CN110510644A - 一种快速热解硫酸镁制备活性亚微米氧化镁的方法 - Google Patents

一种快速热解硫酸镁制备活性亚微米氧化镁的方法 Download PDF

Info

Publication number
CN110510644A
CN110510644A CN201910722168.6A CN201910722168A CN110510644A CN 110510644 A CN110510644 A CN 110510644A CN 201910722168 A CN201910722168 A CN 201910722168A CN 110510644 A CN110510644 A CN 110510644A
Authority
CN
China
Prior art keywords
magnesium sulfate
magnesia
magnesium
micron
crystallization water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910722168.6A
Other languages
English (en)
Inventor
史培阳
张孜屹
刘宇哲
宁俊翔
刘承军
姜茂发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910722168.6A priority Critical patent/CN110510644A/zh
Publication of CN110510644A publication Critical patent/CN110510644A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/12Magnesia by thermal decomposition of magnesium compounds by thermal decomposition of magnesium sulfate, with or without reduction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明公开一种快速热解硫酸镁制备活性亚微米氧化镁的方法,该方法包括如下步骤:①将一水硫酸镁或七水硫酸镁在300‑500℃下恒温1‑4h,脱除硫酸镁中结晶水;②将脱除结晶水后的硫酸镁研磨至<74μm;③将研磨后的无水硫酸镁在高温炉中进行热分解,在一定温度和时间下进行焙烧,即得亚微米氧化镁。采用本发明方法,不但使大量硫酸镁溶液得到处理,减少镁资源的浪费和环境污染,增加了经济效益,而且也为硫酸镁盐的开发提供了一条新途径。同时,也提供了一种制备氧化镁的新工艺,以满足对氧化镁的实际需求。

Description

一种快速热解硫酸镁制备活性亚微米氧化镁的方法
技术领域
本发明属于无机非金属材料技术领域,涉及一种快速热解硫酸镁制备活性亚微米氧化镁的方法。
背景技术
我国硼镁矿资源虽然较丰富,但是经过近50多年的开采,硼矿贫化现象趋势严重。辽宁省作为我国硼矿储量最多的地区,其硼平均品位由20世纪60年代初期的18%以上,现已降低至12%以下,对我国硼产业冲击较大,使我国硼行业90%依靠进口国外原料(粗硼砂)进行粗加工或者是直接进口国外硼产品进行深加工生产,造成以国内硼镁矿为原料生产的企业仅存5家,且处于盈亏边缘。究其原因,主要是因为我国硼镁矿提取硼酸或硼砂技术在延续前苏联技术的基础上改进而来的,尤其是在硼酸生产过程中氧化镁消耗硫酸,而随着我国硼矿中硼品位的降低,氧化镁含量的升高,造成了硫酸消耗量大,硼酸品质和收率显著降低,产生大量的硫酸镁溶液亟待处理,而硫酸镁产能过剩的问题,极容易造成镁资源的浪费和环境污染。在此背景下,如何实现硫酸镁资源化、规模化和清洁化利用,不仅对于我国硼镁矿资源综合利用具有重要意义,而且也为硫酸镁盐的开发提供了一条新途径。
氧化镁是一种用途极广的化工原料,广泛应用于橡胶、塑料、人造纤维、油漆、搪瓷、耐火材料等,同时氧化镁还是冶金工业和其他高温型工业不可缺少的耐火材料原料。随着我国经济的发展,氧化镁的应用领域不断拓宽,市场也不断扩大,尤其是近年来镁合金和金属镁利用领域的扩展,对氧化镁的需求量与日俱增,也亟须一种制备氧化镁的新工艺,以满足对氧化镁的需求。
发明内容
本发明提供了一种快速热解硫酸镁制备活性亚微米氧化镁的方法,该方法不但使大量硫酸镁溶液得到处理,减少镁资源的浪费和环境污染,而且还提供了一种制备氧化镁的新工艺,以满足对氧化镁的需求。
为实现上述目的,本发明采用的技术方案包括如下步骤:
①将一水硫酸镁或七水硫酸镁在300-500℃下恒温1-4h,脱除硫酸镁中结晶水;
②将脱除结晶水后的硫酸镁研磨至<74μm;
③将研磨后的无水硫酸镁在高温炉中进行热分解,然后进行焙烧,即得亚微米氧化镁。所述的培烧时间为5min-60min;所述的焙烧温度为1000℃-1500℃,且焙烧升温速率为5℃/min-100℃/min。
上述步骤③中焙烧结束后将氧化镁用空气进行冷却,所产生的余热可用于脱除一水硫酸镁或七水硫酸镁中的结晶水,从而最大限度的节约了能源,降低了生产成本。
上述步骤③中分解产生的SO2气体还可以用于分解硼镁矿,从而使SO2气体得到有效回收利用,节约了资源。
本发明是利用一水硫酸镁或七水硫酸镁为原料,通过脱除一水硫酸镁或七水硫酸镁中结晶水后转化为硫酸镁,再通过高温培烧制备出亚微米氧化镁。其基本原理是:首先使一水硫酸镁或七水硫酸镁在300℃时开始逐渐脱水,其次将脱水后的硫酸镁研磨至74μm,最后在900℃时开始分解出氧化镁,即制备出亚微米氧化镁。采用本发明方法,不但使大量硫酸镁溶液得到处理,减少镁资源的浪费和环境污染,增加了经济效益,而且也为硫酸镁盐的开发提供了一条新途径。
同时,也提供了一种制备氧化镁的新工艺,以满足对氧化镁的需求。本发明不但能有效解决硼镁矿硫酸一步法生产硼酸过程中产生硫酸镁难于利用问题,还能够扩展硫酸镁盐的应用途径,并生成出高纯度和高活性氧化镁亚微米粉体材料,进而有效提高了硫酸镁盐产品的附加值和利用途径。同时,还可以利用其它行业的硫酸镁资源,拓宽了应用范围。
本发明具有如下特点:
(1)本发明所制备的亚微米氧化镁纯度≥98%、氧化镁的吸碘值≥80,粒度<2μm,符合活性氧化镁的国家行业标准,纯度及活性均较高,优于同类产品。
(2)由于随着焙烧温度的升高,硫酸镁的热分解速率增大,分解时间缩短,从而形成高温快速分解,该种高温快速分解技术使得工艺反应速度加快,能耗降低,节约了能源,增加了经济效益。
(3)本发明借助高温快速分解技术,通过控制硫酸镁晶体在热分解过程中氧化镁的晶体成核和生长行为,进而达到控制氧化镁结构的目的,从而实现对氧化镁活性和粒度的控制,以满足不同行业用氧化镁的要求。
具体实施方式
实施例1:将一水或七水硫酸镁在300℃下恒温4h,脱除结晶水,使其转变为无水硫酸镁,经研磨后使无水硫酸镁的粒度控制在<74μm,将无水硫酸镁在高温炉中焙烧,温度为1000℃,升温制度为5℃/min,焙烧时间为60min,经空气冷却,可以获得氧化镁超细粉体材料,硫酸镁的分解率为96%,氧化镁含量为97%,活性(碘吸附值)为80,氧化镁颗粒尺寸为2μm。
实施例2:将一水或七水硫酸镁在500℃下恒温1h,脱除结晶水,使其转变为无水硫酸镁,经研磨后使无水硫酸镁的粒度控制在<74μm,将无水硫酸镁在高温炉中焙烧,温度为1500℃,升温制度100℃/min,焙烧时间为5min,经空气冷却,可以获得氧化镁超细粉体材料,硫酸镁的分解率为99.6%,氧化镁含量为99.9%,活性(碘吸附值)为94,氧化镁颗粒尺寸为0.2μm。
实施例3:将一水或七水硫酸镁在400℃下恒温2h,脱除结晶水,使其转变为无水硫酸镁,经研磨后使无水硫酸镁的粒度控制在<74μm,将无水硫酸镁在高温炉中焙烧,温度为1300℃,升温制度50℃/min,焙烧时间为10min,经空气冷却,可以获得氧化镁超细粉体材料,硫酸镁的分解率为98.5%,氧化镁含量为99%,活性(碘吸附值)为89,氧化镁颗粒尺寸为0.5μm。
实施例4:将一水或七水硫酸镁在350℃下恒温3.5h,脱除结晶水,使其转变为无水硫酸镁,经研磨后使无水硫酸镁的粒度控制在<74μm,将无水硫酸镁在高温炉中焙烧,温度为1200℃,升温制度20℃/min,焙烧时间为30min,经空气冷却,可以获得氧化镁超细粉体材料,硫酸镁的分解率为97.5%,氧化镁含量为99%,活性(碘吸附值)为84,氧化镁颗粒尺寸为1.4μm。
实施例5:将一水或七水硫酸镁在450℃下恒温1.5h,脱除结晶水,使其转变为无水硫酸镁,经研磨后使无水硫酸镁的粒度控制在<74μm,将无水硫酸镁在高温炉中焙烧,温度为1150℃,升温制度30℃/min,焙烧时间为40min,经空气冷却,可以获得氧化镁超细粉体材料,硫酸镁的分解率为97%,氧化镁含量为98.5%,活性(碘吸附值)为83,氧化镁颗粒尺寸为1.5μm。
实施例6:将一水或七水硫酸镁在400℃下恒温2h,脱除结晶水,使其转变为无水硫酸镁,经研磨后使无水硫酸镁的粒度控制在<74μm,将无水硫酸镁在高温炉中焙烧,温度为1100℃,升温制度50℃/min,焙烧时间为50min,经空气冷却,可以获得氧化镁超细粉体材料,硫酸镁的分解率为97.5%,氧化镁含量为98.2%,活性(碘吸附值)为82,氧化镁颗粒尺寸为1.7μm。
实施例7:将一水或七水硫酸镁在500℃下恒温1h,脱除结晶水,使其转变为无水硫酸镁,经研磨后使无水硫酸镁的粒度控制在<74μm,将无水硫酸镁在高温炉中焙烧,温度为1050℃,升温制度10℃/min,焙烧时间为60min,经空气冷却,可以获得氧化镁超细粉体材料,硫酸镁的分解率为97%,氧化镁含量为98.5%,活性(碘吸附值)为81,氧化镁颗粒尺寸为1.9μm。
实施例8:将一水或七水硫酸镁在380℃下恒温2h,脱除结晶水,使其转变为无水硫酸镁,经研磨后使无水硫酸镁的粒度控制在<74μm,将无水硫酸镁在高温炉中焙烧,温度为1250℃,升温制度80℃/min,焙烧时间为25min,经空气冷却,可以获得氧化镁超细粉体材料,硫酸镁的分解率为99%,氧化镁含量为99%,活性(碘吸附值)为87,氧化镁颗粒尺寸为0.8μm。
实施例9:将一水或七水硫酸镁在350℃下恒温2h,脱除结晶水,使其转变为无水硫酸镁,经研磨后使无水硫酸镁的粒度控制在<74μm,将无水硫酸镁在高温炉中焙烧,温度为1350℃,升温制度70℃/min,焙烧时间为10min,经空气冷却,可以获得氧化镁超细粉体材料,硫酸镁的分解率为99%,氧化镁含量为99%,活性(碘吸附值)为90,氧化镁颗粒尺寸为0.4μm。
实施例10:将一水或七水硫酸镁在380℃下恒温2h,脱除结晶水,使其转变为无水硫酸镁,经研磨后使无水硫酸镁的粒度控制在<74μm,将无水硫酸镁在高温炉中焙烧,温度为1400℃,升温制度50℃/min,焙烧时间为5min,经空气冷却,可以获得氧化镁超细粉体材料,硫酸镁的分解率为99%,氧化镁含量为99%,活性(碘吸附值)为92,氧化镁颗粒尺寸为0.3μm。

Claims (3)

1.一种快速热解硫酸镁制备活性亚微米氧化镁的方法,其特征在于如下步骤:
①将一水硫酸镁或七水硫酸镁在300-500℃下恒温1-4h,脱除硫酸镁中结晶水;
②将脱除结晶水后的硫酸镁研磨至<74μm;
③将研磨后的无水硫酸镁在高温炉中进行热分解,焙烧后即得亚微米氧化镁;
所述的培烧时间为5min-60min;所述的焙烧温度为1000℃-1500℃,且焙烧升温速率为5℃/min-100℃/min。
2.根据权利要求1所述的方法,其特征在于,步骤③中,焙烧结束后将氧化镁用空气进行冷却,所产生的余热用于脱除一水硫酸镁或七水硫酸镁中的结晶水。
3.根据权利要求1或2所述的法,其特征在于,步骤③中分解产生的SO2气体用于分解硼镁矿。
CN201910722168.6A 2019-08-06 2019-08-06 一种快速热解硫酸镁制备活性亚微米氧化镁的方法 Pending CN110510644A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910722168.6A CN110510644A (zh) 2019-08-06 2019-08-06 一种快速热解硫酸镁制备活性亚微米氧化镁的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910722168.6A CN110510644A (zh) 2019-08-06 2019-08-06 一种快速热解硫酸镁制备活性亚微米氧化镁的方法

Publications (1)

Publication Number Publication Date
CN110510644A true CN110510644A (zh) 2019-11-29

Family

ID=68624405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910722168.6A Pending CN110510644A (zh) 2019-08-06 2019-08-06 一种快速热解硫酸镁制备活性亚微米氧化镁的方法

Country Status (1)

Country Link
CN (1) CN110510644A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661178A (zh) * 2020-12-25 2021-04-16 山东信能达工程科技有限公司 高纯氧化镁的制备生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439658A (en) * 1993-09-03 1995-08-08 The Babcock & Wilcox Company Regenerable magnesium dry scrubbing
CN101683988A (zh) * 2008-09-23 2010-03-31 东北大学 一种利用含镁物料生产系列镁质化工产品的方法
CN102173439A (zh) * 2011-01-30 2011-09-07 北京科技大学 一种利用天然气还原热解硫酸镁生产高纯氧化镁的方法
CN104073870A (zh) * 2014-06-20 2014-10-01 沈阳理工大学 一种利用菱镁矿制备亚微米级碱式硫酸镁晶须的方法及产品
CN206172996U (zh) * 2016-08-08 2017-05-17 辽宁信威环保科技有限公司 利用硫酸镁亚硫酸镁废渣再生氧化镁和回收酸成套装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439658A (en) * 1993-09-03 1995-08-08 The Babcock & Wilcox Company Regenerable magnesium dry scrubbing
CN101683988A (zh) * 2008-09-23 2010-03-31 东北大学 一种利用含镁物料生产系列镁质化工产品的方法
CN102173439A (zh) * 2011-01-30 2011-09-07 北京科技大学 一种利用天然气还原热解硫酸镁生产高纯氧化镁的方法
CN104073870A (zh) * 2014-06-20 2014-10-01 沈阳理工大学 一种利用菱镁矿制备亚微米级碱式硫酸镁晶须的方法及产品
CN206172996U (zh) * 2016-08-08 2017-05-17 辽宁信威环保科技有限公司 利用硫酸镁亚硫酸镁废渣再生氧化镁和回收酸成套装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中国菱镁行业协会组编: "《镁质胶凝材料及制品技术》", 31 January 2013, 北京:中国建材工业出版社 *
化学工业部天津化工研究院等编: "《化工产品手册 无机化工产品》", 31 October 1993 *
宋月清等: "《人造金刚石工具手册》", 31 January 2014, 北京:冶金工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661178A (zh) * 2020-12-25 2021-04-16 山东信能达工程科技有限公司 高纯氧化镁的制备生产工艺

Similar Documents

Publication Publication Date Title
CN108675327B (zh) 一种低钠亚微米煅烧氧化铝的制备方法
CN108862391B (zh) 一种低费氏氧化钨及其制备方法
CN110127708B (zh) 一种SiO2纯度≥99.99%高纯石英砂的提纯方法
US9394183B2 (en) Method for producing a high-purity nanometer zinc oxide from electrolytic zinc acid leaching residues by ammonia decarburization
CN107904403A (zh) 一种钒钛系脱硝废催化剂综合回收利用的方法
CN101597697A (zh) 一种从含钒石煤矿中提取五氧化二钒的清洁生产工艺
CN105293555B (zh) 一种利用锶渣制备高纯氯化锶的方法
CN101851004B (zh) 用残坡积型钛铁矿生产人造金红石的方法
CN114318008A (zh) 一种硝酸二次逆向浸出锂辉石提锂的方法
CN110510644A (zh) 一种快速热解硫酸镁制备活性亚微米氧化镁的方法
CN107460345A (zh) 一种生产高钛渣的方法
CN108044126A (zh) 利用废旧硬质合金制备板状结构WC-Co复合粉末的方法
CN102351227B (zh) 一种从粉煤灰中一步提取氧化铝的方法
CN113979441A (zh) 一种石墨固废资源化的方法
CN103408049B (zh) 一种由刚玉渣制备偏铝酸钠的方法
CN102659155A (zh) 低温酸溶浸取粉煤灰中氧化铝的方法
CN103787341A (zh) 一种利用黑曜石生产白炭黑的方法
CN107151025A (zh) 一种重负荷砂轮中的磨料回收方法
CN104261454A (zh) 一种制备氧化铈抛光粉的生产工艺
CN105197940A (zh) 一种利用水淬高炉渣制备白炭黑的方法
CN101993112B (zh) 一种低硫氧化铬绿的清洁制备方法
CN107601493A (zh) 一种二次酸浸结合热活化制备高纯度石墨的方法
CN114192556A (zh) 一种煤矸石焙烧除铁增白方法及其制备的增白煤矸石材料
CN103408051A (zh) 一种氧化钙团块高活性与高强度耦合调控方法
CN105753024A (zh) 一种基于石灰烧结法的粉煤灰提取氧化铝的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191129