CN110499489B - 一种半导体/金属异质结纳米线阵列材料的制备工艺 - Google Patents

一种半导体/金属异质结纳米线阵列材料的制备工艺 Download PDF

Info

Publication number
CN110499489B
CN110499489B CN201910666153.2A CN201910666153A CN110499489B CN 110499489 B CN110499489 B CN 110499489B CN 201910666153 A CN201910666153 A CN 201910666153A CN 110499489 B CN110499489 B CN 110499489B
Authority
CN
China
Prior art keywords
semiconductor
metal
nanowire array
deposition
aao template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910666153.2A
Other languages
English (en)
Other versions
CN110499489A (zh
Inventor
李文新
周佩珩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910666153.2A priority Critical patent/CN110499489B/zh
Publication of CN110499489A publication Critical patent/CN110499489A/zh
Application granted granted Critical
Publication of CN110499489B publication Critical patent/CN110499489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明属于纳米材料制备技术领域,涉及模板‑电化学沉积技术,具体涉及一种半导体/金属异质结纳米线阵列材料的制备工艺。本发明提出了新的观点,基于AAO模板‑电化学沉积法,通过优化设计制备工艺参数,使得最终制备的半导体/金属异质结纳米线阵列材料在异质结接触界面附近的纳米线规整、均匀,从而进一步提升非金属‑金属异质结纳米线阵列器件性能。

Description

一种半导体/金属异质结纳米线阵列材料的制备工艺
技术领域
本发明属于纳米材料制备技术领域,涉及模板-电化学沉积技术,具体涉及一种半导体/金属异质结纳米线阵列材料的制备工艺。
背景技术
半导体/金属异质结纳米材料是由性质不同的半导体和金属按一定的生长方式,通过异质结连接而成的纳米结构。由于半导体和金属纳米材料具有不同的化学与物理性质,所以当半导体与金属纳米材料结合在一起会产生一些新的特性。同时,通过调节半导体/金属纳米材料的尺寸、形状和触点的结合方式,可以进一步拓展半导体/金属异质结纳米材料的应用范围。其中,一维的半导体/金属异质结纳米材料因具有独特的结构以及性能,在纳米电子器件的制作中有着至关重要的作用,是由于纳米电子器件只有在半导体金属异质结存在的条件下,才会存在欧姆接触特性或者高的肖特基势垒,从而使得纳米器件具有良好的热稳定性和低的接触电阻。因此,如何有效地制备一维半导体/金属异质结纳米线阵列材料成为探索热点。
AAO模板-电化学沉积法在制备一维纳米线等纳米材料方面有很多优势,比如孔径一致且高度有序,材料分散性好,价格低廉,工艺过程简单,可控性高,能有效地控制异质结纳米材料的尺寸、长度和异质结数量。例如,国外的K.M.Reddy等人采用基于AAO模板电化学沉积法首先制备Au-Fe-Au异质结纳米线阵列,再氧化得到Au-Fe3O4-Au异质结纳米线阵列。
目前人们关注的是如何有效地控制异质结纳米材料的尺寸、长度和异质结数量,以及材料的选择,最终实现异质结纳米线阵列的器件性能调控。然而没有从多个角度考虑如何提升异质结纳米线阵列的器件性能。
发明内容
针对上述问题,针对现有非金属-金属异质结纳米线阵列器件性能提升手段相对单一的问题,本发明提供了一种半导体/金属异质结纳米线阵列材料的制备工艺,针对半导体/金属异质结纳米线阵列材料接触界面附近纳米线不规整的问题,能有效地制备规整的半导体/金属异质结纳米线阵列材料,从而提升半导体/金属异质结纳米线阵列的器件性能。
一种半导体/金属异质结纳米线阵列材料的制备工艺,包括以下步骤:
步骤1、采用磁控溅射镀膜方法在选定的双通AAO模板A面镀一层厚度为100nm-200nm的金属膜;所述双通AAO模板厚度15-25μm,孔径35nm-50nm(二次阳极氧化过程中正对电极的为A面,另一面为B面);
步骤2、将步骤1所得双通AAO模板镀有金属膜的面与铝箔条贴合,然后采用有孔的塑封膜和贴合铝箔条的模板塑封,孔的直径为1-2cm;
步骤3、将步骤2所得塑封后的双通AAO模板浸入半导体的沉积液中,采用CHI660电化学工作站下三电极沉积系统(含有金属膜的双通AAO模板作为工作电极,Pt作为对电极,饱和甘汞电极(Ag/AgCl)作为参比电极),沉积半导体纳米线直至沉积电流发生突变前(所谓突变是双通AAO模板表面开始沉积副产物,不利于后面金属纳米线在模板孔内的沉积),沉积电压为半导体材料的还原电压。
步骤4、将上述步骤3所得沉积有半导体纳米线的双通AAO模板浸入去离子水中静置,以排除双通AAO模板孔内残留的半导体沉积液的离子。随后放入到金属的沉积液中,在金属的还原电压范围内开始沉积半导体/金属异质结纳米线阵列材料。
在去离子水中静置的原理是:排除AAO模板未沉积半导体纳米线孔壁上残余的半导体离子,使得后续沉积金属的成核点都在已沉积的半导体纳米线的顶部,这样就能实现异质结纳米线接触规整、均匀。
制备的异质结纳米线阵列的质量跟选取的材料有很大的关系,对于金属材料来说,导电性好,形成异质结构相对比较容易。但是对于非金属-金属材料来说,想要制备规整,均匀,接触良好的异质结纳米线阵列,有一定的难度,工艺参数及工艺过程对其影响较大。本发明制备的半导体/金属异质结纳米线阵列材料有很好的均匀性和可控性,异质结接触良好,可以通过调节AAO模板的孔径,厚度,沉积电势等来调节异质结纳米线阵列材料的尺寸,长度,异质结数量等。
目前人们在制备非金属-金属异质结纳米线阵列时,并没有意识到接触界面附近的纳米线不规整带来的的问题。例如,Changhao Liang等人制备的AgI/Ag异质结纳米线,AgI/Ag纳米线在接触界面附近的纳米线不规整,如附图7。本发明提出了新的观点,通过优化设计制备工艺参数,使得最终制备的半导体/金属异质结纳米线阵列材料在异质结接触界面附近的纳米线规整、均匀,从而进一步提升非金属-金属异质结纳米线阵列器件性能。
附图说明
图1为步骤3中A面喷金并塑封好的双通AAO模板实物图;
图2为实施例1步骤二沉积Bi2Te3纳米线的i-t图;
图3为实施例1步骤二沉积了Bi2Te3纳米线的实物图;
图4为实施例1步骤三沉积Au纳米线的i-t图;
图5为实施例1步骤三沉积了Bi2Te3-Au纳米线阵列异质结构的实物图;
图6为实施例1的沉积Bi2Te3-Au纳米线阵列异质结构的SEM图;
图7为现有技术制备AgI/Ag异质结纳米线的SEM图;
图8为实施例1步骤三在去离子水中静置时间改为0min,15min所得Bi2Te3-Au纳米线阵列异质结构的SEM图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
Bi2Te3/Au异质结纳米线阵列材料的制备工艺:
Bi-Te沉积液的配置:(1)将12.126g的Bi(NO3)3·5H2O溶解在46.33g质量分数为68%的浓硝酸中,加入到去离子水中,稀释到500ml,取40ml。(2)将3.89g TeO2溶解在231.98g质量分数为68%的浓硝酸中,加入去离子水中,稀释到500ml,取60ml。(3)将40ml含有Bi3+的溶液与60ml含有HTeO2 +的溶液混合均匀搅拌静置一天,就得到了M(Bi3+:HTeO2 +)=4:6的Bi-Te沉积液。
Au沉积液的配置:将0.093g HAuCl4·3H2O与3g硼酸混合,加入100ml去离子水,搅拌至固体全部溶解,就得到了Au的沉积液。
步骤1、选择厚度20μm,孔径为40nm,A面喷有200nm Au膜并塑封好的双通AAO模板;
步骤2、将步骤1中的双通AAO模板作为工作电极,Pt作为对电极,饱和甘汞电极(Ag/AgCl)作为参比电极,在CHI660电化学工作站三电极体系下沉积Bi2Te3纳米线(沉积液采用M(Bi3+:HTeO2 +)=4:6,沉积电压为0.1V)。(选择0.1V的原因:在还原电压范围内,0.1V电压下,沉积速率比较慢,沉积的Bi2Te3纳米线更规整,更均匀)。
步骤3、将上述沉积Bi2Te3纳米线的样品用去离子水清洗干净烘干,放在盛有去离子水的烧杯中静置30min,排除残留在模板孔内Bi-Te沉积液中的离子,随后,在Au的沉积液中静置10s(待沉积Bi2Te3纳米线的样品在Au的沉积液中稳定后,以达到沉积效果更佳的目的),开始沉积Au纳米线,沉积电压为0.3V。这样就制备出了Bi2Te3-Au异质结纳米线阵列(选择0.3V的原因:在Bi2Te3纳米线上继续沉积Au纳米线与直接在金属电极上沉积纳米线存在差异,选择0.3V的沉积电压可以抑制还原成氢气的过程,并且可以沉积Au纳米线)。
对实施例1得到的样品进行SEM分析,发现基于模板电化学沉积法,采用上述工艺制备的异质结纳米线阵列材料填充率高,均匀,工艺简单,可控性高,两种材料界面接触良好。
综上可见,本发明提出的基于AAO模板电化学沉积法,Bi2Te3-Au异质结纳米线阵列材料的制备工艺,保证了纳米线的均匀性,填充率高,工艺稳定,且两种材料在界面接触良好,形成半导体-金属接触,为一维半导体/金属异质结纳米线阵列材料的制备提供了一种稳定,简单的制备方法。

Claims (2)

1.一种半导体/金属异质结纳米线阵列材料的制备工艺,包括以下步骤:
步骤1、采用磁控溅射镀膜方法在选定的双通AAO模板A面镀一层厚度为100nm-200nm的金属膜;所述双通AAO模板厚度15-25μm,孔径35nm-50nm,二次阳极氧化过程中正对电极的为A面,另一面为B面;
步骤2、将步骤1所得双通AAO模板镀有金属膜的面与铝箔条贴合,然后采用有孔的塑封膜和贴合铝箔条的模板塑封,孔的直径为1-2cm;
步骤3、将步骤2所得塑封后的双通AAO模板浸入半导体的沉积液中,采用CHI660电化学工作站下三电极沉积系统,含有金属膜的双通AAO模板作为工作电极,Pt作为对电极,饱和甘汞电极Ag/AgCl作为参比电极,沉积半导体纳米线直至沉积电流发生突变前,沉积电压为半导体材料的还原电压;所述突变是指双通AAO模板表面开始沉积副产物;
步骤4、将上述步骤3所得沉积有半导体纳米线的双通AAO模板浸入去离子水中静置,以排除双通AAO模板孔内残留的半导体沉积液的离子;随后放入到金属的沉积液中,在金属的还原电压范围内沉积半导体/金属异质结纳米线阵列材料;
所述半导体材料为Bi2Te3,金属为Au,最终制备的半导体/金属异质结纳米线阵列材料为Bi2Te3/Au异质结纳米线阵列材料。
2.如权利要求1所述半导体/金属异质结纳米线阵列材料的制备工艺,其特征在于:所述步骤4中,开始沉积金属纳米线前,先在去离子水中静置30min,以使得沉积效果更佳。
CN201910666153.2A 2019-07-23 2019-07-23 一种半导体/金属异质结纳米线阵列材料的制备工艺 Active CN110499489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910666153.2A CN110499489B (zh) 2019-07-23 2019-07-23 一种半导体/金属异质结纳米线阵列材料的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910666153.2A CN110499489B (zh) 2019-07-23 2019-07-23 一种半导体/金属异质结纳米线阵列材料的制备工艺

Publications (2)

Publication Number Publication Date
CN110499489A CN110499489A (zh) 2019-11-26
CN110499489B true CN110499489B (zh) 2021-06-01

Family

ID=68586687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910666153.2A Active CN110499489B (zh) 2019-07-23 2019-07-23 一种半导体/金属异质结纳米线阵列材料的制备工艺

Country Status (1)

Country Link
CN (1) CN110499489B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795963B (zh) * 2020-12-28 2022-05-27 青岛大学 一种简易快速制备超微电极阵列的方法
CN114335244B (zh) * 2021-12-28 2024-05-14 华中科技大学 热载流子双向分离型类p-i-n型二维异质结及制备方法、器件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311382A (zh) * 2008-04-09 2008-11-26 中国科学技术大学 一种Te/Bi或Te/Bi2Te3核壳异质结结构纳米线及其制备方法
JP2008311396A (ja) * 2007-06-14 2008-12-25 National Institute For Materials Science 薄壁のグラフィチック・カーボンナノチューブで被覆されたヘテロ接合含有窒化マグネシウム・ナノワイヤ及びガリウム・ナノワイヤ
CN101345290A (zh) * 2008-09-05 2009-01-14 中国科学院化学研究所 一种硫化镉/有机半导体异质结纳米线及其制备方法
CN101752211A (zh) * 2008-12-02 2010-06-23 国家纳米科学中心 含无机/有机异质结纳米线的制备方法
CN102244002A (zh) * 2011-07-14 2011-11-16 合肥工业大学 金属/半导体纳米线交叉结构异质结的制备方法
CN102420244A (zh) * 2011-11-14 2012-04-18 清华大学 一种一维金属/半导体纳米异质结晶体管及其制备方法
CN103721708A (zh) * 2014-01-08 2014-04-16 济南大学 一种银/二氧化钛复合异质结构及其制备方法
US8937294B2 (en) * 2013-03-15 2015-01-20 Rohm And Haas Electronic Materials Llc Multi-heterojunction nanoparticles, methods of manufacture thereof and articles comprising the same
CN107359239A (zh) * 2017-06-07 2017-11-17 同济大学 锌铋碲异质相变纳米线材料及其制备方法和应用
CN108426922A (zh) * 2018-01-29 2018-08-21 湘潭大学 一种基于二氧化钛/钒酸铟异质结构纳米纤维的气敏元件及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787190B1 (ko) * 2015-07-02 2017-10-18 한국과학기술원 나노입자 촉매가 포함된 금속유기구조체를 이용하여 기능화된, 다공성 금속산화물 복합체 나노섬유 및 이를 이용한 가스센서용 부재, 가스센서 및 그 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311396A (ja) * 2007-06-14 2008-12-25 National Institute For Materials Science 薄壁のグラフィチック・カーボンナノチューブで被覆されたヘテロ接合含有窒化マグネシウム・ナノワイヤ及びガリウム・ナノワイヤ
CN101311382A (zh) * 2008-04-09 2008-11-26 中国科学技术大学 一种Te/Bi或Te/Bi2Te3核壳异质结结构纳米线及其制备方法
CN101345290A (zh) * 2008-09-05 2009-01-14 中国科学院化学研究所 一种硫化镉/有机半导体异质结纳米线及其制备方法
CN101752211A (zh) * 2008-12-02 2010-06-23 国家纳米科学中心 含无机/有机异质结纳米线的制备方法
CN102244002A (zh) * 2011-07-14 2011-11-16 合肥工业大学 金属/半导体纳米线交叉结构异质结的制备方法
CN102420244A (zh) * 2011-11-14 2012-04-18 清华大学 一种一维金属/半导体纳米异质结晶体管及其制备方法
US8937294B2 (en) * 2013-03-15 2015-01-20 Rohm And Haas Electronic Materials Llc Multi-heterojunction nanoparticles, methods of manufacture thereof and articles comprising the same
CN103721708A (zh) * 2014-01-08 2014-04-16 济南大学 一种银/二氧化钛复合异质结构及其制备方法
CN107359239A (zh) * 2017-06-07 2017-11-17 同济大学 锌铋碲异质相变纳米线材料及其制备方法和应用
CN108426922A (zh) * 2018-01-29 2018-08-21 湘潭大学 一种基于二氧化钛/钒酸铟异质结构纳米纤维的气敏元件及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"growth of III-V semiconductor nanowires and their heterostructures";Ang Li et al.;《Science China Materials》;20160129;第51-91页 *
"synthesis and photoluminescence properties of CdSe-Ag2Se and CdSe-Ag coaxial hetero-nanotube arrays";J.B et al.;《physical journal applied physics》;20130329;第10403-p1-10403-p6页 *
"two-segment CdS/Bi nanowire heterojunctions arrays and their electronic transport properties";Dachi Yang et al.;《materials letters》;20080307;第3213-3216页 *
"电沉积纳米异质结构生长机制的分析";李伟;《高师理科学刊》;20090130;第29卷(第1期);第62-64页 *

Also Published As

Publication number Publication date
CN110499489A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
Jin et al. A new twist on nanowire formation: Screw-dislocation-driven growth of nanowires and nanotubes
JP6989584B2 (ja) Co2還元触媒、co2還元電極、co2還元反応装置およびco2還元触媒の製造方法
CN110499489B (zh) 一种半导体/金属异质结纳米线阵列材料的制备工艺
Ding et al. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation
CN101498050B (zh) 一种镍锌合金纳米线阵列材料的制备方法
CN110462773A (zh) 具有硅纳米结构的片上超级电容器
Mebed et al. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates
US20180319664A1 (en) Method for making three-dimensional porous composite structure
CN107195605A (zh) 以薄镍层作为阻挡层的铜镍锡微凸点结构及其制备方法
JP5525090B2 (ja) 多元系ナノワイヤーの製造方法
DE102008058400A1 (de) Nanodrähte auf Substratoberflächen, Verfahren zu deren Herstellung sowie deren Verwendung
CN102230224A (zh) 一种Ag2Se纳米线的热蒸发合成方法及电学测量器件制备方法
Biçer et al. Selective electrodeposition and growth mechanism of thermoelectric bismuth-based binary and ternary thin films
CN101255600B (zh) 一种制备ZnO基稀磁半导体纳米线阵列的方法
Li et al. Electrodeposition and characterization of thermoelectric Bi2Te2Se/Te multilayer nanowire arrays
EP2138609B1 (en) Method for growing mono-crystalline nanostructures and use thereof in semiconductor device fabrication
Vidu et al. Electrochemical deposition of Co–Sb thin films on nanostructured gold
Shimizu et al. Formation of three-dimensional nano-trees with perpendicular branches by electrodeposition of CuSn alloy
Wang et al. Electrodeposition of tubular-rod structure gold nanowires using nanoporous anodic alumina oxide as template
Shiave et al. Morphological and growth characteristics of template-assisted electrodeposited cobalt nanowires: effect of synthesis current density and temperature
Sun et al. Morphology and properties of ZnO nanostructures by electrochemical deposition: effect of the substrate treatment
US9388498B2 (en) Electrochemical liquid-liquid-solid deposition processes for production of group IV semiconductor materials
Grevtsov et al. Selective electrochemical deposition of indium in-between silicon nanowire arrays fabricated by metal-assisted chemical etching
Zhou et al. Kinetically controlled growth of fine gold nanofractals from Au (I) via indirect galvanic replacement reaction
CN110257733B (zh) 一种Ni-Pd-P非晶合金纳米线及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant