CN110560107A - 一种Ni-MoS2/RGO/Ti3C2复合材料的制备方法 - Google Patents

一种Ni-MoS2/RGO/Ti3C2复合材料的制备方法 Download PDF

Info

Publication number
CN110560107A
CN110560107A CN201910890724.0A CN201910890724A CN110560107A CN 110560107 A CN110560107 A CN 110560107A CN 201910890724 A CN201910890724 A CN 201910890724A CN 110560107 A CN110560107 A CN 110560107A
Authority
CN
China
Prior art keywords
solution
reaction
composite material
mos
rgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910890724.0A
Other languages
English (en)
Inventor
胡强坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hu Xiangkun
Original Assignee
Hu Xiangkun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hu Xiangkun filed Critical Hu Xiangkun
Publication of CN110560107A publication Critical patent/CN110560107A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Ni‑MoS2/RGO/Ti3C2复合材料的制备方法,包括将氧化石墨烯、Ti3C2纳米粉体、钼酸钠、Ni(OH)2粉末在醇溶剂中超声分散均匀,然后加入硫脲超声分散混匀,将反应液置于反应釜内进行保温反应,保温反应结束后回收中间产物,将中间产物置于加热炉内隔氧条件下进行退火处理,即可制得所述Ni‑MoS2/RGO/Ti3C2复合材料。上述制得的复合催化剂,通过氧化石墨烯、Ti3C2、MoS2组装在纳米多孔镍的外表面,形成独特的三维多孔结构的复合材料,使得催化剂的比表面积大大被提升,可促进光生载流子的有效分离,实现二硫化钼较高性能的光解水制氢性能。

Description

一种Ni-MoS2/RGO/Ti3C2复合材料的制备方法
技术领域
本发明涉及光解水催化剂制备技术领域,具体涉及一种Ni-MoS2/RGO/Ti3C2复合材料的制备方法。
背景技术
氢能源是非常环保的新能源,目前世界各国均对光解水制氢进行了大量的研究,也制备出了各式各样的光解水催化剂。如Ni-MoS2/RGO纳米复合催化剂等等,这些新式催化剂虽然能够在一定程度上提升光催化效率,但是其提高率有限,还难以满足实际使用的需求,因此,有必要提供一种性能更为优良的催化剂的制备方法。
发明内容
本发明的目的是提供一种Ni-MoS2/RGO/Ti3C2复合材料的制备方法,其光解制氢效果好。
本发明采取的技术方案具体如下:
一种Ni-MoS2/RGO/Ti3C2复合材料的制备方法,其特征在于:
包括将氧化石墨烯、Ti3C2纳米粉体、钼酸钠、Ni(OH)2粉末在醇溶剂中超声分散均匀,然后加入硫脲超声分散混匀,将反应液置于反应釜内进行保温反应,保温反应结束后回收中间产物,将中间产物置于加热炉内隔氧条件下进行退火处理,即可制得所述Ni-MoS2/RGO/Ti3C2复合材料。
具体的方案为:
先量取12ml氨水溶液加入100ml硝酸镍水溶液中,然后在加入100ml的尿素水溶液,搅拌混匀,90℃水浴加热反应3h,反应结束后,过滤、洗涤、干燥回收得到Ni(OH)2粉末;硝酸镍水溶液和尿素素水溶液中硝酸镍与尿素的摩尔比为1:2;
将氧化石墨烯加入200ml醇溶液中,超声分散混匀,然后再加入Ti3C2纳米粉体,超声分散混匀,配制得到A溶液,A溶液中Ti3C2的含量为0.5mg/ml、氧化石墨烯的含量为3.0mg/ml;
量取30ml上述A溶液,称取2.42g的钼酸钠、2.0g Ni(OH)2粉末依次投入里面,超声分散混匀,然后加入3.5g的硫尿脲,超声分散混匀,得到混合反应液,将混合反应液转移至反应釜内进行保温反应,保温反应的温度为100℃,时间为10h,保温反应结束后,过滤、洗涤、干燥回收中间产物,然后将中间产物置于加热炉内惰性气氛或真空条件下进行退火处理,退火处理的温度为500℃,时间3h,退火处理后即可制得所述Ni-MoS2/RGO/Ti3C2复合材料。
上述制得的复合催化剂,通过氧化石墨烯、Ti3C2、MoS2组装在纳米多孔镍的外表面,形成独特的三维多孔结构的复合材料,使得催化剂的比表面积大大被提升,可促进光生载流子的有效分离,实现二硫化钼较高性能的光解水制氢性能。并且石墨烯、Ti3C2与MoS2的复合拓展了催化剂的可见光吸收范围和吸收强度,利用石墨烯优异的电子传递性能,从而大幅度降低光生电子空穴对的复合率,因而极大地提高了催化剂的光催化活性。并且,Ti3C2、MoS2、纳米多孔镍之间形成N-P异质结结构,进一步大大提高了复合材料的光催化活性,该复合光催化材料在可见光区具有较强的光吸收特性,能够高效利用自然光,高效率的进行光水解。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行具体说明。应当理解,以下文字仅仅用以描述本发明的一种或几种具体的实施方式,并不对本发明具体请求的保护范围进行严格限定。
下述各实施例中,如无特别说明,所用试剂和药品均通过商业途径购买得到。
实施例1
先量取12ml氨水溶液(25%,质量浓度)加入100ml硝酸镍水溶液中,然后在加入100ml 的尿素水溶液,搅拌混匀,90℃水浴加热反应3h,反应结束后,过滤、洗涤、干燥回收得到 Ni(OH)2粉末;硝酸镍水溶液和尿素素水溶液中硝酸镍与尿素的摩尔比为1:2;
将氧化石墨烯加入200ml醇溶液(50%,质量浓度)中,超声分散混匀,然后再加入Ti3C2纳米粉体,超声分散混匀,配制得到A溶液,A溶液中Ti3C2的含量为0.5mg/ml、氧化石墨烯的含量为3.0mg/ml;
量取30ml上述A溶液,称取2.42g的钼酸钠(Na2MoO4·2H2O)、2.0g Ni(OH)2粉末依次投入里面,超声分散混匀,然后加入3.5g的硫脲,超声分散混匀,得到混合反应液,将混合反应液转移至反应釜内进行保温反应,保温反应的温度为100℃,时间为10h,保温反应结束后,过滤、洗涤、干燥回收中间产物,然后将中间产物置于加热炉内真空条件下进行退火处理,退火处理的温度为500℃,时间3h,退火处理后即可制得所述Ni-MoS2/RGO/Ti3C2复合材料。
实施例2
先量取12ml氨水溶液(25%,质量浓度)加入100ml硝酸镍水溶液中,然后在加入100ml 的尿素水溶液,搅拌混匀,90℃水浴加热反应3h,反应结束后,过滤、洗涤、干燥回收得到 Ni(OH)2粉末;硝酸镍水溶液和尿素素水溶液中硝酸镍与尿素的摩尔比为1:2;
将氧化石墨烯加入200ml醇溶液(50%,质量浓度)中,超声分散混匀,配制得到A溶液, A溶液中氧化石墨烯的含量为3.0mg/ml;
量取30ml上述A溶液,称取2.42g的钼酸钠(Na2MoO4·2H2O)、2.0g Ni(OH)2粉末依次投入里面,超声分散混匀,然后加入3.5g的硫脲,超声分散混匀,得到混合反应液,将混合反应液转移至反应釜内进行保温反应,保温反应的温度为100℃,时间为10h,保温反应结束后,过滤、洗涤、干燥回收中间产物,然后将中间产物置于加热炉内真空条件下进行退火处理,退火处理的温度为500℃,时间3h,退火处理后即可制得所述Ni-MoS2/RGO/Ti3C2复合材料。
实施例3
将上述实施例1、2制备的复合催化剂在MC-SPH2O全自动光催化全解水实验测试系统上进行性能检测。将实施例1、2中制备的复合催化剂分别组装到光解水系统中;通入高纯氮气 30min,排除反应体系中的溶解氧和管路中的空气;检查系统,打开恒温循环水,启动氙灯光源(功率300W),用CUT400滤去紫外光,检测光照12h复合催化剂的光催化分解水制氢的活性。氢气含量采用联机气相色谱仪在线检测,TCD检测器,TDX-01气相填充柱,光解水产氢结果如表1所示。
表1催化剂的可见光光解水制氢的结果
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本发明中未具体描述和解释说明的结构、装置以及操作方法,如无特别说明和限定,均按照本领域的常规手段进行实施。

Claims (2)

1.一种Ni-MoS2/RGO/Ti3C2复合材料的制备方法,其特征在于:
包括将氧化石墨烯、Ti3C2纳米粉体、钼酸钠、Ni(OH)2粉末在醇溶剂中超声分散均匀,然后加入硫脲超声分散混匀,将反应液置于反应釜内进行保温反应,保温反应结束后回收中间产物,将中间产物置于加热炉内隔氧条件下进行退火处理,即可制得所述Ni-MoS2/RGO/Ti3C2复合材料。
2.根据权利要求1所述Ni-MoS2/RGO/Ti3C2复合材料的制备方法,其特征在于:
先量取12ml氨水溶液加入100ml硝酸镍水溶液中,然后在加入100ml的尿素水溶液,搅拌混匀,90℃水浴加热反应3h,反应结束后,过滤、洗涤、干燥回收得到Ni(OH)2粉末;硝酸镍水溶液和尿素素水溶液中硝酸镍与尿素的摩尔比为1:2;
将氧化石墨烯加入200ml醇溶液中,超声分散混匀,然后再加入Ti3C2纳米粉体,超声分散混匀,配制得到A溶液,A溶液中Ti3C2的含量为0.5mg/ml、氧化石墨烯的含量为3.0mg/ml;
量取30ml上述A溶液,称取2.42g的钼酸钠、2.0g Ni(OH)2粉末依次投入里面,超声分散混匀,然后加入3.5g的硫尿脲,超声分散混匀,得到混合反应液,将混合反应液转移至反应釜内进行保温反应,保温反应的温度为100℃,时间为10h,保温反应结束后,过滤、洗涤、干燥回收中间产物,然后将中间产物置于加热炉内惰性气氛或真空条件下进行退火处理,退火处理的温度为500℃,时间3h,退火处理后即可制得所述Ni-MoS2/RGO/Ti3C2复合材料。
CN201910890724.0A 2019-09-13 2019-09-20 一种Ni-MoS2/RGO/Ti3C2复合材料的制备方法 Withdrawn CN110560107A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019108676496 2019-09-13
CN201910867649 2019-09-13

Publications (1)

Publication Number Publication Date
CN110560107A true CN110560107A (zh) 2019-12-13

Family

ID=68781418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910890724.0A Withdrawn CN110560107A (zh) 2019-09-13 2019-09-20 一种Ni-MoS2/RGO/Ti3C2复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110560107A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112010291A (zh) * 2020-09-03 2020-12-01 郑州工程技术学院 一种镍掺杂二硫化钼/石墨烯三维复合材料的制备方法及应用
CN113441160A (zh) * 2021-07-30 2021-09-28 陕西科技大学 一种氢氧化镍/碳化钛光热催化材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108607582A (zh) * 2018-05-29 2018-10-02 潍坊学院 二硫化钼/还原性氧化石墨烯/镍纳米粒子复合材料、其制备方法及应用
US20190134585A1 (en) * 2016-05-09 2019-05-09 Boron Nitride Power, Llc Synthesis of oxygen and boron trihalogenide functionalized two-dimensional layered materials in pressurized medium
EP3536798A1 (en) * 2018-03-08 2019-09-11 Indian Oil Corporation Limited Bio-assisted process for conversion of carbon-dioxide to fuel precursors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190134585A1 (en) * 2016-05-09 2019-05-09 Boron Nitride Power, Llc Synthesis of oxygen and boron trihalogenide functionalized two-dimensional layered materials in pressurized medium
EP3536798A1 (en) * 2018-03-08 2019-09-11 Indian Oil Corporation Limited Bio-assisted process for conversion of carbon-dioxide to fuel precursors
CN108607582A (zh) * 2018-05-29 2018-10-02 潍坊学院 二硫化钼/还原性氧化石墨烯/镍纳米粒子复合材料、其制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAN HUANG等: "Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
LI XIN CHEN等: "Design of Dual-Modified MoS2 with Nanoporous Ni and Graphene as Efficient Catalysts for the Hydrogen Evolution Reaction", 《ACS CATAL.》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112010291A (zh) * 2020-09-03 2020-12-01 郑州工程技术学院 一种镍掺杂二硫化钼/石墨烯三维复合材料的制备方法及应用
CN113441160A (zh) * 2021-07-30 2021-09-28 陕西科技大学 一种氢氧化镍/碳化钛光热催化材料及其制备方法和应用
CN113441160B (zh) * 2021-07-30 2023-06-16 陕西科技大学 一种氢氧化镍/碳化钛光热催化材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Xiong et al. Bismuth-rich bismuth oxyhalides: a new opportunity to trigger high-efficiency photocatalysis
CN105032465B (zh) 金属氧化物/氮化碳复合材料及其制备方法和应用
CN104028293B (zh) 一种低温氮掺杂石墨烯负载纳米Pd加氢催化剂的制备方法
CN104959158B (zh) 一种Mo2C/CdS复合光催化剂及其制备和应用
CN104959160B (zh) 一种Mo2N/CdS复合光催化剂及其制备和应用
CN107537571B (zh) 一种多壁碳纳米管基贵金属催化剂及其制备方法
CN113976155B (zh) 含氮/氧双重缺陷结构多孔氮化碳-铁酸盐复合催化剂的制备方法及光固氮应用
CN105688972B (zh) 介孔-α-三氧化二铁/掺氮还原石墨烯高效复合光催化剂的制备方法
CN110560107A (zh) 一种Ni-MoS2/RGO/Ti3C2复合材料的制备方法
CN107754826A (zh) 一种直接合成过氧化氢用中空核壳结构Pd催化剂及其制备方法
CN101229514B (zh) 复合型钛酸盐纳米管光催化剂的制备方法及应用
Yin et al. Ag/Ag2O confined visible-light driven catalyst for highly efficient selective hydrogenation of nitroarenes in pure water medium at room temperature
CN106466602A (zh) 一种炭载钯催化剂及其制备方法和应用
CN110787842A (zh) 一种光催化降解甲醛的光催化剂及其制备方法
CN107473183A (zh) 磷化钼在碱性甲醛溶液中催化制氢的应用
CN109453762A (zh) 一种改性黏土矿负载钯催化剂的制备方法和应用
WO2024098957A1 (zh) 一种纳米磷化铜的制备方法和应用
CN107469853B (zh) 一种Co4N纳米片及其制备方法和应用
CN112844371A (zh) 一种用于光解水制氧的催化剂及其制备方法
CN103801299B (zh) 一种甲烷部分氧化制合成气催化剂的制备方法
CN105498780B (zh) 一种Cu/ZnO催化剂及其制备方法和在CO2化学转化中的应用
CN106881084B (zh) 一种用于逆水煤气变换反应贵金属催化剂及其制备和应用
CN110586137B (zh) 一种含有Mn0.5Cd0.5S和Au负载型光催化剂的制备方法
CN110721685A (zh) 一种复合光催化材料及其制备方法和应用
CN107442134B (zh) 一种铑/镍合金纳米催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20191213

WW01 Invention patent application withdrawn after publication