CN110590356B - 钛酸锌陶瓷前驱体浆料和3d打印制备钛酸锌陶瓷的方法 - Google Patents

钛酸锌陶瓷前驱体浆料和3d打印制备钛酸锌陶瓷的方法 Download PDF

Info

Publication number
CN110590356B
CN110590356B CN201910891110.4A CN201910891110A CN110590356B CN 110590356 B CN110590356 B CN 110590356B CN 201910891110 A CN201910891110 A CN 201910891110A CN 110590356 B CN110590356 B CN 110590356B
Authority
CN
China
Prior art keywords
zinc
source
titanate ceramic
zinc titanate
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910891110.4A
Other languages
English (en)
Other versions
CN110590356A (zh
Inventor
李勃
王荣
朱朋飞
潘瑜辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen International Graduate School of Tsinghua University
Original Assignee
Shenzhen International Graduate School of Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen International Graduate School of Tsinghua University filed Critical Shenzhen International Graduate School of Tsinghua University
Priority to CN201910891110.4A priority Critical patent/CN110590356B/zh
Publication of CN110590356A publication Critical patent/CN110590356A/zh
Application granted granted Critical
Publication of CN110590356B publication Critical patent/CN110590356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种钛酸锌陶瓷前驱体浆料和3D打印制备钛酸锌陶瓷的方法,该钛酸锌陶瓷前驱体浆料由包括含钛源溶液和含锌源溶液的原料通过溶胶凝胶法制得,所述含钛源溶液包括双(乙酰丙酮基)二异丙基钛酸酯、表面活性剂和第一挥发性溶剂,所述含锌源溶液包括锌源、氨水和第二挥发性溶剂。本发明的浆料呈现剪切变稀的特性,非常适合3D打印。通过控制浆料中的钛和锌的比例不同,能够控制该浆料打印成型和烧结之后得到的陶瓷的相不同,具有广阔的应用前景。

Description

钛酸锌陶瓷前驱体浆料和3D打印制备钛酸锌陶瓷的方法
技术领域
本发明涉及陶瓷技术领域,尤其是涉及钛酸锌陶瓷前驱体浆料和3D打印制备钛酸锌陶瓷的方法。
背景技术
随着新一代移动通信技术的发展,对新型的高性能介电材料提出了更高的要求。传统的方法一般是通过改善介质陶瓷本身的成分和组织来提高其性能。近年来的研究表明,利用超构材料的思路对介质陶瓷进行结构设计也是一种非常有效的方法。通过对介质陶瓷材料进行周期性人工结构设计,可以实现自然界所没有的超常物理性质。但是,人工设计结构必须依赖于材料的精细加工才能实现,而陶瓷材料的精细加工一直是一个难点。
精细直写3D打印是一种以浆料挤出方式成型的3D打印技术,通过对浆料的流变学性质进行合理调控,可以制备特征尺寸在数微米至数毫米范围内结构复杂的三维器件。其中,浆料成型的关键在于对浆料流变学性质的调控,浆料必须具备合适的黏度、模量和剪切变稀特性,且足够均匀,才能够使其持续顺滑地从较细的针头流出而不堵塞针头,而且需要在成型之后具备足够的强度保证结构不坍塌。ZnO-TiO2系微波介质陶瓷具有较低的烧结温度和优良的微波介电性能,在诸多领域有着广泛应用。目前有采用基于钛酸四丁酯和钛酸异丙酯所制备的溶胶凝胶制备ZnO-TiO2系微波介质陶瓷,但是该溶胶凝胶的流变学性质不适合用于精细直写3D打印成型。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种钛酸锌陶瓷前驱体浆料和3D打印制备钛酸锌陶瓷的方法,该钛酸锌陶瓷前驱体浆料非常适合用精细直写3D打印技术进行三维成型。
本发明所采取的技术方案是:
本发明的第一方面,提供一种钛酸锌陶瓷前驱体浆料,由包括含钛源溶液和含锌源溶液的原料通过溶胶凝胶法制得,所述含钛源溶液包括双(乙酰丙酮基)二异丙基钛酸酯、表面活性剂和第一挥发性溶剂,所述含锌源溶液包括锌源、氨水和第二挥发性溶剂。双(乙酰丙酮基)二异丙基钛酸酯作为钛源,该物质在水解之后形成的溶胶凝胶非常适合用精细直写3D打印技术进行三维成型。常见的溶胶凝胶法制备钛酸盐时多用钛酸四丁酯,但是钛酸四丁酯水解之后得到溶胶凝胶不适合用3D打印成型。
根据本发明的一些实施例,所述第一挥发性溶剂和所述第二挥发性溶剂各自独立地选自乙醇、乙酸、丙酮、四氢呋喃中的任一种。使用挥发性溶剂的作用是,在浆料成型过程中,溶剂快速挥发使得浆料表面迅速固化,能够保持所成型的结构不坍塌变形。
根据本发明的一些实施例,所述锌源包括氧化锌、乙酸锌、氯化锌、硝酸锌、硫酸锌中的任一种。
根据本发明的一些实施例,所述表面活性剂为聚乙烯吡咯烷酮(PVP)或聚乙烯醇(PVA)。
根据本发明的一些实施例,所述含钛源溶液中,双(乙酰丙酮基)二异丙基钛酸酯:表面活性剂:第一挥发性溶剂的质量比为1:(0.01~0.2):(0.2~5)。
根据本发明的一些实施例,所述含锌源溶液中,锌源:氨水:第二挥发性溶剂的质量比为1:(1~5):(2~20)。氨水可以用来调节水解反应的速率,另一方面也可以起到辅助溶解锌源的作用。
根据本发明的一些实施例,所述含锌源溶液包括锌源、氨水、去离子水和第二挥发性溶剂,此处氨水浓度为25~28%,锌源:氨水:去离子水:第二挥发性溶剂的质量比=1:(1~5):(0.1~5):(2~20),去离子水主要用来促进水解反应进行。
本发明的第二方面,提供上述的一种钛酸锌陶瓷前驱体浆料的制备方法,包括以下步骤:
制备含钛源溶液:取包含双(乙酰丙酮基)二异丙基钛酸酯、表面活性剂和第一挥发性溶剂的原料混合形成含钛源溶液;
制备含锌源溶液:取包含锌源、氨水和第二挥发性溶剂的原料混合形成含锌源溶液;
取所述含钛源溶液和所述含锌源溶液混合,在60~90℃搅拌形成溶胶凝胶。
本发明的第三方面,提供一种3D打印制备钛酸锌陶瓷的方法,包括采用3D打印对上述的钛酸锌陶瓷前驱体浆料进行成型为胚体的步骤。
本发明的第四方面,提供一种钛酸锌陶瓷的制备方法,包括对胚体进行煅烧处理的步骤,所述胚体由上述的钛酸锌陶瓷前驱体浆料成型制得,所述煅烧处理的过程包括以下步骤:取所述胚体,在350~500℃保温2~6h,然后在550~650℃保温2~6h,最后再升温至830~930℃保温4~12h。钛酸锌陶瓷前驱体浆料中含有大量的有机物和溶剂,在加热过程中,溶剂挥发和有机物分解释放气体可能会对所成型的结构造成影响,因此采用多次分步保温排胶的策略,使得溶剂和残余有机物分解产物能够以足够缓慢的速度从样品内部排出,保证成型效果。
根据本发明的一些实施例,以0.25~1℃/min速率升温至350-500℃保温2~6h,然后以0.25~1℃/min速率升温至550~650℃保温2~6h,最后再以1-5℃/min速率升温至830~930℃保温4~12h。采用非常缓慢的升温速率能够进一步确保胚体形成效果,在600℃左右时,浆料中的有机物分解完毕,然后升温至830~930℃保温,最后自然冷却到室温获得具有精细结构的钛酸锌陶瓷。
根据本发明的一些实施例,在胚体进行煅烧处理之前还包括对所述胚体在60~100℃进行干燥的过程,较为理想地是在真空中进行干燥。
根据本发明的一些实施例,采用3D打印对上述的钛酸锌陶瓷前驱体浆料进行成型为胚体。
根据本发明的一些实施例,选择内径为10~200μm的打印针头对所述的钛酸锌陶瓷前驱体浆料进行精细直写3D打印成型。
本发明的第五方面,提供一种钛酸锌陶瓷,根据上述的钛酸锌陶瓷的制备方法制得。
本发明实施例的有益效果是:
本发明实施例提供了一种钛酸锌陶瓷前驱体浆料,由包括含钛源溶液和含锌源溶液的原料通过溶胶凝胶法制得,使用双(乙酰丙酮基)二异丙基钛酸酯作为钛源,该物质在水解之后形成的溶胶凝胶非常适合用精细直写3D打印技术来进行成型,得到的浆料呈现剪切变稀的特性,非常适合3D打印。通过控制浆料中的钛和锌的比例不同,能够控制该浆料打印成型和烧结之后得到的陶瓷的相不同,当钛和锌的摩尔比为1:1时,830~930℃烧结后可到六方结构的纯相偏钛酸锌(ZnTiO3)陶瓷;当钛和锌的摩尔比大于1时,830~930℃烧结后可到偏钛酸锌(ZnTiO3)和金红石TiO2复相陶瓷;当钛和锌的摩尔比小于1时,830~930℃烧结后可到偏钛酸锌(ZnTiO3)和氧化锌复相陶瓷。
附图说明
图1为实施例1中制备的钛酸锌陶瓷前驱体浆料的流变学性能图;
图2为实施例2中制备的钛酸锌陶瓷的XRD图;
图3为实施例2中制备的钛酸锌陶瓷的SEM图;
图4为实施例2中制备的钛酸锌陶瓷的太赫兹THz性能测试图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例提供一种钛酸锌陶瓷前驱体浆料,按照以下步骤制备:
含钛源溶液的配制:将0.6g聚乙烯吡咯烷酮(PVP,分子量55000)加入到8mL无水乙醇中,搅拌至完全溶解,再加入12.5mL双(乙酰丙酮基)二异丙基钛酸酯(75wt.%异丙醇溶液),混合得到含钛源溶液;
含锌源溶液的配制:将1.5mL 28%氨水和1.8mL去离子水加入到8mL无水乙醇中,搅拌均匀,然后加入0.5g氧化锌粉末,搅拌至氧化锌与氨水反应至完全溶解,混合得到含锌源溶液;
浆料的制备:将含锌源溶液加入到含钛源溶液中,在80℃条件下进行水浴加热搅拌蒸发约1~2小时,直至形成凝胶。
图1为上述制备的钛酸锌陶瓷前驱体浆料的流变学性能图,其中(a)表示浆料的黏度随剪切速率的变化图,(b)表示浆料的弹性模量和黏性模量随剪切应力的变化关系图。从图1中(a)可以看到,当剪切速率增加到一定程度时,浆料的黏度随剪切速率下降,从图1中(b)可以看到,浆料的初始弹性模量大于初始黏性模量,当剪切应力增加到一定程度时,浆料的弹性模量和黏性模量随剪切应力迅速下降。该流变学数据说明浆料呈现剪切变稀的特性,该性质保证了3D打印过程中在施加一定压力时,浆料能够顺利从针头流出,而在浆料流出之后,浆料则恢复到初始高弹性模量的性质,同时再结合溶剂的挥发,能够使得成型之后具备足够的强度保证结构不坍塌变形。
实施例2
本实施例提供一种钛酸锌陶瓷,按照以下步骤制备:
取实施例1中制备的钛酸锌陶瓷前驱体浆料装入料筒中待打印;
3D打印成型:编写木堆结构G代码程序,介质棒间距设定为250μm,选择直径60μm的玻璃针头,压力设定为85psi,打印速度为5mm/s,对溶胶凝胶状钛酸锌陶瓷前驱体浆料进行精细直写3D打印成型,得到胚体;
煅烧处理:采用多步保温烧结工艺对上述胚体进行烧结,具体为:以0.5℃/min速率升温至450℃保温4小时,再以0.5℃/min速率升温至600℃保温4小时,然后以2℃/min速率升温至850℃保温5小时,最后自然冷却到室温获得具有微米级精细结构的钛酸锌陶瓷。
图2为本实施例制备的钛酸锌陶瓷的XRD图,结果显示该钛酸锌陶瓷由偏钛酸锌ZnTiO3和金红石TiO2两相组成。图3为本实施例制备的钛酸锌陶瓷的SEM图,介质棒直径约35μm,间距约为140μm,具有微米级精细结构。图4为本实施例制备的钛酸锌陶瓷的太赫兹THz性能测试图,结果显示在0.5~0.52THz处存在带隙,带隙深度约-35dB,具有优良的太赫兹波介电性能。
对比例1:对比例1提供一种钛酸锌陶瓷前驱体浆料,制备过程与实施例1相同,不同之处在于钛源为钛酸四丁酯。
取对比例1中的钛酸锌陶瓷前驱体浆料按照本实施例中3D打印成型的步骤进行打印,结果发现,得到的胚体容易坍塌。
实施例3
本实施例提供一种钛酸锌陶瓷,按照以下步骤制备:
含钛源溶液的配制:将0.6g聚乙烯吡咯烷酮(PVP,分子量55000)加入到8mL无水乙醇中,搅拌至完全溶解,再加入12.5mL双(乙酰丙酮基)二异丙基钛酸酯(75wt.%异丙醇溶液),混合得到含钛源溶液;
含锌源溶液的配制:将5mL 28%氨水和1.8mL去离子水加入到12mL无水乙醇中,搅拌均匀,然后加入2.09g氧化锌粉末,搅拌至氧化锌与氨水反应至完全溶解,混合得到含锌源溶液;
钛酸锌陶瓷前驱体浆料的制备:将含锌源溶液加入到含钛源溶液中,在80℃条件下进行水浴加热搅拌蒸发约2~3小时,直至形成凝胶,此时凝胶体积约为3mL,装入5mL料筒中待打印;
3D打印成型:编写木堆结构G代码程序,介质棒间距设定为200μm,选择直径50μm的玻璃针头,压力设定为60psi,打印速度为3mm/s,对钛酸锌陶瓷前驱体溶胶凝胶浆料进行精细直写3D打印成型,得到胚体;
干燥:将胚体放置于真空烘箱中60-100℃干燥12h;
煅烧处理:采用多步保温烧结工艺对胚体进行烧结,首先以0.5℃/min速率升温至450℃保温4小时,再以0.5℃/min速率升温至600℃保温4小时,然后以2℃/min速率升温至850℃保温5小时,最后自然冷却到室温获得具有微米级精细结构的钛酸锌功能陶瓷。
本实施例中,钛和锌的摩尔比为1:1,所得钛酸锌陶瓷经测定为纯相ZnTiO3
实施例4
本实施例提供一种钛酸锌陶瓷,按照以下步骤制备:
含钛源溶液的配制:将0.65g聚乙烯醇加入到10mL丙酮中,搅拌至完全溶解,再加入12.5mL双(乙酰丙酮基)二异丙基钛酸酯(75wt.%异丙醇溶液),混合得到含钛源溶液;
含锌源溶液的配制:将12mL 28%氨水和2mL去离子水加入到20mL乙酸中,搅拌均匀,然后加入6.8g乙酸锌粉末,搅拌至乙酸锌与氨水反应至完全溶解,混合得到含锌源溶液;
钛酸锌陶瓷前驱体浆料的制备:将含锌源溶液加入到含钛源溶液中,在65℃条件下进行水浴加热搅拌蒸发约6小时,直至形成凝胶,然后将凝胶装入料筒中待打印;
3D打印成型:编写木堆结构G代码程序,介质棒间距设定为250μm,选择直径90μm的玻璃针头,压力设定为60psi,打印速度为8mm/s,对钛酸锌陶瓷前驱体溶胶凝胶浆料进行精细直写3D打印成型,得到胚体;
干燥:将胚体放置于真空烘箱中60-100℃干燥12h;
煅烧处理:采用多步保温烧结工艺对胚体进行烧结,首先以0.5℃/min速率升温至350℃保温5小时,再以0.5℃/min速率升温至550℃保温2小时,然后以3℃/min速率升温至930℃保温9小时,最后自然冷却到室温获得具有微米级精细结构的钛酸锌功能陶瓷。
本实施例中,钛和锌的摩尔比小于1,所得钛酸锌陶瓷经测定为偏钛酸锌(ZnTiO3)和氧化锌复相陶瓷。

Claims (5)

1.一种钛酸锌陶瓷的制备方法,包括以下步骤:
(1)由包括含钛源溶液和含锌源溶液的原料通过溶胶凝胶法制得钛酸锌陶瓷前驱体浆料,其中,所述含钛源溶液包括质量比为1:(0.01~0.2):(0.2~5)的双(乙酰丙酮基)二异丙基钛酸酯、表面活性剂和第一挥发性溶剂,所述含锌源溶液包括质量比为1:(1~5):(2~20)的锌源、氨水和第二挥发性溶剂;
(2)采用3D打印对所述钛酸锌陶瓷前驱体浆料进行成型,得到胚体;
(3)取所述坯体,在350~500℃保温2~6h,然后在550~650℃保温2~6h,最后再升温至830~930℃保温4~12h,得到所述钛酸锌陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,所述第一挥发性溶剂和所述第二挥发性溶剂各自独立地选自乙醇、乙酸、丙酮、四氢呋喃中的任一种。
3.根据权利要求1所述的制备方法,其特征在于,所述锌源包括氧化锌、乙酸锌、氯化锌、硝酸锌、硫酸锌中的任一种。
4.根据权利要求1至3任一项所述的制备方法,其特征在于,所述钛酸锌陶瓷前驱体浆料的制备方法包括以下步骤:
制备含钛源溶液:取包含双(乙酰丙酮基)二异丙基钛酸酯、表面活性剂和第一挥发性溶剂的原料混合形成含钛源溶液;
制备含锌源溶液:取包含锌源、氨水和第二挥发性溶剂的原料混合形成含锌源溶液;
取所述含钛源溶液和所述含锌源溶液混合,在60~90℃搅拌形成溶胶凝胶。
5.一种钛酸锌陶瓷,其特征在于,根据权利要求1至4任一项所述的钛酸锌陶瓷的制备方法制得。
CN201910891110.4A 2019-09-20 2019-09-20 钛酸锌陶瓷前驱体浆料和3d打印制备钛酸锌陶瓷的方法 Active CN110590356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910891110.4A CN110590356B (zh) 2019-09-20 2019-09-20 钛酸锌陶瓷前驱体浆料和3d打印制备钛酸锌陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910891110.4A CN110590356B (zh) 2019-09-20 2019-09-20 钛酸锌陶瓷前驱体浆料和3d打印制备钛酸锌陶瓷的方法

Publications (2)

Publication Number Publication Date
CN110590356A CN110590356A (zh) 2019-12-20
CN110590356B true CN110590356B (zh) 2021-09-10

Family

ID=68861529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910891110.4A Active CN110590356B (zh) 2019-09-20 2019-09-20 钛酸锌陶瓷前驱体浆料和3d打印制备钛酸锌陶瓷的方法

Country Status (1)

Country Link
CN (1) CN110590356B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113334758A (zh) * 2021-05-11 2021-09-03 清华大学深圳国际研究生院 一种柔性负泊松比构件及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007396A1 (en) * 2002-07-12 2004-01-22 Cabot Corporation Process for coating ceramic particles and compositions formed from the same
CN1789199A (zh) * 2005-12-23 2006-06-21 北京科技大学 一种低温制备钛酸锌基微波陶瓷的方法
JP2008024532A (ja) * 2006-07-18 2008-02-07 Canon Inc 圧電体、圧電体素子、圧電体素子を用いた液体吐出ヘッド及び液体吐出装置
CN101157822A (zh) * 2007-09-20 2008-04-09 华明扬 外罩织物吸波涂层胶的制备方法
CN101327441A (zh) * 2008-07-30 2008-12-24 中国科学院山西煤炭化学研究所 由合成气选择性合成中间馏分油的钴基催化剂及制法和应用
CN106518040A (zh) * 2016-10-28 2017-03-22 湘潭酷弗聚能科技材料有限公司 一种陶瓷复合粉体的合成方法及陶瓷复合粉体
CN106566224A (zh) * 2016-11-02 2017-04-19 宁波鸿源电子科技有限公司 一种电池外包装用隔热膜及其制备方法
CN109111223A (zh) * 2018-09-18 2019-01-01 中国科学院宁波材料技术与工程研究所 3d直写打印用二氧化钛陶瓷组合物、浆料、制法及应用
CN109206137A (zh) * 2018-11-19 2019-01-15 福州大学 一种铌酸钾钠-钛酸锌锶透明陶瓷的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030047489A1 (en) * 2001-09-07 2003-03-13 Khare Gyanesh P. Desulfurization and novel sorbent for same
US20080161482A1 (en) * 2006-12-29 2008-07-03 Diamond Polymer Science Co., Ltd Functional material powder, method for fabricating the same and functional staple fiber containing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007396A1 (en) * 2002-07-12 2004-01-22 Cabot Corporation Process for coating ceramic particles and compositions formed from the same
CN1789199A (zh) * 2005-12-23 2006-06-21 北京科技大学 一种低温制备钛酸锌基微波陶瓷的方法
JP2008024532A (ja) * 2006-07-18 2008-02-07 Canon Inc 圧電体、圧電体素子、圧電体素子を用いた液体吐出ヘッド及び液体吐出装置
CN101157822A (zh) * 2007-09-20 2008-04-09 华明扬 外罩织物吸波涂层胶的制备方法
CN101327441A (zh) * 2008-07-30 2008-12-24 中国科学院山西煤炭化学研究所 由合成气选择性合成中间馏分油的钴基催化剂及制法和应用
CN106518040A (zh) * 2016-10-28 2017-03-22 湘潭酷弗聚能科技材料有限公司 一种陶瓷复合粉体的合成方法及陶瓷复合粉体
CN106566224A (zh) * 2016-11-02 2017-04-19 宁波鸿源电子科技有限公司 一种电池外包装用隔热膜及其制备方法
CN109111223A (zh) * 2018-09-18 2019-01-01 中国科学院宁波材料技术与工程研究所 3d直写打印用二氧化钛陶瓷组合物、浆料、制法及应用
CN109206137A (zh) * 2018-11-19 2019-01-15 福州大学 一种铌酸钾钠-钛酸锌锶透明陶瓷的制备方法

Also Published As

Publication number Publication date
CN110590356A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
CN107151029B (zh) 一种四方相钛酸钡粉体的溶胶-水热法制备工艺
CN110423515B (zh) 一种3d直写成型用氧化镁陶瓷墨水及其制备方法
CN110590356B (zh) 钛酸锌陶瓷前驱体浆料和3d打印制备钛酸锌陶瓷的方法
CN105271268A (zh) 一种单分散介孔二氧化硅微球粉及其制备方法
CN105481264B (zh) 一种形貌可控的wo3薄膜的制备方法
CN109336572A (zh) 一种制备氧化物陶瓷的冷压烧结方法
CN103693957B (zh) 一种微波介质陶瓷的制备方法
CN1669979A (zh) 刚玉-莫来石复合陶瓷用硅铝凝胶结合剂的制备方法
CN106220161A (zh) 一种制备azo靶材的方法
CN107164841A (zh) 一种钙掺杂钛酸铅陶瓷纤维的制备方法
CN103342557B (zh) 一种微波介质陶瓷材料的制备方法
CN107010939A (zh) 一种高致密化掺铝氧化锌靶材的制备方法
CN108610048B (zh) 一种制备低烧结温度刚玉型Mg4Ta2O9微波介质陶瓷材料的方法
CN107117650B (zh) 一种单分散二氧化钛微球及制备方法和应用
CN101788228B (zh) 用于煅烧高纯Nb2O5和Ta2O5粉体的陶瓷坩埚
CN111233022B (zh) 一种制备钇铝石榴石纳米颗粒的方法
KR20190066212A (ko) 티타늄 겔을 이용한 세라믹스의 저온 제조 방법 및 이에 따라 제조된 세라믹스
CN113955796A (zh) 一种驰豫铁电单晶生长用原料的制备方法
CN114014362A (zh) 基于冷冻干燥和碳热还原的m相二氧化钒粉体及制备方法
CN102176355B (zh) 纳米Ag颗粒-(Pb0.4Sr0.6)TiO3固溶体渗流型复合陶瓷薄膜及其制备方法
JPH06199569A (ja) ジルコニア及びイットリア安定化ジルコニア成形物の製造方法
CN109928765A (zh) 一种温度诱导固化陶瓷3d打印成型的方法及应用
CN112661184A (zh) 一种取向性板状[001]-Bi0.5K0.5TiO3介观材料及其制备方法
CN112939069A (zh) 一种具有均匀包覆结构的钛酸钡@二氧化钛纳米粉末的制备方法
KR102172682B1 (ko) 수열 합성 및 광소결 공정을 이용한 열변색층을 포함하는 광학 적층체의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant