CN110546230B - 增稠剂、组合物和片材 - Google Patents

增稠剂、组合物和片材 Download PDF

Info

Publication number
CN110546230B
CN110546230B CN201780089868.5A CN201780089868A CN110546230B CN 110546230 B CN110546230 B CN 110546230B CN 201780089868 A CN201780089868 A CN 201780089868A CN 110546230 B CN110546230 B CN 110546230B
Authority
CN
China
Prior art keywords
thickener
mass
slurry
less
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780089868.5A
Other languages
English (en)
Other versions
CN110546230A (zh
Inventor
伏见速雄
田中利奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Publication of CN110546230A publication Critical patent/CN110546230A/zh
Application granted granted Critical
Publication of CN110546230B publication Critical patent/CN110546230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/53Polyethers; Polyesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明以提供可发挥优异的耐光性的增稠剂为课题。本发明涉及一种增稠剂,该增稠剂含有纤维宽度为8nm以下的纤维状纤维素和水,增稠剂为浆液状或凝胶状,在具有纵1cm×横4cm×高4.5cm的内部尺寸的无色透明玻璃比色槽内装满增稠剂,使用氙灯从玻璃比色槽的最大面积面侧照射波长为300nm以上且400nm以下的紫外线使辐照度达到180W/m2、累积光量达到500mJ/m2的情况下,依据JIS K 7373测定的紫外线照射前后的泛黄度的变化量为10以下。

Description

增稠剂、组合物和片材
技术领域
本发明涉及一种增稠剂、组合物和片材。具体而言,本发明涉及含有微细纤维状纤维素的增稠剂、组合物和片材。
背景技术
近年来,由于石油资源的替代和环境意识的提高,利用可再生的天然纤维的材料受到关注。即使在天然纤维中,纤维直径为10μm以上且50μm以下的纤维状纤维素、特别是来源于木材的纤维状纤维素(纸浆)迄今为止也主要是作为纸制品而广泛使用。
作为纤维状纤维素,还已知纤维直径为1μm以下的微细纤维状纤维素。由于微细纤维状纤维素可以发挥增稠作用,所以还在研究将微细纤维状纤维素作为增稠剂用于各种用途。
例如,专利文献1中公开了含有阴离子改性纤维素纳米纤维和防着色剂的阴离子改性纤维素纳米纤维分散液。这里,可以提供加热时不会着色的分散液。另外,专利文献2和3中公开了含有微细纤维状纤维素的涂料。在专利文献2中,使用具有规定的长度和宽度的微细纤维状纤维素作为水性涂料用添加剂。在专利文献3中,公开了含有纤维素纳米纤维和水系乳液树脂的建筑物外壁用涂料。
专利文献4中记载着含有微细纤维素纤维的复合体的制造方法,记载着将25℃下的含有0.5质量%的微细纤维素纤维的分散液的粘度在1s-1的剪切速度时和100s-1的剪切速度时分别设为规定范围内的方法。专利文献5中记载着将纤维素类材料制造成聚合度为250以下的功能性纤维素的方法。然而,在专利文献4和5中关于紫外线照射前后的泛黄度的变化量则没有记载。
专利文献6中记载着包含具有磷酸基或来自磷酸基的取代基的微细纤维状纤维素的微细纤维状纤维素含有物,记载着该微细纤维状纤维素含有物是透明性优异、由加热引起的黄变得到了抑制的物质。专利文献7中记载着纤维素纳米纤维的制造方法,该制造方法包括:调制含有已水解的氧化纤维素类原料的分散液,边使该已水解的氧化纤维素类原料分散在分散介质中边进行解纤以形成纳米纤维,记载着可得到不易因干燥时的热而变色的透明薄膜。然而,在专利文献6和7中,没有关于紫外线照射前后的泛黄度的变化量得到了抑制的纤维状纤维素含有物的记载。此外,由加热引起的黄变的机理和由紫外线照射引起的黄变的机理谈不上是相同的,由加热引起的黄变的抑制和由紫外线照射引起的黄变的抑制是不同的参数。
专利文献8中记载着:为了制造高耐候性且无臭性的粘胶法纤维素纤维,在粘胶法纤维素纤维上担载以铜换算计为0.1~200ppm的EDTA-铜螯合化合物。
现有技术文献
专利文献
专利文献1:国际公开第2016/186055号公报;
专利文献2:日本特开2009-067910号公报;
专利文献3:日本特开2016-098488号公报;
专利文献4:日本特开2015-221844号公报;
专利文献5:日本特开2015-183095号公报;
专利文献6:日本特开2017-66273号公报;
专利文献7:日本特开2012-214717号公报;
专利文献8:日本特开平7-138875号公报。
发明内容
发明所要解决的课题
含有微细纤维状纤维素的组合物有时会填充在透明的包装材料中。然而,在含有微细纤维状纤维素的组合物以填充在透明的包装材料中的状态长期保管的情况下,担心组合物会因光的影响等而劣化。因此,为了解决这样的现有技术的课题,本发明人以提供可发挥优异的耐光性的组合物为目的进行了研究。
用于解决课题的方法
为解决上述课题进行了深入研究的结果,本发明人发现:在对含有纤维宽度为8nm以下的纤维状纤维素和水的增稠剂照射紫外线的情况下,通过将紫外线照射前后的增稠剂的泛黄度变化量控制在规定值以下,可得到能够发挥优异的耐光性的组合物。
具体而言,本发明具有以下的构成。
[1]一种增稠剂,其含有纤维宽度为8nm以下的纤维状纤维素和水,该增稠剂为浆液状或凝胶状,在具有纵1cm×横4cm×高4.5cm的内部尺寸的无色透明的玻璃比色槽内装满增稠剂,使用氙灯从玻璃比色槽的最大面积面侧照射波长为300nm以上且400nm以下的紫外线使辐照度达到180W/m2、累积光量达到500mJ/m2的情况下,依据JIS K 7373测定的紫外线照射前后的泛黄度的变化量为10以下。
[2][1]所述的增稠剂,其中,以固体含量达到0.5质量%的方式调制的稀释液在25℃、剪切速度1s-1下的剪切粘度为3000mPa·s以上。
[3][1]或[2]所述的增稠剂,其中,以固体含量达到0.5质量%的方式调制的稀释液在25℃、剪切速度100s-1下的剪切粘度为250mPa·s以上。
[4][1]~[3]中任一项所述的增稠剂,其中,纤维宽度为8nm以下的纤维状纤维素的聚合度为280以上。
[5][1]~[4]中任一项所述的增稠剂,其中,在使用氙灯从通过下述步骤a得到的膜的一个面侧照射波长为300nm以上且400nm以下的紫外线使辐照度达到180W/m2、累积光量达到500mJ/m2的情况下,依据JIS K 7373测定的紫外线照射前后的泛黄度的变化量为5以下;
(步骤a)
将增稠剂用离子交换水进行稀释使达到0.5质量%,作为稀释液A;将重均分子量为400万的聚乙二醇用离子交换水进行稀释使达到0.5质量%,作为稀释液B;将100质量份的稀释液A和40质量份的稀释液B混合,作为混合液;向内径为12cm的聚苯乙烯制皿内倒入113g混合液,在50℃的恒温槽内静置24小时,从聚苯乙烯制皿上剥离所形成的膜。
[6][1]~[5]中任一项所述的增稠剂,其中,纤维状纤维素具有离子性取代基。
[7][1]~[6]中任一项所述的增稠剂,其中,将增稠剂制成固体含量为0.4质量%的浆液,在25℃的环境下静置16小时以上后测定的浆液的pH为6以上且10以下。
[8][1]~[7]中任一项所述的增稠剂,其中,相对于增稠剂的总质量,纤维状纤维素和水的总计含量为90质量%以上。
[9][1]~[8]中任一项所述的增稠剂,其中,将增稠剂制成固体含量为0.2质量%的浆液,在25℃的环境下静置16小时以上后,依据JIS K 7136测定的浆液的雾度为20%以下。
[10][1]~[9]中任一项所述的增稠剂,其中,将增稠剂制成固体含量为0.4质量%的浆液,在25℃的环境下静置16小时以上后,使用B型粘度计使其在25℃下以转速3rpm旋转3分钟而测定的浆液的粘度为3000mPa·s以上。
[11]一种组合物,该组合物含有[1]~[10]中任一项所述的增稠剂。
[12][11]所述的组合物,该组合物进一步含有树脂成分。
[13]一种片材,该片材含有[1]~[10]中任一项所述的增稠剂。
发明效果
根据本发明,可以得到能够发挥优异的耐光性的组合物。
附图说明
[图1]图1是显示相对于具有磷酸基的纤维原料的NaOH滴加量与电导率的关系的曲线图。
[图2]图2是显示相对于具有羧基的纤维原料的NaOH滴加量与电导率的关系的曲线图。
具体实施方式
以下,对本发明进行详细说明。以下记载的构成要件的说明有时是根据代表性的实施方式或具体例而提出的,但本发明并不限于这样的实施方式。
(增稠剂)
本发明涉及一种浆液状或凝胶状的增稠剂,该增稠剂含有纤维宽度为8nm以下的纤维状纤维素和水。在具有纵1cm×横4cm×高4.5cm的内部尺寸的无色透明的玻璃比色槽内装满该增稠剂,使用氙灯从玻璃比色槽的最大面积面侧照射波长为300nm以上且400nm以下的紫外线使辐照度达到180W/m2、累积光量达到500mJ/m2的情况下,依据JISK7373测定的紫外线照射前后的泛黄度的变化量为10以下。此外,本说明书中的微细纤维状纤维素包括纤维宽度为8nm以下的纤维状纤维素。
因本发明的增稠剂具有上述构成,故含有该增稠剂的组合物可以发挥优异的耐光性。关于组合物的耐光性,可将组合物填充在透明的包装材料中,之后进行180天以上的长期保管,通过观察劣化状况等进行评价。例如,在评价耐光性时,将组合物填充在透明的包装材料中,观察长期保管后的着色情况,在着色得到抑制的情况下,可以评价为耐光性良好。
本发明还新发现了:组合物中的各成分中的含有微细纤维状纤维素的增稠剂的特性对组合物的耐光性有较大影响。关于含有微细纤维状纤维素的组合物,本发明人就提高其耐光性进行了研究,结果是使用了具有上述构成的增稠剂,实现了具有优异的耐光性的组合物。
另外,在本发明中,使用增稠剂而得到的片材也可发挥优异的耐光性。使用增稠剂而得到的片材的耐光性可以如下评价:在基材上涂布含有增稠剂的涂液,使用100℃的干燥机使其干燥1小时而形成涂膜(片材),之后进行180天以上的长期保管,观察劣化状况等即可进行评价。例如,观察长期保管后的片材的着色情况,在着色得到抑制的情况下,可以评价为耐光性良好。此外,在本说明书中,片材包含膜、涂膜、薄膜等。
在本说明书中,浆液是指分散有固态物的液体。具体而言,将粘度小于105mPa·s的液态物称作浆液,将粘度为105mPa·s以上且小于109mPa·s的固态物称作凝胶。此外,将粘度为109mPa·s以上的不具有流动性的固态物称作固体。
在具有纵1cm×横4cm×高4.5cm的内部尺寸的无色透明的玻璃比色槽内装满增稠剂,使用氙灯从玻璃比色槽的最大面积面侧照射波长为300nm以上且400nm以下的紫外线使辐照度达到180W/m2、累积光量达到500mJ/m2的情况下,依据JIS K 7373测定的紫外线照射前后的泛黄度的变化量为10以下。此外,玻璃比色槽的最大面积面是指作为玻璃比色槽的侧面的、周围用4.5cm的高边和4cm的横边围起来的面。紫外线照射前后的泛黄度的变化量优选为9以下,更优选为8以下,进一步优选为6以下,特别优选为4以下。
在上述条件下照射紫外线时,例如可以使用耐候性试验机(Suga试验机公司制造、Super Xenon Weather Meter SX75)。此外,在测定紫外线照射前后的增稠剂的泛黄度时,在上述玻璃比色槽内装满增稠剂的状态下进行测定。作为测定仪器,例如可以使用ColourCute i(Suga试验机株式会社制造)。然后,紫外线照射前后的泛黄度的变化量通过下式来计算。
紫外线照射前后的泛黄度的变化量=(紫外线照射后的增稠剂的泛黄度)-(紫外线照射前的增稠剂的泛黄度)
使用本发明的增稠剂按照下述步骤a制作膜,在使用氙灯从膜的一个面侧照射波长为300nm以上且400nm以下的紫外线使辐照度达到180W/m2、累积光量达到500mJ/m2的情况下,依据JIS K 7373测定的紫外线照射前后的泛黄度的变化量为5以下。紫外线照射前后的泛黄度的变化量优选为4以下,更优选为3以下,进一步优选为2以下,特别优选为1以下。
(步骤a)
将增稠剂用离子交换水进行稀释使达到0.5质量%,作为稀释液A。将重均分子量为400万的聚乙二醇用离子交换水进行稀释使达到0.5质量%,作为稀释液B。将100质量份的稀释液A和40质量份的稀释液B混合,作为混合液。向内径为12cm的聚苯乙烯制皿内倒入113g混合液,在50℃的恒温槽内静置24小时,从聚苯乙烯制皿上剥离所形成的膜。
通过上述步骤a得到基重为50g/m2的膜。在上述条件下对这样的膜照射紫外线时,例如可以使用耐候性试验机(Suga试验机公司制造、Super Xenon Weather Meter SX75)。另外,作为测定膜的紫外线照射前后的泛黄度时使用的仪器,例如可以使用Colour Cute i(Suga试验机株式会社制造)。而且,紫外线照射前后的泛黄度的变化量通过下式来计算。
紫外线照射前后的泛黄度的变化量=(紫外线照射后的膜的泛黄度)-(紫外线照射前的膜的泛黄度)
相对于增稠剂的总质量,增稠剂中的8nm以下的纤维状纤维素的含量优选为0.01质量%以上,更优选为0.10质量%以上,进一步优选为1质量%以上。另外,相对于增稠剂的总质量,8nm以下的纤维状纤维素的含量优选为50质量%以下,更优选为30质量%以下,进一步优选为10质量%以下,特别优选为5质量%以下。
另外,相对于增稠剂的总质量,增稠剂中的水的含量优选为50质量%以上,更优选为70质量%以上,进一步优选为90质量%以上,特别优选为95质量%以上。另外,相对于增稠剂的总质量,水的含量优选为99.99质量%以下,更优选为99.90质量%以下。
而且,相对于增稠剂的总质量,8nm以下的纤维状纤维素和水的含量优选为90质量%以上,更优选为95质量%以上,进一步优选为98质量%以上,特别优选为99质量%以上。此外,相对于增稠剂的总质量,8nm以下的纤维状纤维素和水的含量可以是100质量%。如此,在本发明的增稠剂中,优选大部分被8nm以下的纤维状纤维素和水占据而不含其他成分,或者即使含有也是少量的。
将增稠剂制成固体含量为0.4质量%的浆液,在25℃的环境下静置16小时以上后测定的浆液的pH优选为6以上,更优选为6.5以上,进一步优选为7.0以上。该浆液的pH还可以是7.5以上。另外,浆液的pH优选为10以下,更优选为9.5以下。
将增稠剂制成固体含量为0.2质量%的浆液,在25℃的环境下静置16小时以上后,依据JIS K 7136测定的浆液的雾度优选为20%以下,更优选为15%以下,进一步优选为10%以下,更优选为5%以下,特别优选为2.4%以下。此外,浆液的雾度还可以是2.0%以下。作为浆液的雾度测定中使用的雾度仪,例如可以列举雾度仪(村上色彩技术研究所社制造、HM-150)。测定雾度时,将在25℃的环境下静置了16小时以上的固体含量为0.2质量%的浆液装入光路长为1cm的液体用玻璃比色槽内进行测定。此外,零点测定使用装入相同玻璃比色槽内的离子交换水来进行。
将增稠剂制成固体含量为0.4质量%的浆液,在25℃的环境下静置16小时以上后,使用B型粘度计在25℃下使其以转速3rpm旋转3分钟而测定的浆液的粘度优选为3000mPa·s以上,更优选为5000mPa·s以上,进一步优选为9000mPa·s以上,特别优选为20000mPa·s以上。另外,浆液粘度的上限值没有特别限定,例如可以设为100000mPa·s。在测定粘度时,使用B型粘度计对在25℃的环境下静置了16小时以上的固体含量为0.4质量%的浆液进行测定。作为B型粘度计,例如可以列举B型粘度计(No.3转子)(BLOOKFIELD公司制造、模拟粘度计T-LVT)。
作为本发明的增稠剂,以固体含量达到0.5质量%的方式调制的稀释液在25℃、剪切速度1s-1下的剪切粘度优选大于2000mPa·s,更优选为3000mPa·s以上,更进一步优选为4000mPa·s以上,进一步优选为5000mPa·s以上,更进一步优选为7000mPa·s以上,特别优选为9000mPa·s以上,最优选为10000mPa·s以上。上述的剪切速度1s-1下的剪切粘度的上限没有特别限定,通常为30000mPa·s以下,优选为20000mPa·s以下。
作为本发明的增稠剂,以固体含量达到0.5质量%的方式调制的稀释液在25℃、剪切速度100s-1下的剪切粘度优选大于200mPa·s,更优选为250mPa·s以上,更进一步优选为300mPa·s以上,进一步优选为350mPa·s以上,更进一步优选为400mPa·s以上,特别优选为450mPa·s以上,最优选为500mPa·s以上。上述的剪切速度100s-1下的剪切粘度的上限没有特别限定,通常为2000mPa·s以下,优选为1000mPa·s以下。
剪切粘度的测定通过以下的方法进行。向增稠剂中倒入离子交换水,调制固体含量达到0.5质量%的稀释液,在测定环境达到温度25℃后,将稀释液配置在流变仪(HAAKE公司制造、RheoStress 1)的测定台。在剪切速度0.01s-1~100s-1下连续测定剪切粘度,求出1s-1和100s-1下的剪切粘度值。
本发明的增稠剂中的、纤维宽度为8nm以下的纤维状纤维素的聚合度优选大于250,更优选为280以上,更进一步优选为300以上,进一步优选为350以上,特别优选为400以上,最优选500以上。纤维宽度为8nm以下的纤维状纤维素的聚合度的上限没有特别限定,通常为2000以下,优选为1000以下。
纤维状纤维素的聚合度按照Tappi T230来测定。即,在将测定对象的纤维状纤维素分散在分散介质中而测定的粘度(作为η1)和仅以分散介质测定的空白粘度(作为η0)的测定后,按照下式测定比粘度(ηsp)、固有粘度([η])。
Ηsp=(η1/η0)-1;
[η]=ηsp/(c(1+0.28×ηsp))。
这里,式中的c显示粘度测定时的微细纤维状纤维素的浓度。
进一步由下式算出微细纤维状纤维素的聚合度(DP)。
DP=1.75×[η]
如上所述,本发明的增稠剂在实现优异的耐光性的同时,可以实现高粘度和高聚合度。
<微细纤维状纤维素>
本发明的增稠剂含有微细纤维状纤维素,含有纤维宽度为8nm以下的纤维状纤维素作为微细纤维状纤维素。
本发明所使用的微细纤维状纤维素中,在将葡萄糖单元的含量作为Cglu(质量%)、木糖单元的含量作为Cxyl(质量%)、甘露糖单元的含量作为Cman(质量%)、半乳糖单元的含量作为Cgal(质量%)、阿拉伯糖单元的含量作为Cara(质量%)的情况下,Cxyl+Cman+Cgal+Cara)/Cglu的值优选大于0.1,更优选为0.12以上。此外,关于本说明书的实施例1~6中制作的导入有磷酸基的纤维素纤维的(Cxyl+Cman+Cgal+Cara)/Cglu为0.12以上。
葡萄糖单元的含量Cglu、木糖单元的含量Cxyl、甘露糖单元的含量Cman、半乳糖单元的含量Cgal、阿拉伯糖单元的含量Cara可以在将微细纤维状纤维素水解成单糖后通过离子色谱法进行测定。具体而言,采集以绝对干重计为200mg的微细纤维状纤维素,向其中加入7.5ml 72%的硫酸。之后,放入振荡恒温槽内,在30℃、160rpm下振荡搅拌60分钟,进行第1水解。然后,采集30μl第1水解后的纸浆分散液到装有840μl超纯水的1.5ml的管中进行搅拌,稀释至4%的硫酸浓度。之后,使用高压釜在121℃下处理1小时,进行第2水解处理。之后,采用装载有柱(Dionex公司制造、Car boPac PA1)的离子色谱法(Dionex公司制造、ICS-5000),测定葡萄糖单元的含量Cglu、木糖单元的含量Cxyl、甘露糖单元的含量Cman、半乳糖单元的含量Cgal、阿拉伯糖单元的含量Cara。在本发明中,以葡萄糖单元、木糖单元、甘露糖单元、半乳糖单元和阿拉伯糖单元的总计作为100质量%,算出各单元的含量。
在以离子色谱法进行的分析中,流速设为1ml/分钟,柱温设为室温。流动相使用水,清洗液使用0.3N的氢氧化钠水溶液、0.1N的氢氧化钾水溶液、0.25N的碳酸钠水溶液。在分析中,按照阿拉伯糖、半乳糖、葡萄糖、木糖、甘露糖的顺序进行分离、洗脱。检测到的峰使用Dionex公司制造的分析软件(PeakNet)进行分析。
此外,关于各单糖单元的含量,将解纤后得到的微细纤维状纤维素进行水解而测定的值与将临解纤前的纸浆原料进行水解而测定的值同等。
作为用于得到微细纤维状纤维素的纤维状纤维素原料,没有特别限定,从容易获取且廉价的角度考虑,优选使用纸浆。作为纸浆,可以列举木材浆、非木材浆、脱墨纸浆。作为木材浆,例如可以列举:阔叶树牛皮纸浆(LBKP)、针叶树牛皮纸浆(NBKP)、亚硫酸盐纸浆(SP)、溶解浆(DP)、碱法纸浆(AP)、未漂白牛皮纸浆(UKP)、氧漂白牛皮纸浆(OKP)等化学纸浆等。另外,还可以列举:半化学浆(SCP)、化学磨木浆(CGP)等半化学纸浆;碎木纸浆(GP)、热磨机械浆(TMP、BCTMP)等机械纸浆等,没有特别限定。作为非木材浆,可以列举:棉籽绒或皮棉等棉类纸浆;麻、麦秆、甘蔗渣等非木材类纸浆;从海鞘或海草等中分离的纤维素、壳多糖、壳聚糖等,没有特别限定。作为脱墨纸浆,可以列举以旧纸为原料的脱墨纸浆,没有特别限定。本实施方案的纸浆可以单独使用上述的一种,也可以将两种以上混合使用。上述纸浆中,在获取的容易度方面,优选含有纤维素的木材浆、脱墨纸浆。在木材浆中,化学纸浆因纤维素比率大,故在纤维微细化(解纤)时微细纤维状纤维素的收率高、且纸浆中的纤维素的分解少,在获得轴比大的长纤维的微细纤维状纤维素方面优选。其中,最优选选择牛皮纸浆、亚硫酸盐纸浆。
在电子显微镜下观察时,微细纤维状纤维素的平均纤维宽度为1000nm以下。平均纤维宽度优选2nm以上且1000nm以下,更优选为2nm以上且100nm以下,更优选为2nm以上且50nm以下,进一步优选为2nm以上且10nm以下,没有特别限定。若微细纤维状纤维素的平均纤维宽度小于2nm,则以纤维素分子的形式溶解于水中,因此存在着难以体现作为微细纤维状纤维素的物理性质(强度或刚性、尺寸稳定性)的趋势。此外,本发明的增稠剂中所含的微细纤维状纤维素例如是纤维宽度为8nm以下的单纤维状纤维素。
基于电子显微镜观察的微细纤维状纤维素的纤维宽度的测定如下进行。调制浓度为0.05质量%以上且0.1质量%以下的微细纤维状纤维素的水系混悬液,将该混悬液浇铸在进行了亲水化处理的碳膜包覆栅板上,作为TEM观察用样品。在含有宽度较宽的纤维的情况下,可以观察浇铸在玻璃上的表面的SEM图像。根据构成的纤维的宽度,在1000倍、5000倍、10000倍或50000倍的任一倍率下,根据电子显微镜图像进行观察。其中,对样品、观察条件及倍率进行调整,使满足下述条件。
(1)在观察图像内的任意位置画一条直线X,20根以上的纤维与该直线X交叉。
(2)在相同的图像内画一条与该直线垂直交叉的直线Y,20根以上的纤维与该直线Y交叉。
对于满足上述条件的观察图像,通过目视读取与直线X、直线Y交叉的纤维的宽度。如此操作,至少观察3组以上不重叠的表面部分的图像,针对各图像读取与直线X、直线Y交叉的纤维的宽度。以这种方式读取至少20根×2×3=120根的纤维宽度。微细纤维状纤维素的平均纤维宽度是指如此读取的纤维宽度的平均值。
对微细纤维状纤维素的纤维长度没有特别限定,优选0.1μm以上且1000μm以下,进一步优选0.1μm以上且800μm以下,特别优选0.1μm以上且600μm以下。通过将纤维长度设在上述范围内,能够抑制微细纤维状纤维素的晶体区的破坏,还可使微细纤维状纤维素的浆液粘度达到适当的范围。此外,微细纤维状纤维素的纤维长度可以通过基于TEM、SEM、AFM的图像分析来求出。
微细纤维状纤维素优选具有I型晶体结构。这里,微细纤维状纤维素形成I型晶体结构可以在衍射图谱中鉴定,所述衍射图谱是由使用了经石墨单色化的CuKα
Figure BDA0002240992550000112
的广角X射线衍射照片得到的。具体而言,根据在2θ=14°以上且17°以下附近和2θ=22°以上且23°以下附近的两处位置具有典型的峰即可鉴定。
I型晶体结构在微细纤维状纤维素中所占的比例优选为30%以上,更优选为50%以上,进一步优选为70%以上。这种情况下,在体现耐热性和低线热膨胀率方面可以期待更优异的性能。关于结晶化度,测定X射线衍射图谱,通过常规方法由其图形求出(Seagal等人,Textile Research Journal,29卷,786页,1959年)。
微细纤维状纤维素优选具有离子性官能团。离子性官能团优选为阴离子基团,作为这样的离子性官能团,例如优选为选自磷酸基或来自磷酸基的取代基(有时还仅称作磷酸基)、羧基或来自羧基的取代基(有时还仅称作羧基)和磺基或来自磺基的取代基(有时还仅称作磺基)的至少1种,更优选为选自磷酸基和羧基的至少1种,特别优选为磷酸基。
磷酸基相当于从磷酸中除去了羟基后的二价官能团。具体而言,是指以-PO3H2表示的基团。来自磷酸基的取代基包括:磷酸基缩聚得到的基团、磷酸基的盐、磷酸酯基等取代基,可以是离子性取代基,也可以是非离子性取代基。
在本发明中,磷酸基或来自磷酸基的取代基可以是下述式(1)所表示的取代基。
[化学式1]
Figure BDA0002240992550000111
式(1)中,a、b、m和n分别独立地表示1以上的整数(其中,a=b×m);α和α’分别独立地表示R或OR。R为氢原子、饱和直链状烃基、饱和支链状烃基、饱和环状烃基、不饱和直链状烃基、不饱和支链状烃基、芳族基团、或者它们的衍生基团;β为由有机物或无机物构成的一价以上的阳离子。
<磷酸基导入步骤>
磷酸基导入步骤可以通过使选自具有磷酸基的化合物及其盐的至少一种(以下,还称作“磷酸化试剂”或“化合物A”。)与含有纤维素的纤维原料反应来进行。这样的磷酸化试剂可以以粉末或水溶液的状态混合在干燥状态或湿润状态的纤维原料中。另外,作为其他例子,可以在纤维原料的浆液中添加磷酸化试剂的粉末或水溶液。
磷酸基导入步骤可以通过使选自具有磷酸基的化合物及其盐的至少一种(磷酸化试剂或化合物A)与含有纤维素的纤维原料反应来进行。此外,该反应可以在选自尿素及其衍生物的至少一种(以下,还称作“化合物B”。)的存在下进行。
作为使化合物A在化合物B的共存下与纤维原料发生作用的方法之一例,可以列举在干燥状态或湿润状态的纤维原料中混合化合物A和化合物B的粉末或水溶液的方法。另外,作为其他例子,可以列举在纤维原料的浆液中添加化合物A和化合物B的粉末或水溶液的方法。其中,从反应均匀性高的角度考虑,优选在干燥状态的纤维原料中添加化合物A和化合物B的水溶液的方法、或者在湿润状态的纤维原料中添加化合物A和化合物B的粉末或水溶液的方法。另外,化合物A和化合物B可以同时添加,也可以分开添加。另外,起初可以将供试于反应的化合物A和化合物B以水溶液的形式添加,再通过压榨除去剩余的溶液。纤维原料的形态优选为棉状或薄的片状,没有特别限定。
本实施方案中使用的化合物A是选自具有磷酸基的化合物及其盐的至少一种。
作为具有磷酸基的化合物,可以列举:磷酸、磷酸的锂盐、磷酸的钠盐、磷酸的钾盐、磷酸的铵盐等,没有特别限定。作为磷酸的锂盐,可以列举:磷酸二氢锂、磷酸氢二锂、磷酸锂、焦磷酸锂、或聚磷酸锂等。作为磷酸的钠盐,可以列举:磷酸二氢钠、磷酸氢二钠、磷酸钠、焦磷酸钠、或聚磷酸钠等。作为磷酸的钾盐,可以列举:磷酸二氢钾、磷酸氢二钾、磷酸钾、焦磷酸钾、或聚磷酸钾等。作为磷酸的铵盐,可以列举:磷酸二氢铵、磷酸氢二铵、磷酸铵、焦磷酸铵、聚磷酸铵等。
其中,从磷酸基的导入效率高、在后述的解纤步骤中解纤效率容易进一步提高、成本低、且工业上容易应用的角度考虑,优选磷酸、磷酸的钠盐、或磷酸的钾盐、磷酸的铵盐。更优选磷酸二氢钠或磷酸氢二钠。
另外,从反应的均匀性提高、并且磷酸基的导入效率提高的角度考虑,化合物A优选以水溶液的形式使用。对化合物A的水溶液的pH没有特别限定,从磷酸基的导入效率提高的角度考虑,pH优选为7以下,从抑制纸浆纤维水解的角度考虑,进一步优选pH3以上且pH7以下。关于化合物A的水溶液的pH,例如,在具有磷酸基的化合物中,并用显酸性的化合物和显碱性的化合物,改变其量比来调节pH。化合物A的水溶液的pH可以通过在具有磷酸基的化合物中的显酸性的化合物中添加无机碱或有机碱等来进行调节。
化合物A相对于纤维原料的添加量没有特别限定,在将化合物A的添加量换算成磷原子量的情况下,相对于纤维原料(绝对干重),磷原子的添加量优选0.5质量%以上且100质量%以下,更优选1质量%以上且50质量%以下,最优选2质量%以上且30质量%以下。如果磷原子相对于纤维原料的添加量在上述范围内,则可以进一步提高微细纤维状纤维素的收率。若磷原子相对于纤维原料的添加量超过100质量%,则提高收率的效果达到最大,所使用的化合物A的成本上升。另一方面,通过将磷原子相对于纤维原料的添加量设为上述下限值以上,可以提高收率。
作为本实施方案中使用的化合物B,可以列举:尿素、缩二脲、1-苯基脲、1-苄基脲、1-甲基脲、1-乙基脲等。
化合物B与化合物A一样优选以水溶液的形式使用。另外,从反应均匀性提高的角度考虑,优选使用溶解有化合物A和化合物B两者的水溶液。相对于纤维原料(绝对干重),化合物B的添加量优选为1质量%以上且500质量%以下,更优选为10质量%以上且400质量%以下,进一步优选为100质量%以上且350质量%以下,特别优选为150质量%以上且300质量%以下。
除化合物A和化合物B以外,反应系统中还可以含有酰胺类或胺类。作为酰胺类,可以列举:甲酰胺、二甲基甲酰胺、乙酰胺、二甲基乙酰胺等。作为胺类,可以列举:甲胺、乙胺、三甲胺、三乙胺、单乙醇胺、二乙醇胺、三乙醇胺、吡啶、乙二胺、六亚甲基二胺等。其中,已知特别是三乙胺起到良好的反应催化剂的作用。
在磷酸基导入步骤中,优选实施加热处理。加热处理温度优选选择可抑制纤维的热分解或水解反应、同时可有效导入磷酸基的温度。具体而言,优选为50℃以上且300℃以下,更优选为100℃以上且250℃以下,进一步优选为150℃以上且200℃以下。另外,加热中可以使用减压干燥机、红外线加热装置、微波加热装置。
加热处理时,在添加有化合物A的纤维原料浆液中含有水的期间,若静置纤维原料的时间变长,则随着干燥的进行,与水分子溶存的化合物A会移动到纤维原料表面。因此,纤维原料中的化合物A的浓度有可能产生不均,有可能无法向纤维表面均匀地导入磷酸基。为了抑制因干燥引起的纤维原料中的化合物A发生浓度不均,只要使用极薄的片状纤维原料、或者采用边利用捏合机等混炼或搅拌纤维原料和化合物A边将其加热干燥或减压干燥的方法即可。
作为加热处理中使用的加热装置,优选为能够将浆液所保持的水分和通过磷酸基等与纤维的羟基的加成反应产生的水分持续地排出至装置系统外的装置,例如优选送风方式的烘箱等。如果持续地排出装置系统内的水分,则能够抑制作为磷酸酯化的逆反应的磷酸酯键的水解反应,而且还能够抑制纤维中的糖链的酸水解,可获得轴比高的微细纤维。
加热处理的时间虽然还受加热温度的影响,但从纤维原料浆液中实质上除去水分之后算起,优选为1秒以上且300分钟以下,更优选为1秒以上且1000秒以下,进一步优选为10秒以上且800秒以下。在本发明中,通过将加热温度和加热时间设为适当的范围,可使磷酸基的导入量在优选范围内。
每1g(质量)的微细纤维状纤维素中,磷酸基的含量(磷酸基的导入量)优选为0.10mmol/g以上,更优选为0.20mmol/g以上,进一步优选为0.50mmol/g以上。另外,每1g(质量)的微细纤维状纤维素中,磷酸基的含量优选为3.65mmol/g以下,更优选为3.00mmol/g以下,进一步优选为2.00mmol/g以下,特别优选为小于1.50mmol/g。通过将磷酸基的含量设为上述范围内,纤维原料的微细化容易进行,可以提高微细纤维状纤维素的稳定性。另外,通过将磷酸基的导入量设为上述范围内,可以更有效地抑制增稠剂的泛黄度变化。此外,在本说明书中,微细纤维状纤维素所具有的磷酸基的含量(磷酸基的导入量)如后所述与微细纤维状纤维素所具有的磷酸基的强酸性基团量相等。
纤维原料中的磷酸基导入量可通过电导率滴定法进行测定。具体而言,通过解纤处理步骤进行微细化,将所得的含微细纤维状纤维素的浆液用离子交换树脂进行处理,之后边加入氢氧化钠水溶液边求出电导率的变化,从而可以测定导入量。
在电导率滴定中,若加入碱,则显示图1所示的曲线。最初,电导率急剧下降(以下,称作“第1区”)。之后,电导率开始轻微上升(以下,称作“第2区”)。再之后电导率的增量增加(以下,称作“第3区”)。即,出现3个区。此外,第2区与第3区的临界点用电导率的二次微分值、即电导率的增量(斜率)的变化量达到最大的点来定义。其中,第1区所需的碱量与滴定中使用的浆液中的强酸性基团量相等,而第2区所需的碱量与滴定中使用的浆液中的弱酸性基团量相等。在磷酸基发生缩合的情况下,表观上失去弱酸性基团,与第1区所需的碱量相比,第2区所需的碱量变少。另一方面,由于强酸性基团量与磷原子的量一致、而与磷酸基是否缩合无关,因此在只言及磷酸基导入量(或磷酸基量)、或者取代基导入量(或取代基量)的情况下,表示强酸性基团量。即,用图1所示曲线的第1区所需的碱量(mmol)除以滴定对象浆液中的固体成分(g),作为取代基导入量(mmol/g)。
磷酸基导入步骤只要进行至少1次即可,也可以反复进行多次。这种情况下,可以导入更多的磷酸基,因此优选。
<羧基导入步骤>
在本发明中,在微细纤维状纤维素具有羧基的情况下,例如通过对纤维原料施行TEMPO氧化处理等氧化处理或者利用具有来自羧酸的基团的化合物、其衍生物、或其酸酐或其衍生物进行处理,可以导入羧基。
作为具有羧基的化合物,没有特别限定,可以列举:马来酸、琥珀酸、邻苯二甲酸、富马酸、戊二酸、己二酸、衣康酸等二元羧酸化合物或枸橼酸、乌头酸等三元羧酸化合物。
作为具有羧基的化合物的酸酐,没有特别限定,可以列举:马来酸酐、琥珀酸酐、邻苯二甲酸酐、戊二酸酐、己二酸酐、衣康酸酐等二元羧酸化合物的酸酐。
作为具有羧基的化合物的衍生物,没有特别限定,可以列举:具有羧基的化合物的酸酐的酰亚胺化物、具有羧基的化合物的酸酐的衍生物。作为具有羧基的化合物的酸酐的酰亚胺化物,没有特别限定,可以列举:马来酰亚胺、琥珀酰亚胺、邻苯二甲酰亚胺等二元羧酸化合物的酰亚胺化物。
作为具有羧基的化合物的酸酐的衍生物,没有特别限定。例如可以列举:二甲基马来酸酐、二乙基马来酸酐、二苯基马来酸酐等具有羧基的化合物的酸酐的至少一部分氢原子被取代基(例如烷基、苯基等)取代的产物。
每1g(质量)的微细纤维状纤维素中,羧基的导入量优选为0.10mmol/g以上,更优选为0.20mmol/g以上,进一步优选为0.50mmol/g以上。另外,每1g(质量)的微细纤维状纤维素中,羧基的含量优选为3.65mmol/g以下,更优选为3.50mmol/g以下,进一步优选为3.00mmol/g以下。
纤维原料中的羧基导入量可以通过电导率滴定法进行测定。在电导率滴定中,若加入碱,则显示图2所示的曲线。用图2所示曲线的第1区所需的碱量(mmol)除以滴定对象浆液中的固体成分(g),作为取代基导入量(mmol/g)。
<碱处理>
在制造微细纤维状纤维素的情况下,可以在磷酸基导入步骤或羧基导入步骤这样的离子性取代基导入步骤与后述的解纤处理步骤之间进行碱处理。作为碱处理的方法,没有特别限定,例如可以列举:将导入有离子性取代基的纤维浸在碱溶液中的方法。
对碱溶液中所含的碱化合物没有特别限定,可以是无机碱化合物,也可以是有机碱化合物。作为碱溶液中的溶剂,可以是水或有机溶剂的任一种。溶剂优选极性溶剂(水、或者醇等极性有机溶剂),更优选至少含有水的水系溶剂。
另外,在碱溶液中,从通用性高的角度考虑,特别优选氢氧化钠水溶液或氢氧化钾水溶液。
对碱处理步骤中的碱溶液的温度没有特别限定,优选5℃以上且80℃以下,更优选10℃以上且60℃以下。
对碱处理步骤中的纤维在碱溶液中的浸渍时间没有特别限定,优选5分钟以上且30分钟以下,更优选10分钟以上且20分钟以下。
对碱处理中的碱溶液的使用量没有特别限定,相对于导入有离子性取代基的纤维的绝对干燥质量,碱溶液的使用量优选为100质量%以上且100000质量%以下,更优选为1000质量%以上且10000质量%以下。
为了减少碱处理步骤中的碱溶液使用量,在碱处理步骤之前,可以使用水或有机溶剂清洗导入有离子性取代基的纤维。在碱处理后,为了提高操作性,优选在解纤处理步骤之前使用水或有机溶剂清洗碱处理过的导入有离子性取代基的纤维。
<解纤处理步骤>
导入有离子性取代基的纤维通过解纤处理步骤进行解纤处理。在解纤处理步骤中,通常是使用解纤处理装置对纤维进行解纤处理,以得到含微细纤维状纤维素的浆液,但处理装置、处理方法没有特别限定。
作为解纤处理装置,可以使用高速解纤机、研磨机(石臼型粉碎机)、高压均质器或超高压均质器、高压碰撞型粉碎机、球磨机、砂磨机等。或者,作为解纤处理装置,还可以使用圆盘式精磨机、锥形精浆机、双螺杆混炼机、振动磨、高速旋转下的均相混合机、超声波分散器、或者打浆机等进行湿式粉碎的装置等。解纤处理装置并不限于上述装置。作为优选的解纤处理方法,可以列举:粉碎介质的影响小、污染的担心少的高速解纤机、高压均质器、超高压均质器。
进行解纤处理时,优选将水和有机溶剂单独或者组合起来稀释纤维原料以形成浆液状,但没有特别限定。作为分散介质,除水以外,还可以使用极性有机溶剂。作为优选的极性有机溶剂,可以列举:醇类、酮类、醚类、二甲基亚砜(DMSO)、二甲基甲酰胺(DMF)或二甲基乙酰胺(DMAc)等,没有特别限定。作为醇类,可以列举:甲醇、乙醇、正丙醇、异丙醇、正丁醇或叔丁醇等。作为酮类,可以列举丙酮或丁酮(MEK)等。作为醚类,可以列举二乙醚或四氢呋喃(THF)等。分散介质可以是一种,也可以是两种以上。另外,分散介质中可以含有纤维原料以外的固体成分、例如具有氢键性的尿素等。
在本发明中,将微细纤维状纤维素浓缩、干燥后可以进行解纤处理。这种情况下,对浓缩、干燥的方法没有特别限定,例如可以列举:在含有微细纤维状纤维素的浆液中添加浓缩剂的方法;使用通常使用的脱水机、压榨机、干燥机的方法等。另外,还可以采用公知的方法、例如WO2014/024876、WO2012/107642和WO2013/121086中记载的方法。另外,可以将已浓缩的微细纤维状纤维素制成片材。还可以将该片材粉碎后进行解纤处理。
在粉碎微细纤维状纤维素时,作为粉碎中使用的装置,还可以使用高速解纤机、研磨机(石臼型粉碎机)、高压均质器、超高压均质器、高压碰撞型粉碎机、球磨机、砂磨机、圆盘式精磨机、锥形精浆机、双螺杆混炼机、振动磨、高速旋转下的均相混合机、超声波分散器、打浆机等进行湿式粉碎的装置等,没有特别限定。
<任意成分>
本发明的增稠剂优选为由上述的微细纤维状纤维素和水构成的增稠剂,但除上述的微细纤维状纤维素和水以外,还可以含有任意成分。在增稠剂含有任意成分的情况下,相对于增稠剂的总质量,任意成分的含量优选为10质量%以下,更优选为5质量%以下,进一步优选为2质量%以下,特别优选为1质量%以下。
此外,作为增稠剂所能包含的任意成分,可以列举与后述的组合物所能包含的其他成分同样的成分。
(增稠剂的制造方法)
本发明的增稠剂的制造方法优选包括:对微细纤维状纤维素的分散液施行黄变抑制处理的步骤。在本发明中,推测通过对微细纤维状纤维素的分散液施行黄变抑制处理,本发明的含有增稠剂的组合物可以发挥优异的耐光性。
施行黄变抑制处理的微细纤维状纤维素的分散液是经过上述的<解纤处理步骤>得到的微细纤维状纤维素的分散液。该分散液的固体含量优选为0.1质量%以上且20质量%以下,更优选为0.5质量%以上且10质量%以下。
作为施行黄变抑制处理的步骤,例如可以列举电子射线照射步骤。在电子射线照射步骤中,对微细纤维状纤维素的分散液进行电子射线的照射。此时,微细纤维状纤维素的分散液优选形成在基板上涂布铺展的状态,在该状态下照射电子射线。作为涂布铺展微细纤维状纤维素的分散液的基板,例如可以列举聚碳酸酯片材等树脂基板。而且,在照射电子射线时,微细纤维状纤维素的分散液优选为涂布铺展成厚度为1mm以上且20mm以下的状态。此外,为了防止微细纤维状纤维素分散液的蒸发挥散,优选在涂布微细纤维状纤维素的分散液后立即进行电子射线的照射,具体而言,优选在1小时以内进行。
在电子射线照射步骤中,优选照射加速电压为0.1MeV以上且10.0MeV以下、照射剂量为1kGy以上且100kGy以下的电子射线。其中,电子射线的加速电压更优选为0.5MeV以上,进一步优选为1.0MeV以上。另外,电子射线的加速电压优选为5.0MeV以下,进一步优选为3.0MeV以下。电子射线的照射剂量更优选为3kGy以上,进一步优选为5kGy以上。另外,电子射线的照射剂量更优选为50kGy以下,进一步优选为30kGy以下。
在电子射线照射步骤中,优选多次照射电子射线。电子射线的照射次数优选为2次以上且50次以下,更优选为3次以上且20次以下。此外,电子射线照射步骤优选在氮气环境下进行。另外,作为电子射线照射步骤中使用的装置,例如可以列举电子射线照射装置(ESI公司制造、Electro Curtain)。
在本实施方式中,通过例如多次进行电子射线照射、照射具有特定范围的加速电压的电子射线等黄变抑制处理的方法或高度调整其条件,可将增稠剂在紫外线照射前后的泛黄度变化控制在适当的范围。推测其原因在于:通过如上所述调整黄变抑制处理的方法或其条件,可使增稠剂中所含的纤维状纤维素或其他成分的存在状态适宜。而且,通过高度调整黄变抑制处理的方法或其条件,还能获得泛黄度变化、粘度和聚合度的平衡优异的增稠剂。
在电子射线照射步骤后,回收微细纤维状纤维素的分散液。所回收的微细纤维状纤维素分散液的固体含量可适当调整。在形成高浓度的增稠剂时可以设置浓缩步骤,在形成低浓度的增稠剂时可以设置稀释步骤。另外,可与任意成分或溶剂等混合。
(组合物)
本发明可以是涉及含有上述的增稠剂和其他成分的组合物的发明。作为其他成分,例如可以列举:蜡成分、树脂成分、亲水性高分子、有机离子等。此外,在本说明书中,有时还将含有任意成分的增稠剂称作组合物。
本发明可以是涉及含有上述的增稠剂和蜡成分的组合物的发明。作为蜡成分,可以使用市售的各种蜡、例如石油类蜡、植物性蜡、动物类蜡、低分子量聚烯烃类等。例如可以列举:石蜡、微晶蜡和蜡膏等石油类蜡及其衍生物;褐煤蜡及其衍生物;通过费-托法得到的烃蜡及其衍生物;聚乙烯所代表的聚烯烃蜡及其衍生物;巴西棕榈蜡(Carnauba wax)和小烛树蜡等天然蜡以及它们的衍生物等。此外,衍生物还包括氧化物或与乙烯基单体形成的嵌段共聚物、以及接枝改性物。另外,还可以列举:高级脂肪族醇等醇;硬脂酸和棕榈酸等脂肪酸;脂肪酸酰胺、脂肪酸酯、氢化蓖麻油及其衍生物等。含有增稠剂和蜡成分的组合物例如优选用作蜡。
在组合物含有增稠剂和蜡成分的情况下,相对于组合物的总质量,组合物中所含的蜡成分的含量优选为0.01质量%以上且90质量%以下,更优选为0.01质量%以上且50质量%以下,进一步优选为0.01质量%以上且10质量%以下。通过将蜡成分的含量设为上述范围内,可获得耐光性优异的组合物。
本发明可以是涉及含有上述的增稠剂和树脂成分的组合物的发明。树脂成分优选为热塑性树脂。作为热塑性树脂,例如可以列举:苯乙烯类树脂、丙烯酸类树脂、芳族聚碳酸酯类树脂、脂肪族聚碳酸酯类树脂、芳族聚酯类树脂、脂肪族聚酯类树脂、脂肪族聚烯烃类树脂、环状烯烃类树脂、聚酰胺类树脂、聚苯醚类树脂、热塑性聚酰亚胺类树脂、聚甲醛类树脂、聚砜类树脂、非晶性氟类树脂等。这样的热塑性树脂可以是热塑性树脂乳液。含有增稠剂和树脂成分的组合物例如优选用作涂料。
在组合物含有增稠剂和树脂成分的情况下,相对于组合物的总质量,组合物中所含的树脂成分的含量优选为1质量%以上且80质量%以下,更优选为5质量%以上且50质量%以下。
组合物可以含有亲水性高分子或有机离子作为其他成分。作为亲水性高分子,例如可以列举:聚乙二醇、纤维素衍生物(羟乙基纤维素、羧乙基纤维素、羧甲基纤维素等)、酪蛋白、糊精、淀粉、改性淀粉、聚乙烯醇、改性聚乙烯醇(乙酰乙酰化聚乙烯醇等)、聚环氧乙烷、聚乙烯吡咯烷酮、聚乙烯基甲基醚、聚丙烯酸盐类、聚丙烯酰胺、丙烯酸烷基酯共聚物、聚氨酯类共聚物等。其中,亲水性高分子优选为选自聚乙二醇(PEG)、聚乙烯醇(PVA)、改性聚乙烯醇(改性PVA)和聚环氧乙烷(PEO)的至少一种。
作为有机离子,例如可以列举:四烷基铵离子或四烷基磷鎓离子。作为四烷基铵离子,例如可以列举:四甲基铵离子、四乙基铵离子、四丙基铵离子、四丁基铵离子、四戊基铵离子、四己基铵离子、四庚基铵离子、三丁基甲基铵离子、十二烷基三甲基铵离子、十六烷基三甲基铵离子、硬脂基三甲基铵离子、辛基二甲基乙基铵离子、十二烷基二甲基乙基铵离子、二癸基二甲基铵离子、十二烷基二甲基苄基铵离子、三丁基苄基铵离子。作为四烷基磷鎓离子,例如可以列举:四甲基磷鎓离子、四乙基磷鎓离子、四丙基磷鎓离子、四丁基磷鎓离子和十二烷基三甲基磷鎓离子。另外,作为有机离子,还可以列举:四丙基鎓离子、四丁基鎓离子、特别是四正丙基鎓离子、四正丁基鎓离子等。
而且,作为其他成分,例如还可以列举:填料、颜料、染料、紫外线吸收剂、香料、防腐剂、表面活性剂、抗氧化剂等。
(增稠剂的用途)
本发明的增稠剂可用于各种用途。例如,可以形成含有上述增稠剂的片材。该片材可以是由含有增稠剂的组合物形成的片材。例如,通过将本发明的增稠剂与树脂成分混合形成膜状体、或者将该膜状体干燥,可以形成各种片材。由此,可以制造耐光性高的片材。这样的片材适合于各种显示器装置、各种太阳能电池等的透光性基板的用途。另外,这样的片材还适合于电子设备的基板、家电的部件、各种交通工具或建筑物的窗材、内部装饰材料、外部装饰材料、包装用材料等用途。此外,通过将本发明的增稠剂与树脂成分混合,还可以形成丝、滤器、织物、缓冲材料、海绵、研磨材料等。
在形成含有增稠剂的片材时,优选制定在基材上涂布含有增稠剂和树脂成分的组合物的步骤。另外,通过将含有增稠剂和树脂成分的组合物造纸,也可以形成片材。
另外,本发明的增稠剂还可用作涂料、蜡、食品、挖掘用底层处理用组合物、化妆品、油墨、药剂、医疗用品等中的添加剂。
实施例
下面,列举实施例和比较例,以进一步具体说明本发明的特征。下述实施例所示的材料、使用量、比例、处理内容、处理步骤等只要不脱离本发明的主旨即可,可以适当变更。因此,本发明的范围不该通过以下所示的具体例来限定性地解释。
[实施例1]
<导入有磷酸基的纤维素纤维的制作>
作为针叶树牛皮纸浆,使用王子制纸制造的纸浆(固体成分为93%、基重为208g/m2的片状,分离后依据JIS P 8121测定的加拿大标准滤水度(CSF)为700ml)作为原料。使磷酸二氢铵与尿素的混合水溶液渗透到100质量份(绝对干重)的上述针叶树牛皮纸浆中,进行压榨使磷酸二氢铵达到49质量份、尿素达到130质量份,得到浸有溶液的纸浆。将所得的浸有溶液的纸浆用105℃的干燥机进行干燥,使水分蒸发,进行预干燥。之后,使用设定为140℃的送风干燥机加热10分钟,向纸浆中的纤维素中导入磷酸基,得到了磷酸化纸浆。
分离收集所得的以纸浆质量计为100g的磷酸化纸浆,倒入10L的离子交换水,进行搅拌使其均匀分散,之后过滤脱水,得到脱水片材,上述步骤重复两次。然后,将所得的脱水片材用10L的离子交换水稀释,边搅拌边一点点地添加1N的氢氧化钠水溶液,得到了pH为12以上且13以下的纸浆浆液。之后,将该纸浆浆液脱水,得到脱水片材,之后添加10L的离子交换水。进行搅拌使其均匀分散,之后进行过滤脱水,得到脱水片材,该步骤重复两次。通过FT-IR测定所得的脱水片材的红外吸收光谱。其结果,在1230cm-1以上且1290cm-1以下观察到了基于磷酸基的吸收,确认添加了磷酸基。
<解纤处理>
在所得的脱水片材中添加离子交换水,调制了固体含量为2.2质量%的浆液。使用湿式微粒化装置(SUGINO MACHINE公司制造、Ultimizer)以245MPa的压力对该浆液进行3次处理,得到了微细纤维状纤维素分散液A。
<取代基量的测定>
取代基导入量是指纤维原料中的磷酸基导入量,该值越大,则导入了越多的磷酸基。取代基导入量如下测定:用离子交换水稀释作为对象的微细纤维状纤维素使其含量达到0.2质量%,之后通过离子交换树脂处理和使用了碱的滴定进行测定。在离子交换树脂处理中,向含有0.2质量%的纤维状纤维素的浆液中加入以体积比计为1/10的强酸性离子交换树脂(Organo株式会社制造、Amberjet 1024、已调平衡),进行1小时的振荡处理。之后,倒在网眼为90μm的筛上,分离树脂和浆液。在使用了碱的滴定中,边向离子交换后的含纤维状纤维素的浆液中加入0.1N的氢氧化钠水溶液,边测量浆液所显示的电导率值的变化。即,用图1(磷酸基)所示曲线的第1区所需的碱量(mmol)除以滴定对象浆液中的固体成分(g),作为取代基导入量(mmol/g)。计算的结果是磷酸基导入量为1.00mmol/g。
<纤维宽度的测定>
通过下述方法测定微细纤维状纤维素的纤维宽度。
将微细纤维状纤维素分散液A的上清液用水稀释,使固体含量达到0.01质量%以上且0.1质量%以下,滴加在进行了亲水化处理的碳栅膜上。干燥后,用醋酸铀酰进行染色,利用透过型电子显微镜(日本电子公司制造、JEOL-2000EX)进行观察。由此,确认形成了平均纤维宽度为4nm左右的微细纤维状纤维素。另外,所得的纤维状纤维素的纤维宽度为8nm以下。
<电子射线的照射>
在微细纤维状纤维素分散液A中添加离子交换水,调制了固体含量为2.0质量%的浆液。然后,在剪裁成A4尺寸的聚碳酸酯片材(帝人公司制造、Panlite PC-2151、厚度为300μm)上,使用薄膜涂抹器(间隙为3mm、涂布宽度为150mm)涂布浆液。对于涂布后的聚碳酸酯片材,在氮气环境下使用电子射线照射装置(ESI公司制造、Electro Curtain)立即照射5次加速电压为1.0MeV、照射剂量为10kGy的电子射线。此时,作为照射面的上面侧成为浆液的涂布面。之后,从聚碳酸酯片材上回收浆液,作为评价用浆液(增稠剂)。
[实施例2]
在实施例1的<电子射线的照射>中,加速电压设为0.5MeV。其他步骤与实施例1一样,得到了评价用浆液(增稠剂)。
[实施例3]
在实施例1的<电子射线的照射>中,电子射线的照射次数设为10次。其他步骤与实施例1一样,得到了评价用浆液(增稠剂)。
[实施例4]
在实施例1的<导入有磷酸基的纤维素纤维的制作>中,对所得的脱水片材再次重复进行导入磷酸基的步骤、过滤脱水的步骤,得到了二次磷酸化纤维素的脱水片材。由该脱水片材得到的微细纤维状纤维素分散液A中的微细纤维状纤维素的磷酸基导入量为1.50mmol/g。其他步骤与实施例1一样,得到了评价用浆液(增稠剂)。
[实施例5]
在实施例1中,使用后述的微细纤维状纤维素分散液B代替微细纤维状纤维素分散液A。其他步骤与实施例1一样,得到了评价用浆液(增稠剂)。此外,微细纤维状纤维素分散液B是如下操作而制造的。
<TEMPO氧化>
作为针叶树牛皮纸浆,使用王子制纸制造的纸浆(固体成分为93%、基重为208g/m2的片状、分离后依据JIS P 8121测定的加拿大标准滤水度(CSF)为700ml)作为原料。将100质量份(绝对干重)的上述针叶树牛皮纸浆、1.25质量份的TEMPO(2,2,6,6-四甲基哌啶-1-氧化物)和12.5质量份的溴化钠分散在10000质量份的水中。然后,向1.0g纸浆中加入13质量%的次氯酸钠水溶液使次氯酸钠的量达到8.0mmol,开始反应。反应中滴加0.5M的氢氧化钠水溶液,保持pH为10以上且11以下,在pH未见变化的时间点视为反应结束。
<TEMPO氧化纸浆的清洗>
之后,将该纸浆浆液脱水,得到脱水片材,之后倒入5000质量份的离子交换水,进行搅拌使其均匀分散,之后进行过滤脱水,得到脱水片材,该步骤重复两次。
<解纤处理>
向所得的脱水片材中添加离子交换水,调制了固体含量为2.2质量%的浆液。使用湿式微粒化装置(SUGINO MACHINE公司制造、Ultimizer)以245MPa的压力对该浆液进行5次处理,得到了微细纤维状纤维素分散液B。
<取代基量的测定>
取代基(羧基)导入量如下测定:用离子交换水稀释作为对象的微细纤维状纤维素使其含量达到0.2质量%,之后通过离子交换树脂处理和使用了碱的滴定进行测定。在离子交换树脂处理中,向0.2质量%的微细纤维状纤维素分散液B中加入以体积比计为1/10的强酸性离子交换树脂(Organo株式会社制造、Amberjet 1024、已调平衡),进行1小时的振荡处理。之后,倒在网眼为90μm的筛上,分离树脂和分散液,将分散液供给使用了碱的滴定。在使用了碱的滴定中,用图2(羧基)所示曲线的第1区所需的碱量(mmol)除以滴定对象浆液中的固体成分(g),作为取代基导入量(mmol/g)。通过滴定法测定的取代基(羧基)的导入量为1.0mmol/g。
[实施例6]
在实施例1的<电子射线的照射>中添加离子交换水时,添加巴西棕榈蜡,使微细纤维状纤维素达到2.0质量%、巴西棕榈蜡达到0.5质量%、水达到97.5质量%。其他步骤与实施例1一样,得到了评价用浆液(增稠剂)。
[比较例1]
在实施例1中没有进行<电子射线的照射>。其他步骤与实施例1一样,得到了评价用浆液(增稠剂)。
[比较例2]
在实施例4中没有进行<电子射线的照射>。其他步骤与实施例4一样,得到了评价用浆液(增稠剂)。
[比较例3]
在实施例5中没有进行<电子射线的照射>。其他步骤与实施例5一样,得到了评价用浆液(增稠剂)。
<测定>
按照以下的方法测定实施例和比较例中得到的评价用浆液。
[紫外线照射前后的浆液的泛黄度变化量]
在具有纵1cm×横4cm×高4.5cm的内部尺寸的无色透明玻璃比色槽(藤原制作所制造、MG-40、逆光路)中装满评价用浆液,贴上聚酯制的胶带使覆盖注入口(由纵×横构成的面),密封。然后,将该玻璃比色槽固定在耐候性试验机(Suga试验机公司制造、SuperXenon Weather Meter SX75)的槽内,从玻璃比色槽的最大面积面(由高×横构成的面)侧照射波长为300nm以上且400nm以下的紫外线,使辐照度达到180W/m2、累积光量达到500mJ/m2
紫外线照射前后的评价用浆液的泛黄度依据JIS K 7373进行测定。测定泛黄度时,在具有纵1cm×横4cm×高4.5cm的内部尺寸的无色透明玻璃比色槽内装满紫外线照射前后的评价用浆液的状态下,使用Colour Cute i(Suga试验机株式会社制造),将玻璃比色槽的注入口(由纵×横构成的面)朝上侧固定在装置内,以光路长1cm进行测定。此外,零点测定使用装入相同玻璃比色槽内的离子交换水来进行。通过下式由紫外线照射前后的评价用浆液的泛黄度算出浆液的泛黄度变化量。
紫外线照射前后的浆液的泛黄度变化量=(紫外线照射后的浆液的泛黄度)-(紫外线照射前的浆液的泛黄度)
[紫外线照射前后的膜的泛黄度变化量]
在评价用浆液(增稠剂)中加入离子交换水,调制成固体含量为0.5质量%,得到了稀释液A。然后,使用离子交换水将聚环氧乙烷(和光纯药公司制造、分子量400万)稀释至0.5质量%,得到了稀释液B。之后,进行混合使稀释液A达到100质量份、稀释液B达到40质量份,得到了混合液。然后,将113g的上述混合液倒入内径为12cm的聚苯乙烯制皿内,在50℃的恒温槽(干燥机)内静置24小时,从聚苯乙烯制皿上剥离所形成的膜。通过以上的步骤,得到了基重为50g/m2的膜。然后,将该膜固定在耐候性试验机(Suga试验机公司制造、SuperXenon Weather Meter SX75)的槽内,照射波长为300nm以上且400nm以下的紫外线,使辐照度达到180W/m2、累积光量达到500mJ/m2
紫外线照射前后的膜的泛黄度依据JIS K 7373进行测定。测定中使用了ColourCute i(Suga试验机株式会社制造)。通过下式由紫外线照射前后的膜的泛黄度算出膜的泛黄度变化量。
紫外线照射前后的膜的泛黄度变化量=(紫外线照射后的膜的泛黄度)-(紫外线照射前的膜的泛黄度)
[雾度]
向评价用浆液中倒入离子交换水,调制稀释液,使固体含量达到0.2质量%。之后,将稀释液在25℃的环境下静置16小时以上,依据JIS K 7136,使用雾度仪(村上色彩技术研究所社制造、HM-150)测定稀释液的雾度。测定时,将稀释液装入光路长为1cm的液体用玻璃比色槽(藤原制作所制造、MG-40、逆光路)进行测定。此外,零点测定是通过装入相同玻璃比色槽内的离子交换水来进行。
[粘度]
向评价用浆液中倒入离子交换水,调制稀释液,使固体含量达到0.4质量%。之后,将稀释液在25℃的环境下静置16小时以上,使用B型粘度计(No.3转子)(BLOOKFIELD公司制造、模拟粘度计T-LVT),使其在25℃下以转速3rpm旋转3分钟,测定稀释液的粘度。
[pH]
向评价用浆液中倒入离子交换水,调制稀释液,使固体含量达到0.4质量%。之后,将稀释液在25℃的环境下静置16小时以上,使用pH计(堀场制作所社制造、LAQUAact)在25℃下测定稀释液的pH。
[1s-1和100s-1下的剪切粘度]
向评价用浆液中倒入离子交换水,调制稀释液,使固体含量达到0.5质量%。在测定环境达到温度25℃后,将稀释液配置在流变仪(HAAKE公司制造、RheoStress 1)的测定台上,在剪切速度0.01s-1~100s-1下连续测定剪切粘度。求出此时的1s-1和100s-1下的剪切粘度值。
[微细纤维状纤维素的聚合度]
评价用浆液中所含的微细纤维状纤维素的聚合度依据Tappi T230进行测定。即,在使测定对象的微细纤维状纤维素分散在分散介质中而测定的粘度(作为η1)和仅使用分散介质测定的空白粘度(作为η0)的测定后,按照下式测定了比粘度(ηsp)、固有粘度([η])。
Ηsp=(η1/η0)-1;
[η]=ηsp/(c(1+0.28×ηsp))。
这里,式中的c显示粘度测定时的微细纤维状纤维素的浓度。
再由下式算出微细纤维状纤维素的聚合度(DP)。
DP=1.75×[η]
由于该聚合度是通过粘度法测定的平均聚合度,所以有时也称作“粘均聚合度”。此外,关于实施例6中得到的评价用浆液,因含有巴西棕榈蜡而判断为无法进行准确的测定,没有进行测定。
<评价>
按照以下的方法对实施例和比较例中得到的评价用浆液进行了评价。
[模型涂料的经时稳定性]
在评价用浆液中加入离子交换水和丙烯酸乳液(DIC公司制造、Voncoat MAT-200-E),调制成微细纤维状纤维素为0.5质量%、丙烯酸乳液的固体成分为20质量%、水为79.5质量%,得到了模型涂料。然后,在聚丙烯制的瓶(透明型、容量1L、筒径96mm×总高198mm)中装满模型涂料,在温度25℃、照不到直射阳光的环境下静置180天。静置后观察模型涂料的外观,按照下述标准评价模型涂料的耐光性。
◎:没有感觉到带黄色或带茶色;
○:轻微感觉到带黄色或带茶色。
×:明显感觉到带黄色或带茶色。
[模型涂膜的经时稳定性]
使用薄膜涂抹器(间隙为1mm、涂布宽度为150mm)在PET膜上(东丽公司制造、Lumirror S10、厚度为250μm)上涂布上述的模型涂料。然后,使用100℃的干燥机将涂布后的PET膜干燥1小时,使挥发成分挥发,得到了模型涂膜与PET膜的层叠体。之后,将层叠体在温度25℃、照不到直射阳光的环境下静置180天。静置后观察模型涂膜的外观,按照下述标准评价模型涂膜的耐光性。
◎:没有感觉到带黄色或带茶色;
○:轻微感觉到带黄色或带茶色;
×:明显感觉到带黄色或带茶色。
Figure BDA0002240992550000281
由表1可知:实施例中得到的浆液在紫外线照射后的泛黄度变化量少。另外,由实施例中得到的浆液形成的膜在紫外线照射后的泛黄度变化量少。其结果,模型涂料和模型涂膜具有优异的耐光性。另外,实施例中得到的浆液在耐光性优异的同时,可以实现高粘度和高聚合度。
另一方面,在比较例中,紫外线照射前后的浆液的泛黄度变化量、涂膜的泛黄度变化量的值大,结果是模型涂料、模型涂膜的耐光性下降。

Claims (12)

1.一种增稠剂,其是含有纤维宽度为8nm以下的纤维状纤维素和水的增稠剂,
所述增稠剂为浆液状或凝胶状,
在具有纵1cm×横4cm×高4.5cm的内部尺寸的无色透明玻璃比色槽内装满所述增稠剂,使用氙灯从所述玻璃比色槽的最大面积面侧照射波长为300nm以上且400nm以下的紫外线使辐照度达到180W/m2、累积光量达到500mJ/m2的情况下,依据JIS K 7373测定的紫外线照射前后的泛黄度的变化量为10以下,
所述纤维宽度为8nm以下的纤维状纤维素的聚合度为280以上。
2.根据权利要求1所述的增稠剂,其中,以固体含量达到0.5质量%的方式调制的稀释液在25℃、剪切速度1s-1下的剪切粘度为3000mPa·s以上。
3.根据权利要求1或2所述的增稠剂,其中,以固体含量达到0.5质量%的方式调制的稀释液在25℃、剪切速度100s-1下的剪切粘度为250mPa·s以上。
4.根据权利要求1或2所述的增稠剂,其中,在使用氙灯从通过下述步骤a得到的膜的一个面侧照射波长为300nm以上且400nm以下的紫外线使辐照度达到180W/m2、累积光量达到500mJ/m2的情况下,依据JIS K 7373测定的紫外线照射前后的泛黄度的变化量为5以下,
(步骤a)
将所述增稠剂用离子交换水进行稀释使达到0.5质量%,作为稀释液A;将重均分子量为400万的聚乙二醇用离子交换水进行稀释使达到0.5质量%,作为稀释液B;将100质量份的所述稀释液A和40质量份的所述稀释液B混合,作为混合液;向内径为12cm的聚苯乙烯制皿中倒入113g所述混合液,在50℃的恒温槽内静置24小时,从所述聚苯乙烯制皿上剥离所形成的膜。
5.根据权利要求1或2所述的增稠剂,其中,所述纤维状纤维素具有离子性取代基。
6.根据权利要求1或2所述的增稠剂,其中,将所述增稠剂制成固体含量为0.4质量%的浆液,在25℃的环境下静置16小时以上后测定的所述浆液的pH为6以上且10以下。
7.根据权利要求1或2所述的增稠剂,其中,相对于所述增稠剂的总质量,所述纤维状纤维素和所述水的总计含量为90质量%以上。
8.根据权利要求1或2所述的增稠剂,其中,将所述增稠剂制成固体含量为0.2质量%的浆液,在25℃的环境下静置16小时以上后,依据JIS K 7136测定的所述浆液的雾度为20%以下。
9.根据权利要求1或2所述的增稠剂,其中,将所述增稠剂制成固体含量为0.4质量%的浆液,在25℃的环境下静置16小时以上后,使用B型粘度计使其在25℃下以转速3rpm旋转3分钟而测定的所述浆液的粘度为3000mPa·s以上。
10.一种组合物,该组合物含有权利要求1~9中任一项所述的增稠剂。
11.根据权利要求10所述的组合物,该组合物进一步含有树脂成分。
12.一种片材,该片材含有权利要求1~9中任一项所述的增稠剂。
CN201780089868.5A 2017-04-24 2017-10-03 增稠剂、组合物和片材 Active CN110546230B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/016179 WO2018198162A1 (ja) 2017-04-24 2017-04-24 増粘剤、組成物及びシート
JPPCT/JP2017/016179 2017-04-24
PCT/JP2017/035968 WO2018198399A1 (ja) 2017-04-24 2017-10-03 増粘剤、組成物及びシート

Publications (2)

Publication Number Publication Date
CN110546230A CN110546230A (zh) 2019-12-06
CN110546230B true CN110546230B (zh) 2022-06-21

Family

ID=63918898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780089868.5A Active CN110546230B (zh) 2017-04-24 2017-10-03 增稠剂、组合物和片材

Country Status (6)

Country Link
US (1) US11643475B2 (zh)
EP (1) EP3617287A4 (zh)
JP (1) JP7006375B2 (zh)
CN (1) CN110546230B (zh)
CA (1) CA3062756A1 (zh)
WO (2) WO2018198162A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333316A4 (en) * 2015-08-05 2019-02-06 Oji Holdings Corporation FOIL, METHOD FOR PRODUCING A FOIL AND LAMINATE
WO2017047768A1 (ja) * 2015-09-17 2017-03-23 王子ホールディングス株式会社 微細繊維状セルロース含有物
JP7378198B2 (ja) 2017-05-15 2023-11-13 大王製紙株式会社 セルロース微細繊維及びその製造方法
JP2019001876A (ja) * 2017-06-14 2019-01-10 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
JP6683242B1 (ja) * 2018-12-28 2020-04-15 王子ホールディングス株式会社 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法
JP6696600B1 (ja) * 2019-02-08 2020-05-20 王子ホールディングス株式会社 繊維状セルロース含有組成物及び塗料
JP6575700B1 (ja) * 2019-02-12 2019-09-18 王子ホールディングス株式会社 シート
JP7210372B2 (ja) * 2019-05-10 2023-01-23 王子ホールディングス株式会社 パターン構造含有シートの製造方法
JP2020204112A (ja) * 2019-06-18 2020-12-24 旭化成株式会社 化学修飾セルロース繊維
DE102020116043B3 (de) * 2020-06-17 2021-01-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum Herstellen eines Nanocellulosepartikel enthaltenden Verbundwerkstoffes
DE102021127514A1 (de) 2021-10-22 2023-04-27 ZFB Zentrum für Bucherhaltung GmbH β-POLYGLUCOSID-BASIERTE BIOPOLYMER-VERBUNDWERKSTOFFE

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138875A (ja) * 1993-11-15 1995-05-30 Toho Rayon Co Ltd 高耐光性且つ無臭性ビスコース法セルロース繊維及びその製造方法
JP2012214717A (ja) * 2011-03-30 2012-11-08 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2015510438A (ja) * 2012-02-22 2015-04-09 シンセス・ゲーエムベーハーSynthes GmbH 吸収性セルロース系生体材料及びインプラント
JP2015183095A (ja) * 2014-03-24 2015-10-22 凸版印刷株式会社 機能性セルロース及びその製造方法、並びに、機能性セルロース分散体、成形体
JP2015189698A (ja) * 2014-03-28 2015-11-02 王子ホールディングス株式会社 セルロース系水溶性増粘剤
JP2015221844A (ja) * 2014-05-22 2015-12-10 凸版印刷株式会社 複合体の製造方法、及び複合体、微細セルロース繊維の分散液
JP2016014098A (ja) * 2014-07-01 2016-01-28 凸版印刷株式会社 微小セルロースの製造方法、微小セルロース、微小セルロースを用いた成形体
JP2016087877A (ja) * 2014-10-31 2016-05-23 国立大学法人大阪大学 シートの製造方法
WO2016186055A1 (ja) * 2015-05-15 2016-11-24 日本製紙株式会社 アニオン変性セルロースナノファイバー分散液および組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067910A (ja) 2007-09-14 2009-04-02 Asahi Kasei Chemicals Corp 水性塗料用添加剤及び、水性塗料組成物
FI127301B (fi) 2011-02-10 2018-03-15 Upm Kymmene Corp Menetelmä nanoselluloosan käsittelemiseksi ja menetelmällä saatu tuote
FI125941B (en) 2012-02-13 2016-04-15 Upm Kymmene Corp Method and apparatus for processing fibrillar cellulose and fibrillar cellulose product
CN104114765B (zh) * 2012-05-21 2016-03-30 王子控股株式会社 微细纤维的制造方法和微细纤维和无纺布以及微细纤维状纤维素
CA3041742C (en) 2012-08-10 2021-07-06 Oji Holdings Corporation Microfibrous cellulose aggregate, method for manufacturing microfibrous cellulose aggregate, and method for remanufacturing microfibrous cellulose dispersion liquid
JP2016098488A (ja) 2014-11-18 2016-05-30 株式会社ハマキャスト 建築物外壁用塗料及びこれを用いた建築物外壁の施工方法
JP6613772B2 (ja) * 2015-09-30 2019-12-04 王子ホールディングス株式会社 微細繊維状セルロース含有物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138875A (ja) * 1993-11-15 1995-05-30 Toho Rayon Co Ltd 高耐光性且つ無臭性ビスコース法セルロース繊維及びその製造方法
JP2012214717A (ja) * 2011-03-30 2012-11-08 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2015510438A (ja) * 2012-02-22 2015-04-09 シンセス・ゲーエムベーハーSynthes GmbH 吸収性セルロース系生体材料及びインプラント
JP2015183095A (ja) * 2014-03-24 2015-10-22 凸版印刷株式会社 機能性セルロース及びその製造方法、並びに、機能性セルロース分散体、成形体
JP2015189698A (ja) * 2014-03-28 2015-11-02 王子ホールディングス株式会社 セルロース系水溶性増粘剤
JP2015221844A (ja) * 2014-05-22 2015-12-10 凸版印刷株式会社 複合体の製造方法、及び複合体、微細セルロース繊維の分散液
JP2016014098A (ja) * 2014-07-01 2016-01-28 凸版印刷株式会社 微小セルロースの製造方法、微小セルロース、微小セルロースを用いた成形体
JP2016087877A (ja) * 2014-10-31 2016-05-23 国立大学法人大阪大学 シートの製造方法
WO2016186055A1 (ja) * 2015-05-15 2016-11-24 日本製紙株式会社 アニオン変性セルロースナノファイバー分散液および組成物

Also Published As

Publication number Publication date
WO2018198399A1 (ja) 2018-11-01
JP7006375B2 (ja) 2022-02-10
CN110546230A (zh) 2019-12-06
CA3062756A1 (en) 2019-11-28
EP3617287A1 (en) 2020-03-04
EP3617287A4 (en) 2020-12-30
US11643475B2 (en) 2023-05-09
JP2018184587A (ja) 2018-11-22
US20200131279A1 (en) 2020-04-30
WO2018198162A1 (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
CN110546230B (zh) 增稠剂、组合物和片材
JP6791281B2 (ja) 繊維状セルロースの製造方法及び繊維状セルロース
JP7294395B2 (ja) パルプ、スラリー、シート、積層体及びパルプの製造方法
CN109642051B (zh) 纤维状纤维素含有物和纤维状纤维素含有物的制造方法
CN115427459B (zh) 纤维状纤维素、纤维状纤维素分散液和纤维状纤维素的制造方法
JP7039828B2 (ja) シート及びシートの製造方法
CN112867738A (zh) 纤维状纤维素、纤维状纤维素分散液和纤维状纤维素的制造方法
JP6299939B1 (ja) 増粘剤、組成物及びシート
JP6683242B1 (ja) 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法
JP2020063351A (ja) 繊維状セルロース、繊維状セルロース分散液及び繊維状セルロースの製造方法
JP2017218525A (ja) リン酸化セルロース繊維の製造方法及びセルロース含有物
KR20210040430A (ko) 섬유상 셀룰로오스 함유 조성물, 액상 조성물 및 성형체
WO2018110525A1 (ja) 繊維状セルロース含有組成物
JP6977798B2 (ja) リン酸化セルロース繊維の製造方法及びセルロース含有物
WO2020050347A1 (ja) 固形状体及び固形状体の製造方法
JP2020109190A (ja) 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法
JP2023007000A (ja) 分散液及びシート

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant