CN110491681A - Co3O4/CoNi2S4三维核壳材料用于柔性超级电容器 - Google Patents

Co3O4/CoNi2S4三维核壳材料用于柔性超级电容器 Download PDF

Info

Publication number
CN110491681A
CN110491681A CN201910755892.9A CN201910755892A CN110491681A CN 110491681 A CN110491681 A CN 110491681A CN 201910755892 A CN201910755892 A CN 201910755892A CN 110491681 A CN110491681 A CN 110491681A
Authority
CN
China
Prior art keywords
coni
electrode
mol
mof
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910755892.9A
Other languages
English (en)
Inventor
韩丹丹
魏金鹤
赵远
潘怡帆
申烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Institute of Chemical Technology
Original Assignee
Jilin Institute of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Institute of Chemical Technology filed Critical Jilin Institute of Chemical Technology
Priority to CN201910755892.9A priority Critical patent/CN110491681A/zh
Publication of CN110491681A publication Critical patent/CN110491681A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本专利涉及Co3O4/CoNi2S4三维核壳电极材料的制备方法,针对实施例1中的图2产物形貌,所得的复合材料具有规则多孔的三维核壳结构,Co3O4骨架良好的电子收集能力和CoNi2S4良好的电容性能够协同增效,相互修正,使得核材料的电化学特性得到充分发挥,电化学测试结果表明,在电流密度为1 A·g‑1时,单电极比容量达到1955.6 F·g‑1,当电流密度增大到8 A·g‑1时,比容量的保持率为90.3%。

Description

Co3O4/CoNi2S4三维核壳材料用于柔性超级电容器
技术领域
本发明属于超级电容器器件技术领域,具体涉及用于柔性超级电容器的Co3O4/CoNi2S4三维核壳复合材料的制备方法。
背景技术
电极材料的电化学活性直接决定器件的电容性能,因此,活性电极材料的开发便成为ECs研究和应用的重点,通常,用于ECs的电极材料包括炭材料、金属氧化物和导电聚合物三大类,炭材料电极通过电解液与电极的界面处形成的双电层存储能量(双电层电容);金属氧化物及导电聚合物材料电极则通过快速可逆的氧化还原反应获得法拉第电容(赝电容),此法拉第电容一般远大于炭材料获得的双电层电容。作为ECs 电极材料使用的贵金属氧化物(如RuO2)具有非常优良的电化学电容性质,但昂贵的价格和剧毒性大大制约其作为电化学电容器电极材料的应用和商品化,研究者尝试通过不同方法制备氧化钴(Co3O4)、氧化镍(NiO)、氧化锡(SnO2)和氧化锰( MnOx)等贱金属氧化物,作为贵金属氧化物的替代品,电极的比容量、充放电效率和长循环寿命显著提高。
申请号为201710204965.6的中国发明专利公开了一种Ti基底负载空心针状NiCo2S4电极的制备方法,具体公开了在Ti基底上,经过水热合成Ni-Co针状前驱体,并经过硫化处理得到NiCo2S4;申请号为201611255619.2的中国发明专利公开了一种Co3O4多孔纳米片阵列的制备方法,具体公开了将重结晶硝酸钴/碳纤维纸焙烧得到生长于碳纤维纸基底的多孔Co3O4纳米片阵列。各种合成方法用于提高金属氧化物或硫化物的比容量,但单一化合物材料的自身缺陷如低电导率,晶型结构有限,比容量较低,且制备方法复杂等缺陷仍是限制高性能电极材料进一步应用的关键。
金属有机骨架(MOFs)可以提供丰富的孔隙和通道,促进电子转移,均匀地暴露反应位点,有利于提高超级电容器的电化学性能,因此,MOF衍生的金属氧化物电极材料可以促进其发展,特别是MOF中的金属离子通常是过渡金属离子,这有利于提高衍生材料的电化学性质,本发明利用Co-MOF衍生金属氧化物Co3O4,充分保留了MOF的结构特点,从而作为骨架外延生长复合材料;在众多的正极材料中,过渡金属硫化物,特别是CoNi2S4电极材料,由于其具有复杂的价态、晶型,大的晶格距离,高比容量和导电性,成为一种有发展前途的新型电极材料,然而,单一材料都存在各种缺陷,将两种材料进行复合,Co3O4骨架良好的电子收集能力和CoNi2S4良好的电容性,能够协同增效,相互修正,使得核材料的电化学特性得到充分发挥。
发明内容
本发明将有机金属框架MOF衍生的金属氧化物与金属硫化物复合,直接生长在柔性导电基底碳布上,制备的三维核壳多孔材料用于柔性超级电容器电极,提供了一种具有协同增效、较高比容量和优良的倍率特性的超级电容器用复合电极材料的制备方法。
为解决上述技术问题,本发明采取如下技术方案:本发明的基于MOF转变的Co3O4/CoNi2S4核壳复合材料超级电容器电极的制备方法,首先在柔性基底碳布上原位生长Co-MOF纳米片阵列,并在空气中煅烧得到Co3O4,以此为骨架电沉积CoNi2S4壳层,具体包括如下步骤:(1)50 mmol 的Co(NO3)2·6H2O,0.4 mol的C4H6N2,分别溶于40 mL蒸馏水中,充分溶解混合后,将碳布呈60º 置于溶液中,室温反应4h,洗涤烘干后得到生长在碳布上Co-MOF阵列;将制备的CC/Co-MOF阵列在空气中350 ℃,升温速率为2 ℃· min-1下进行退火2 h,得到CC/Co3O4阵列。
(2)将CC/Co3O4电极浸入5 mmol CoCl2·6H2O,7.5 mmol NiCl2·6H2O和0.75 molCS(NH2)2的混合溶液中,调整溶液pH值至6。以铂片为对电极,以Ag/AgCl为参比电极,在-1.2~ 0.2 V电压范围内,以10 mV· s-1扫描速率循环2800 s,得到Co3O4/CoNi2S4核壳复合材料。洗涤后,80 ℃真空干燥箱干燥12 h。
所得的四氧化三钴材料是由边缘卷曲的二维纳米片垂直生长在柔性基底碳布上所构成的结构相连的三维多孔结构,复合后的材料具有规则的三维多孔核壳结构,纳米片厚度为100-200 nm,Co3O4骨架良好的电子收集能力和CoNi2S4良好的电容性能够协同增效,相互修正,使得核材料的电化学特性得到充分发挥,电化学测试结果表明,在电流密度为1A·g-1时,单电极比容量达到1955.6 F·g-1,当电流密度增大到8 A·g-1时,比容量的保持率为90.3 %。
附图说明
图1是实施例1中所制备的Co3O4/CoNi2S4核壳复合材料XRD曲线。
图2是实施例1中所制备的Co3O4/CoNi2S4核壳复合材料扫描电镜照片。
图3是实施例1中所制备的Co3O4/CoNi2S4核壳复合材料扫描电镜放大照片。
图4是实施例1中所制备的Co3O4纳米片阵列扫描电镜照片。
图5是实施例1中所制备的Co3O4纳米片阵列扫描电镜放大照片。
图6是实施例1中所制备的Co3O4/CoNi2S4核壳复合材料的循环伏安对比曲线。
图7是实施例1中所制备的Co3O4/CoNi2S4核壳复合材料的充放电对比曲线。
具体实施方式
下面结合实施例对本发明的技术方案及效果作进一步描述。但是,所使用的具体方法、配方和说明并不是对本发明的限制。
实施例1:将0.05 mol 的Co(NO3)2·6H2O,0.4 mol的C4H6N2,分别溶于40 mL蒸馏水中,上述溶液混合后,将碳布呈60º 置于溶液中,室温反应4h,洗涤烘干后得到生长在碳布上Co-MOF阵列;将制备的CC/Co-MOF阵列在空气中350 ℃,升温速率为2 ℃·min-1,进行退火2 h,得到CC/Co3O4阵列;将CC/Co3O4电极浸入5 mmol CoCl2·6H2O,7.5 mmol NiCl2·6H2O和0.75 mol CS(NH2)2的混合溶液中,调整溶液pH值至6。以铂片为对电极,以Ag/AgCl为参比电极,在-1.2 ~ 0.2 V电压范围内,以10 mV· s-1扫描速率循环20次,洗涤后,80 ℃真空干燥箱干燥12 h得到Co3O4/CoNi2S4核壳复合材料。
实施例2:将0.06 mol 的Co(NO3)2·6H2O,0.48 mol的C4H6N2,分别溶于40 mL蒸馏水中,上述溶液混合后,将碳布呈60º 置于溶液中,室温反应4h,洗涤烘干后得到生长在碳布上Co-MOF阵列;将制备的CC/Co-MOF阵列在空气中350 ℃,升温速率为2 ℃·min-1,进行退火2 h,得到CC/Co3O4阵列;将CC/Co3O4电极浸入5 mmol CoCl2·6H2O,7.5 mmol NiCl2·6H2O和0.75 mol CS(NH2)2的混合溶液中,调整溶液pH值至6。以铂片为对电极,以Ag/AgCl为参比电极,在-1.2 ~ 0.2 V电压范围内,以10 mV· s-1扫描速率循环20次,洗涤后,80 ℃真空干燥箱干燥12 h得到Co3O4/ CoNi2S4核壳复合材料。
实施例3:将0.05 mol 的Co(NO3)2·6H2O,0.4 mol的C4H6N2,分别溶于40 mL蒸馏水中,上述溶液混合后,将碳布呈60º 置于溶液中,室温反应4h,洗涤烘干后得到生长在碳布上Co-MOF阵列;将制备的CC/Co-MOF阵列在空气中350 ℃,升温速率为2 ℃·min-1,进行退火2 h,得到CC/Co3O4阵列;将CC/Co3O4电极浸入5 mmol CoCl2·6H2O,7.5 mmol NiCl2·6H2O和0.75 mol CS(NH2)2的混合溶液中,调整溶液pH值至6。以铂片为对电极,以Ag/AgCl为参比电极,在-1.2 ~ 0.2 V电压范围内,以5 mV· s-1扫描速率循环20次,洗涤后,80 ℃真空干燥箱干燥12 h得到Co3O4/CoNi2S4核壳复合材料。
实施例4:将0.05 mol 的Co(NO3)2·6H2O,0.4 mol的C4H6N2,分别溶于40 mL蒸馏水中,上述溶液混合后,将碳布呈60º 置于溶液中,室温反应4h,洗涤烘干后得到生长在碳布上Co-MOF阵列;将制备的CC/Co-MOF阵列在空气中350 ℃,升温速率为2 ℃·min-1,进行退火2 h,得到CC/Co3O4阵列;将CC/Co3O4电极浸入5 mmol CoCl2·6H2O,7.5 mmol NiCl2·6H2O和0.75 mol CS(NH2)2的混合溶液中,调整溶液pH值至6。以铂片为对电极,以Ag/AgCl为参比电极,在-1.2 ~ 0.2 V电压范围内,以15 mV· s-1扫描速率循环20次,洗涤后,80 ℃真空干燥箱干燥12 h得到Co3O4/CoNi2S4核壳复合材料。
实施例5:将0.05 mol 的Co(NO3)2·6H2O,0.4 mol的C4H6N2,分别溶于40 mL蒸馏水中,上述溶液混合后,将碳布呈60º 置于溶液中,室温反应4 h,洗涤烘干后得到生长在碳布上Co-MOF阵列;将制备的CC/Co-MOF阵列在空气中350 ℃,升温速率为2 ℃·min-1,进行退火2 h,得到CC/Co3O4阵列;将CC/Co3O4电极浸入10 mmol CoCl2·6H2O,15 mmol NiCl2·6H2O和1.5 mol CS(NH2)2的混合溶液中,调整溶液pH值至6。以铂片为对电极,以Ag/AgCl为参比电极,在-1.2 ~ 0.2 V电压范围内,以10 mV· s-1扫描速率循环20次,洗涤后,80 ℃真空干燥箱干燥12 h得到Co3O4/CoNi2S4核壳复合材料。

Claims (2)

1.一种Co3O4/CoNi2S4三维核壳材料,其特征在于,所述Co3O4/CoNi2S4复合材料的骨架材料Co3O4是由Co-MOF衍生而来的,复合后的Co3O4/ CoNi2S4电极材料具有三维核壳多孔结构。
2.一种Co3O4/CoNi2S4三维核壳材料的制备方法,其特征在于,包括如下步骤:将0.05mol 的Co(NO3)2·6H2O,0.4 mol的C4H6N2,分别溶于40 mL蒸馏水中,上述溶液混合后,将碳布呈60º 置于溶液中,室温反应4 h,洗涤烘干后得到生长在碳布上Co-MOF阵列;将制备的CC/Co-MOF阵列在空气中350 ℃,升温速率为2 ℃·min-1,进行退火2 h,得到CC/Co3O4阵列;将CC/Co3O4电极浸入5 mmol CoCl2·6H2O,7.5 mmol NiCl2·6H2O和0.75 mol CS(NH2)2的混合溶液中,调整溶液pH值至6;以铂片为对电极,以Ag/AgCl为参比电极,在-1.2 ~ 0.2V电压范围内,以10 mV·s-1扫描速率循环20次,洗涤后,80 ℃真空干燥箱干燥容性12 h得到Co3O4/CoNi2S4核壳复合材料,Co3O4骨架良好的电子收集能力和CoNi2S4良好的电,能够协同增效,相互修正,使得核材料的电化学特性得到充分发挥。
CN201910755892.9A 2019-08-16 2019-08-16 Co3O4/CoNi2S4三维核壳材料用于柔性超级电容器 Pending CN110491681A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910755892.9A CN110491681A (zh) 2019-08-16 2019-08-16 Co3O4/CoNi2S4三维核壳材料用于柔性超级电容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910755892.9A CN110491681A (zh) 2019-08-16 2019-08-16 Co3O4/CoNi2S4三维核壳材料用于柔性超级电容器

Publications (1)

Publication Number Publication Date
CN110491681A true CN110491681A (zh) 2019-11-22

Family

ID=68551243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910755892.9A Pending CN110491681A (zh) 2019-08-16 2019-08-16 Co3O4/CoNi2S4三维核壳材料用于柔性超级电容器

Country Status (1)

Country Link
CN (1) CN110491681A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110942923A (zh) * 2019-12-02 2020-03-31 吉林化工学院 一种碳布原位生长三明治型核壳电极材料的制备方法
CN111986929A (zh) * 2020-07-31 2020-11-24 江苏大学 一种锰酸钴/硫化镍核壳阵列结构电极材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795245A (zh) * 2015-05-14 2015-07-22 安徽师范大学 一种线状镍钴氧化物@镍钴硫化物异质结构复合材料,其制备方法以及用途
CN109809498A (zh) * 2019-02-03 2019-05-28 复旦大学 一种三维多级孔四氧化三钴材料及其制备方法和应用
CN109921039A (zh) * 2019-03-27 2019-06-21 华南师范大学 一种兼备高载量和活性位点的氧催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795245A (zh) * 2015-05-14 2015-07-22 安徽师范大学 一种线状镍钴氧化物@镍钴硫化物异质结构复合材料,其制备方法以及用途
CN109809498A (zh) * 2019-02-03 2019-05-28 复旦大学 一种三维多级孔四氧化三钴材料及其制备方法和应用
CN109921039A (zh) * 2019-03-27 2019-06-21 华南师范大学 一种兼备高载量和活性位点的氧催化剂及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUAN, CAO; ZHAO, WEI; HU, YATING;ET AL.: ""Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors"", 《NANOSCALE HORIZONS》 *
HONG, WEI; WANG, JINQING; LI, ZHANGPENG; YANG, SHENGRONG.: ""Fabrication of Co3O4@Co-Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage"", 《ENERGY》 *
YING WANG,JUN HUANG,YUJUAN XIAO,ET AL.: ""Hierarchical nickel cobalt sulfide nanosheet on MOF-derived carbon nanowall arrays with remarkable supercapacitive performance"", 《CARBON》 *
杨景海;王三龙;: ""CoO@ Ni-Co-S无粘结剂电极材料非对称型超级电容器性能研究"", 《吉林师范大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110942923A (zh) * 2019-12-02 2020-03-31 吉林化工学院 一种碳布原位生长三明治型核壳电极材料的制备方法
CN110942923B (zh) * 2019-12-02 2021-10-08 吉林化工学院 一种碳布原位生长三明治型核壳电极材料的制备方法
CN111986929A (zh) * 2020-07-31 2020-11-24 江苏大学 一种锰酸钴/硫化镍核壳阵列结构电极材料的制备方法

Similar Documents

Publication Publication Date Title
Lei et al. Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction
CN109252180B (zh) 一种三元mof纳米片阵列材料、制备方法及其应用
Ye et al. Cobalt-iron oxide nanoarrays supported on carbon fiber paper with high stability for electrochemical oxygen evolution at large current densities
CN104681299B (zh) 四氧化三钴多孔纳米线阵列的超级电容器电极材料及其制备方法
Zhang et al. Exceptional lattice-oxygen participation on artificially controllable electrochemistry-induced crystalline-amorphous phase to boost oxygen-evolving performance
CN109759077A (zh) 一种钙钛矿氧化物催化剂及其制备方法和应用
CN103489661B (zh) 一种超级电容器电极材料及其制备方法
CN110639534B (zh) 一种析氧电催化材料及其制备方法和应用
CN110517899A (zh) 基于MOF衍生的Ni-Co层状双氢氧化物的制备方法
CN108893756B (zh) 一种Ni3N NSs/NF纳米球的合成方法及其应用
CN106757143A (zh) 一种水分解反应用催化电极及其制备方法
CN112670093A (zh) 一种多孔Co3O4@Ni-MOF核壳结构纳米片阵列材料及其制备方法和应用
CN107240505A (zh) 超级电容器电极材料Zn掺杂NiCo2O4复合物及制备方法
CN107680821A (zh) 一种双金属氢氧化物@钼酸镍@石墨烯纳米复合材料、制备方法及其应用
CN109837559A (zh) 一种水热辅助的羟基氧化铁-镍铁水滑石一体化电极的制备方法
CN110491681A (zh) Co3O4/CoNi2S4三维核壳材料用于柔性超级电容器
CN109273728A (zh) 一种脉冲电沉积制备纳米铂/钴二氧化钛纳米管复合电极的方法
CN111604061A (zh) 一种毛虫状镍钴硫化物纳米阵列及其合成与应用
Ren et al. Bimetal-organic framework-derived porous CoFe2O4 nanoparticles as biocompatible anode electrocatalysts for improving the power generation of microbial fuel cells
CN101533719A (zh) 高能量密度不对称超级电容器及其制备方法
He et al. Keggin-type polyoxometalate/thiospinel octahedron heterostructures for photoelectronic devices
Sreekanth et al. Thorn-shaped NiCo2O4 nanoparticles as multi-functional electrocatalysts for electrochemical applications
Wang et al. Porous carbon foam loaded CoSe2 nanoparticles based on inkjet-printing technology as self-supporting electrodes for efficient water splitting
CN106409527A (zh) 一种钒酸铋/炭超级电容电池及其制备方法
CN104701028A (zh) 一种超级电容器电极材料四氧化三钴微米束状阵列结构的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191122