流量80~120Sccm,弧电流200A,偏压调至180V。
3.根据权利要求1所述的工模具表面复合氮化物涂层制备工艺,其特征在于:步骤(1)镀制Ti层时,开启蒸发源,控制灯丝电流170~230A,氩气流量23~35Sccm,磁场电流23~35A,偏压调至电压直流0~200V、脉冲300~500V,弧电流200A。
4.根据权利要求1所述的工模具表面复合氮化物涂层制备工艺,其特征在于步骤a镀膜前准备工序包括如下步骤:
(1)工模具前处理及设备检查;
(2)抽真空及预加热;
(3)电子束加热;
(4)气体等离子刻蚀。
5.根据权利要求4所述的工模具表面复合氮化物涂层制备工艺,其特征在于步骤(4)气体等离子刻蚀时,控制灯丝电流170~230A,弧电流100~120A,磁场电流6~8A,真空室压强2×10-1Pa,Ar气流量50~65Sccm;启开偏压电源,逐渐加电压至直流200V、脉冲300~500V。
6.根据权利要求5所述的工模具表面复合氮化物涂层制备工艺,其特征在于:气体等离子刻蚀时间50~90min。
7.根据权利要求1所述的工模具表面复合氮化物涂层制备工艺,其特征在于:步骤b镀膜后将工模具冷却60~120min。
CN201710305268.XA 2017-05-03 2017-05-03 工模具表面复合氮化物涂层制备工艺 Expired - Fee Related CN106967977B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710305268.XA CN106967977B (zh) 2017-05-03 2017-05-03 工模具表面复合氮化物涂层制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710305268.XA CN106967977B (zh) 2017-05-03 2017-05-03 工模具表面复合氮化物涂层制备工艺

Publications (2)

Publication Number Publication Date
CN106967977A CN106967977A (zh) 2017-07-21
CN106967977B true CN106967977B (zh) 2019-03-15

Family

ID=59330901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710305268.XA Expired - Fee Related CN106967977B (zh) 2017-05-03 2017-05-03 工模具表面复合氮化物涂层制备工艺

Country Status (1)

Country Link
CN (1) CN106967977B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150269B (zh) * 2021-12-07 2024-03-15 四川真锐晶甲科技有限公司 切削刀具涂层及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101570849A (zh) * 2009-05-08 2009-11-04 四川大学 用二元蒸发源制备工模具硬质涂层的方法
CN103789726A (zh) * 2014-02-17 2014-05-14 四川大学 与工具表面结合牢固的AlTiCrN/MoN纳米多层涂层及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101570849A (zh) * 2009-05-08 2009-11-04 四川大学 用二元蒸发源制备工模具硬质涂层的方法
CN103789726A (zh) * 2014-02-17 2014-05-14 四川大学 与工具表面结合牢固的AlTiCrN/MoN纳米多层涂层及其制备方法

Also Published As

Publication number Publication date
CN106967977A (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
CN107130213B (zh) 多元合金复合薄膜制备设备和制备方法
CN107142463B (zh) 一种等离子体化学气相沉积与磁控溅射或离子镀复合的镀覆方法
CN107937873B (zh) 碳掺杂的过渡金属硼化物涂层、碳-过渡金属硼化物复合涂层、制备方法及应用和切削工具
CN108866480B (zh) 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用
CN107557736B (zh) 一种AlCrSiVN纳米复合涂层及其制备方法
CN107338409B (zh) 可调控磁场电弧离子镀制备氮基硬质涂层的工艺方法
CN110408889B (zh) 一种耐磨减摩碳掺杂TiAlN纳米多层硬质薄膜及制备方法
KR20150053959A (ko) 기판 상에 금속-보로카바이드 층을 제조하는 방법
US20160186306A1 (en) TiB2 LAYERS AND MANUFACTURE THEREOF
CN114481071B (zh) 一种镀膜装置及dlc镀膜工艺
CN114351110B (zh) 一种强化处理的类金刚石薄膜及其制备方法
CN101294284A (zh) 一种耐冲蚀抗疲劳等离子表面复合强化方法
CN107858684A (zh) 金属‑类金刚石复合涂层及其制备方法与用途以及涂层工具
CN108930021B (zh) 一种纳米多层AlTiN/AlTiVCuN涂层及其制备方法和应用
CN106967977B (zh) 工模具表面复合氮化物涂层制备工艺
CN106868450A (zh) 一种利用调制高功率脉冲磁控溅射制备AlTiN硬质涂层的方法
CN101570849B (zh) 用二元蒸发源制备工模具硬质涂层的方法
WO2023066510A1 (en) Method for forming hard and ultra-smooth a-c by sputtering
CN107034438B (zh) 高速钢丝锥表面涂层制备方法
TW201237196A (en) Housing and method for making the same
CN113151797B (zh) 一种基于硬质合金表面镀ta-C膜的离子清洗工艺
CN114411098A (zh) 一种TiNb涂层的镀膜方法
CN110670019B (zh) 一种抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层及其制备方法
KR20120129445A (ko) 내산화성 내마모성의 복합 다층 코팅층 제조.
CN110616405B (zh) 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190315