CN110628936B - 水稻成株期耐盐基因LOC_Os03g28300的分子标记方法及应用 - Google Patents

水稻成株期耐盐基因LOC_Os03g28300的分子标记方法及应用 Download PDF

Info

Publication number
CN110628936B
CN110628936B CN201911017004.XA CN201911017004A CN110628936B CN 110628936 B CN110628936 B CN 110628936B CN 201911017004 A CN201911017004 A CN 201911017004A CN 110628936 B CN110628936 B CN 110628936B
Authority
CN
China
Prior art keywords
salt
rice
tolerant
os03g28300
adult
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911017004.XA
Other languages
English (en)
Other versions
CN110628936A (zh
Inventor
徐建龙
庞云龙
赵秀琴
王文生
张帆
郑天清
刘晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Agricultural Genomics Institute at Shenzhen of CAAS
Original Assignee
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Agricultural Genomics Institute at Shenzhen of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen of CAAS filed Critical Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority to CN201911017004.XA priority Critical patent/CN110628936B/zh
Publication of CN110628936A publication Critical patent/CN110628936A/zh
Application granted granted Critical
Publication of CN110628936B publication Critical patent/CN110628936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Abstract

本发明公开了水稻成株期耐盐基因LOC_Os03g28300的分子标记方法,用一对特异的PCR引物RM15177,PCR扩增待检测水稻育种材料基因组DNA,如果引物对RM15177能够扩增出150bp大小的片段,则该育种材料带有耐盐基因LOC_Os03g28300,RM15177正向引物序列如SEQ ID No.1所示,反向引物序列如SEQ ID No.2所示。该分子标记方法可用于水稻耐盐分子标记辅助选择育种。

Description

水稻成株期耐盐基因LOC_Os03g28300的分子标记方法及应用
技术领域
本发明涉及一种水稻成株期耐盐基因LOC_Os03g28300及其分子标记方法,属于水稻抗逆育种和分子遗传学领域。
背景技术
盐胁迫是影响全球作物产量的主要非生物逆境因子之一。我国盐碱耕地面积约有1亿亩,盐害已引起作物大量减产。水稻是世界上最重要的粮食作物之一,对盐害敏感,当土壤中可溶性盐浓度达到0.3%时即表现出受害症状,最终导致显著减产。培育耐盐水稻品种对解决粮食安全问题有重要的意义。
分子遗传学研究表明,水稻耐盐表现为受多基因控制的数量性状。迄今为止,已有多个影响水稻耐盐性的主效QTL被鉴定出来,其中Saltol等基因已被精细定位,SKC1已被克隆。水稻不同基因型之间的耐盐性差异巨大,拓宽遗传变异进而鉴定和挖掘有利基因是开展突破性育种的先决条件。种质资源是人们在长期生产实践中培育和保留的自然群体材料,它们携带有多种有利变异的基因,是进行遗传改良的宝库。实践证明,通过对核心种质的鉴定和遗传改良是获得农作物主栽品种有利变异的有效途径。随着生物学技术的发展,利用二代测序技术得到的高密度SNPs标记进行目标性状的全基因组关联分析可有效促进目标性状候选基因的高效挖掘。目前,水稻芽期,幼苗期及生殖期等不同时期耐盐相关QTL都有报道并精细定位了部分候选基因。但迄今尚未有成株期耐盐性相关候选基因精细定位的报道。
发明内容
本发明所要解决的技术问题为:如何提供一个影响水稻成株期耐盐性的新型耐盐基因的分子标记方法,可以有效的进行水稻苗期耐盐性的辅助选择,应用于水稻抗逆育种。
本发明的技术方案为:
水稻成株期耐盐基因LOC_Os03g28300,是在水稻基因组第3染色体存在一个与水稻成株期耐盐相关的基因位点,该基因能显著提高盐逆境下水稻产量。
水稻成株期耐盐基因LOC_Os03g28300的分子标记方法,用一对特异的PCR引物RM15177,PCR扩增待检测水稻育种材料基因组DNA,如果引物对RM15177能够扩增出150bp大小的片段,则该育种材料带有耐盐基因LOC_Os03g28300,RM15177正向引物序列如SEQ IDNo.1所示(TCCTGTGTTGGACGGAGTATGC),反向引物序列如SEQ ID No.2所示(GCCTCAGAGGTTAGAAGACAGACAGC)。
检测水稻是否含有水稻成株期耐盐基因LOC_Os03g28300的方法,用一对特异的PCR引物RM15177,PCR扩增待检测水稻育种材料基因组DNA,如果引物对RM15177能够扩增出150bp大小的片段,则该育种材料带有耐盐基因LOC_Os03g28300,RM15177正向引物序列如SEQ ID No.1所示(TCCTGTGTTGGACGGAGTATGC),反向引物序列如SEQ ID No.2所示(GCCTCAGAGGTTAGAAGACAGACAGC)。
本发明的水稻成株期耐盐基因LOC_Os03g28300的分子标记方法或检测水稻是否含有水稻成株期耐盐基因LOC_Os03g28300的方法在水稻耐盐分子标记辅助选择育种中的应用。
本发明利用来自包括中国,印度,美国,菲律宾等在内的77个国家的具有广泛差异的708份水稻核心种质资源,系统分析了其在成株期盐胁迫条件下的耐盐性表现,结合高密度SNP标记及单倍体分析,筛选到一个影响盐胁迫下水稻苗期生长及产量的耐盐基因LOC_Os03g28300。同时,通过根据与目标基因紧密连锁的SNP标记设计PCR引物RM15177,为进一步的分子标记辅助选择育种提供有效的分子标记。耐盐新基因LOC_Os03g28300及其紧密连锁的分子标记RM15177有望应用于水稻耐盐标记辅助选择育种。
与现有技术相比,本发明具有以下有益效果:
1、LOC_Os03g28300是利用具有广泛差异性的来自全球不同国家的700多个种质资源,通过耐盐表型及SNP关联分析,检测到的一个新基因。该基因与成株期盐胁迫条件下水稻产量显著相关。
2、与耐盐基因紧密关联分子标记的确定为分子标记辅助选择耐盐水稻提供了有效信息,能够获得在盐胁迫条件下保持高产的水稻材料。本发明的分子标记可用于筛选水稻成株期盐逆境下育种群体的有利基因型,有效鉴别带有该基因的耐盐个体,加快育种进程。
附图说明
图1感盐品种IR29(P1)与耐盐品种DA DAO TOU(P2)杂交F2群体成株期个体耐盐性表现与RM15177标记基因型图谱。感盐品种IR29与耐盐品种DA DAO TOU杂交的F2群体,经SSR标记RM15177的PCR扩增产物在5%聚丙烯酰胺凝胶电泳的带型图谱及其对应的表型(1-30为随机选取的F2代单株;M为DNA Ladder;P1为170bp,P2为150bp)。
具体实施方式
下面结合具体实施例对本发明作进一步说明,其中所用的方法如无特别说明均为常规方法。
一、耐盐新基因的挖掘
1、供试材料
实验材料为分别来自包括中国,印度,美国,菲律宾等在内的77个国家的708份水稻核心种质资源(包括,400份籼稻,247份粳稻,39份籼粳稻中间型,16份Aus,和6份Basmati)。
2、实验材料的耐盐性表型鉴定
本实验对708份水稻材料进行了连续两年的耐盐表型鉴定,确保表型数据的可靠性。具体操作方法:708份水稻材料在稻田直播,生长到2叶期后,用淡水与海水按一定比例调配好的0.5%浓度的盐水灌溉,该盐水浓度一直保持到水稻成熟。播种1个月后统计出苗数,记载抽穗期,成熟后考查小区产量和小区有效穗数,随机从每小区中选择10穗,考查穗总粒数,穗实粒数、结实率和千粒重等产量相关指标性状。
3、基因型数据处理及全基因组关联分析(GWAS)
利用3K水稻重测序项目构建的Rice SNP-Seek Database(http://snp-seek.irri.org/)中的32M SNP原始基因型数据,按照以下原则处理原始数据:1)同一SNP位点有2个以上等位基因的,只保留频率最高的两个等位基因,其余均按缺失处理;2)当MAF(最小等位基因频率)≤0.05或者缺失率>20%时,SNP数据删除按缺失处理,共获得3,455,952个高质量SNP标记;3)随机选取部分SNP数据利用R软件包GAPIT程序进行Kinship和主成分分析,剖析群体结构;4)根据Rice Genome Annotation Project(http://rice.plantbiology.msu.edu/)产生的IRGSP-1.0版本的日本晴基因组基因功能注释,提取位于44,332个注释基因上的1,101,404个SNP基因型,与盐胁迫条件下的小区产量及考种的产量相关性状如穗总粒数、穗实粒数、结实率、千粒重等表型,分籼、粳亚群体和整个群体利用软件包中GAPIT程序进行候选基因的全基因组关联分析(GWAS),关联统计学分析达到P<1.0×10-4水平的SNP定义为与目标性状显著关联的SNP,获得与各个性状显著关联的SNP标记如表1。
表1 与考查性状关联的SNP汇总
Figure GDA0003568396670000031
Figure GDA0003568396670000041
SN:出苗数,HD:抽穗期,GY:小区产量,PN:小区穗数,TSN:穗总穗数,FGN:穗实粒数,SSR:结实率,TGW:千粒重
4、耐盐候选基因鉴定
从funRiceGenes数据库(https://funricegenes.github.io/)和QTARO数据库(http://qtaro.abr.affrc.go.jp)中筛选到230个已知盐应答响应相关基因。将检测到与耐盐相关性状关联的903个基因与230个耐胁响应基因进行对比,选择具有相同功能注释和代谢路径的43个关联基因进一步进行单倍型分析。如果目标基因的主要单倍型对应的表型存在显著差异(P<0.001),我们定义该基因为耐盐候选基因。研究共鉴定出影响成株期耐盐相关性状的15个候选基因(表2),其中LOC_Os03g28300显著影响盐胁迫条件下水稻结实率进而影响产量,可以解释粳稻亚群中水稻结实率变异的10.6%和产量变异的11.5%。进一步分析发现,LOC_Os03g28300编码含有蛋白质的蛋白激酶结构域。在粳稻类群中鉴定出该基因存在7个SNP变异,其中一个位于外显子上的SNP S3_16283872,由C变T将原来的脯氨酸变成丝氨酸,导致耐盐性增强,而其他SNP均位于UTR区和内含子区。通过鉴定与LOC_Os03g28300紧密连锁的PCR引物RM15177(其中正向引物序列为:TCCTGTGTTGGACGGAGTATGC,反向引物序列为:GCCTCAGAGGTTAGAAGACAGACAGC),可以进一步为分子标记辅助选择育种提供有效的分子标记。耐盐新基因LOC_Os03g2830及其紧密连锁的分子标记RM15177有望应用于水稻耐盐标记辅助选择育种。
表2 鉴定出与成株期耐盐相关性状关联的15个耐盐候选基因
Figure GDA0003568396670000042
Figure GDA0003568396670000051
Figure GDA0003568396670000061
a从MSU Rice Genome Annotation Project数据库获取的基因;b基因内关联分析峰值SNP对应的统计值;c基因单倍型方差分析;d性状名称同表1;e 2016(Y16)and 2017(Y17).
二、耐盐F2分离群体耐盐基因LOC_Os03g2830的标记验证分析
1、供试材料盐胁迫处理
利用感盐品种IR29与带有耐盐候选基因LOC_Os03g2830的品种DADAO TOU配组构建F2分离群体,该群体计300株在正常水田育秧,单本移栽于0.5%盐胁环境,成熟后考查产量及结实率等产量相关性状。
2、DNA提取、PCR扩增及凝胶电泳
参考Temnykh等(2000年)的DNA提取方法,对各单株分别提取基因组DNA。以各个单株的基因组DNA为模板对RM15177标记进行聚合酶链式(PCR)反应。PCR反应的产物通过聚丙烯酰胺凝胶电泳进行分离,溴化乙啶染色后,在凝胶成像系统下成像。参考双亲的扩增条带,对后代单株的带型进行判别记录。
3、标记辅助选择效果分析和t测验分析
根据后代单株的RM15177标记扩增条带所表示的基因型,将F2群体耐盐和感盐个体与基因型对应情况如图1所示,带有感盐亲本IR29(P1)纯合基因型个体的单株的结实率和产量都较低,带有耐盐亲本DA DAO TOU(P2)纯合基因型个体的结实率和单株产量一般较高,而杂合基因型个体的单株的结实率和产量居中偏向耐盐亲本,表明RM15177对耐盐基因LOC_Os03g2830具有比较理想的辅助选择效果。将F2群体中的个体分成两组,其中一组是RM15177位点基因型为IR29纯合基因型的个体(称为感盐组),共计71株;另一组是RM15177位点基因型为DA DAO TOU纯合基因型的个体(称为耐盐组),共计68株。将两组个体考察所得的平均结实率和单株产量进行t测验(表3),结果表明,两组个体间的结实率和单株产量均达到极显著差异水平,表明RM15177标记附近确实存在一个影响盐胁迫下产量的主效基因LOC_Os03g2830,而且与RM15177标记紧密连锁。
表3 感盐亲本IR29与耐盐亲本DADAO TOU杂交F2群体在RM15177标记位点耐盐和感盐亲本纯合基因型两组个体的单株产量和结实率表现
Figure GDA0003568396670000071
**表示差异达到0.01水平显著。
序列表
<110> 中国农业科学院作物科学研究所
<120> 水稻全生育期耐盐基因LOC_Os03g28300的分子标记方法及应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 22
<212> DNA
<213> Oryza sativa
<400> 1
tcctgtgttg gacggagtat gc 22
<210> 2
<211> 26
<212> DNA
<213> Oryza sativa
<400> 2
gcctcagagg ttagaagaca gacagc 26

Claims (2)

1.检测水稻是否含有水稻成株期耐盐基因LOC_Os03g28300的方法,用一对特异的PCR引物对,PCR扩增待检测水稻基因组DNA,如果引物对能够扩增出150bp大小的片段,则该水稻带有耐盐基因LOC_Os03g28300,所述引物对正向引物序列如SEQ ID No.1所示,反向引物序列如SEQ ID No.2所示;所述待检测水稻为感盐品种IR29与耐盐品种DA DAO TOU杂交F2群体。
2.权利要求1所述的检测水稻是否含有水稻成株期耐盐基因LOC_Os03g28300的方法在水稻耐盐分子标记辅助选择育种中的应用。
CN201911017004.XA 2019-10-24 2019-10-24 水稻成株期耐盐基因LOC_Os03g28300的分子标记方法及应用 Active CN110628936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911017004.XA CN110628936B (zh) 2019-10-24 2019-10-24 水稻成株期耐盐基因LOC_Os03g28300的分子标记方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911017004.XA CN110628936B (zh) 2019-10-24 2019-10-24 水稻成株期耐盐基因LOC_Os03g28300的分子标记方法及应用

Publications (2)

Publication Number Publication Date
CN110628936A CN110628936A (zh) 2019-12-31
CN110628936B true CN110628936B (zh) 2022-06-21

Family

ID=68977810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911017004.XA Active CN110628936B (zh) 2019-10-24 2019-10-24 水稻成株期耐盐基因LOC_Os03g28300的分子标记方法及应用

Country Status (1)

Country Link
CN (1) CN110628936B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106244716A (zh) * 2016-09-28 2016-12-21 南京农业大学 水稻强耐盐高活力基因qSE3的分子标记及其应用
CN109371160A (zh) * 2018-12-14 2019-02-22 中国农业科学院作物科学研究所 与水稻耐盐性和耐低氧性相关的snp分子标记及其应用
CN110257546A (zh) * 2019-07-08 2019-09-20 中国农业科学院深圳农业基因组研究所 一个水稻苗期耐盐新基因簇qST12Pokkali及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005236074A1 (en) * 2004-04-23 2005-11-03 Ceres, Inc. Nucleotide sequences and polypeptides encoded thereby useful for modifying nitrogen use efficiency characteristics in plants
CN102732528A (zh) * 2011-04-15 2012-10-17 华中农业大学 Oxhs4基因在控制水稻抗旱性中的应用
CN104762298B (zh) * 2015-04-07 2018-11-09 长江大学 一种水稻苗期耐盐基因qST11及其分子标记方法
CN106498058B (zh) * 2016-10-27 2019-07-02 中国农业科学院作物科学研究所 水稻耐盐基因及其紧密连锁分子标记的育种应用
CN108411028B (zh) * 2018-05-24 2020-06-09 湖北省农业科学院粮食作物研究所 水稻耐盐基因skc1基因内特异snp共显性分子标记引物及应用
CN109371162A (zh) * 2018-12-14 2019-02-22 中国农业科学院作物科学研究所 与水稻耐盐性相关的snp分子标记及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106244716A (zh) * 2016-09-28 2016-12-21 南京农业大学 水稻强耐盐高活力基因qSE3的分子标记及其应用
CN109371160A (zh) * 2018-12-14 2019-02-22 中国农业科学院作物科学研究所 与水稻耐盐性和耐低氧性相关的snp分子标记及其应用
CN110257546A (zh) * 2019-07-08 2019-09-20 中国农业科学院深圳农业基因组研究所 一个水稻苗期耐盐新基因簇qST12Pokkali及应用

Also Published As

Publication number Publication date
CN110628936A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
Das et al. Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking
Sandhu et al. Positive interactions of major-effect QTLs with genetic background that enhances rice yield under drought
Dixit et al. Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities
Vikram et al. qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds
Singh et al. Molecular breeding for the development of multiple disease resistance in Basmati rice
Jena et al. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18 (t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.)
Tar’an et al. Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map
Pradhan et al. Development of flash-flood tolerant and durable bacterial blight resistant versions of mega rice variety ‘Swarna’through marker-assisted backcross breeding
Thomson et al. Marker assisted breeding
Xiao et al. Improvement of rice blast resistance by developing monogenic lines, two-gene pyramids and three-gene pyramid through MAS
Li et al. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated Peanut (Arachis hypogaea L.)
Swamy et al. Marker assisted improvement of low soil phosphorus tolerance in the bacterial blight resistant, fine-grain type rice variety, Improved Samba Mahsuri
Ren et al. Molecular detection of QTL for agronomic and quality traits in a doubled haploid barley population
Hu et al. Resequencing of 388 cassava accessions identifies valuable loci and selection for variation in heterozygosity
CN110628935B (zh) 水稻成株期耐盐基因LOC_Os02g49700的分子标记方法及应用
Tian et al. Improving blast resistance of the rice restorer line, Hui 316, by introducing Pi9 or Pi2 with marker-assisted selection
CN117144055B (zh) 调控番木瓜果实长度相关的单倍型分子标记的应用
CN110257546B (zh) 一个水稻苗期耐盐新基因簇qST12Pokkali及应用
Zhang et al. Fine mapping of a QTL and identification of candidate genes associated with cold tolerance during germination in peanut (Arachis hypogaea L.) on chromosome B09 using whole genome re-sequencing
Verma et al. Identification and characterization of genes for drought tolerance in upland rice cultivar ‘Banglami’of North East India
CN110628936B (zh) 水稻成株期耐盐基因LOC_Os03g28300的分子标记方法及应用
Nakano et al. Polymorphism of HvDRO1 and HvqSOR1 associated with root growth angle in barley accessions.
CN107699630B (zh) 与小麦抗病基因Pm21连锁的分子标记及其在育种上的应用
CN108165649B (zh) 水稻抗褐飞虱主效基因qBph4(t)的分子标记及其应用
JP5906080B2 (ja) トビイロウンカ抵抗性のイネ品種

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220315

Address after: 100081 No. 12 South Main Street, Haidian District, Beijing, Zhongguancun

Applicant after: INSTITUTE OF CROP SCIENCES, CHINESE ACADEMY OF AGRICULTURAL SCIENCES

Applicant after: AGRICULTURAL GENOMICS INSTITUTE AT SHENZHEN, CHINESE ACADEMY OF AGRICULTURAL SCIENCES

Address before: 100081 No. 12 South Main Street, Haidian District, Beijing, Zhongguancun

Applicant before: INSTITUTE OF CROP SCIENCES, CHINESE ACADEMY OF AGRICULTURAL SCIENCES

GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Xu Jianlong

Inventor after: Pang Yunlong

Inventor after: Zhao Xiuqin

Inventor after: Wang Wensheng

Inventor after: Zhang Fan

Inventor after: Zheng Tianqing

Inventor after: Liu Chen

Inventor before: Xu Jianlong

Inventor before: Pang Yunlong

Inventor before: Zhao Xiuqin

Inventor before: Wang Wensheng

Inventor before: Zhang Fan

Inventor before: Zheng Tianqing

Inventor before: Liu Chen

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20191231

Assignee: Shenzhen Zhongnong gongdao Technology Group Co.,Ltd.

Assignor: AGRICULTURAL GENOMICS INSTITUTE AT SHENZHEN, CHINESE ACADEMY OF AGRICULTURAL SCIENCES

Contract record no.: X2023980032300

Denomination of invention: LOC, a salt-tolerant gene in rice at mature stage_ Molecular marker method and application of Os03g28300

Granted publication date: 20220621

License type: Common License

Record date: 20230217