CN110483924B - 一种超疏水自清洁辐射降温薄膜及其制备方法 - Google Patents

一种超疏水自清洁辐射降温薄膜及其制备方法 Download PDF

Info

Publication number
CN110483924B
CN110483924B CN201910774588.9A CN201910774588A CN110483924B CN 110483924 B CN110483924 B CN 110483924B CN 201910774588 A CN201910774588 A CN 201910774588A CN 110483924 B CN110483924 B CN 110483924B
Authority
CN
China
Prior art keywords
vdf
hfp
solvent
pdms
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910774588.9A
Other languages
English (en)
Other versions
CN110483924A (zh
Inventor
薛朝华
柳冰莹
王慧迪
贾顺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910774588.9A priority Critical patent/CN110483924B/zh
Priority to US16/679,144 priority patent/US10927244B1/en
Publication of CN110483924A publication Critical patent/CN110483924A/zh
Application granted granted Critical
Publication of CN110483924B publication Critical patent/CN110483924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种超疏水自清洁辐射降温薄膜及其制备方法,将P(VDFx‑Co‑HFPy)和PDMS溶解在复合极性溶剂中形成P(VDFx‑Co‑HFPy)/PDMS聚合物复合半透明溶液;向溶液中逐滴加入非溶剂使P(VDFx‑Co‑HFPy)/PDMS发生相分离形成溶胶;将溶胶进行浇铸,干燥,获得具有微纳双重多孔结构的薄膜。本发明制备工艺简单,方法易行,可实现大面积生产。

Description

一种超疏水自清洁辐射降温薄膜及其制备方法
技术领域
本发明属于超疏水辐射降温材料技术领域,具体涉及一种超疏水自清洁辐射降温薄膜及其制备方法。
背景技术
炎热的夏天,强烈的太阳辐射常使地面物体温度剧烈上升。近年来,全球变暖使地球温度升高,“城市热岛效应”日益加剧,这进一步加剧了人类对电器空调的依赖,增加了能源的消耗。人类很有必要寻求低能耗甚至是无能耗的降温方式。
辐射降温材料因其对太阳光的高反射率及中红外处的高发射率,能将热量以电磁波的方式通过“大气透明窗口”发射向寒冷的外太空,从而成为一种节能材料。该材料可以用在屋顶或户外运输工具的外部以降低夏日人类活动空间内的温度,提高室内环境热舒适性,减少人们对空调等电力资源的消耗。
在现有的一种建筑膜结构中采用纳米颗粒,并且分层涂布成本高,操作过程复杂。虽然具有一定的降温效果,但是没考虑环境对材料降温效果的影响,如雨水对材料寿命的影响,水浸湿对材料辐射降温效果的影响,以及空气中灰尘污染物对材料反射率及红外发射率的影响等。
如果对具有辐射降温功能的材料赋予超疏水性能,即水滴在其表面的接触角大于150°,并在其表面易于滚动,那么水滴在滚动过程中即可将表面上的污物一同带走,实现材料表面的自动清洁,这将不仅能避免空气中污染物对材料表面的沾污,而且能防止雨水对材料表面的浸渍,有利于保持该材料对太阳光的高反射率和对中红外处的发射率,避免材料过早降解、老化,从而延长使用寿命。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种超疏水自清洁辐射降温薄膜及其制备方法,制备工艺简单,可大面积生产。
本发明采用以下技术方案:
一种超疏水自清洁辐射降温薄膜制备方法,包括以下步骤:
S1、将P(VDFx-Co-HFPy)和PDMS溶解在复合极性溶剂中形成P(VDFx-Co-HFPy)/PDMS聚合物复合半透明溶液;
S2、向溶液中逐滴加入非溶剂使P(VDFx-Co-HFPy)/PDMS发生相分离形成溶胶;
S3、将溶胶进行浇铸,干燥,获得具有微纳双重多孔结构的薄膜。
具体的,步骤S1具体为:
S101、称取一定量的P(VDFx-Co-HFPy)溶解在丙酮溶液中常温搅拌3~5h至完全溶解;
S102、加入PDMS预聚体A组分和四氢呋喃溶剂并搅拌均匀;
S103、加入PDMS固化剂B组分搅拌15~30min,至均匀半透明状态。
进一步的,步骤S101中,P(VDFx-Co-HFPy)与丙酮的质量比为1﹕(10~15)。
进一步的,步骤S102中,P(VDFx-Co-HFPy)与四氢呋喃的质量比为(1~2):15。
进一步的,步骤S103中,P(VDFx-Co-HFPy)与PDMS的质量比为(2.0~4.0):1.0。
具体的,步骤S2中,非溶剂为水,加入方式为控制滴加速度每隔10s逐滴加入0.05ml水,形成溶胶。
进一步的,P(VDFx-Co-HFPy)与非溶剂水的质量比为:7﹕(12~6)。
具体的,步骤S3中,溶胶在室温下干燥3~5h。
本发明的另一个技术方案是,一种超疏水自清洁辐射降温薄膜,具有微纳双重多孔结构的薄膜对太阳光反射率为90.1%~96.5%,在中红外处的发射率为90.3%~94.3%,其表面上的水滴接触角为151.4°~162.3°,滚动角为1.4°~8.2°。
与现有技术相比,本发明至少具有以下有益效果:
本发明一种超疏水自清洁辐射降温薄膜制备方法,利用水诱导P(VDFx-Co-HFPy)/PDMS复合聚合物发生相分离,材料成形后可直接获得具有微纳双重结构的多孔超疏水辐射降温薄膜,所有操作均可在常温条件下进行,条件温和;在薄膜的制备过程中,不需要外加微米或纳米级颗粒,也不需要对材料的表面进行镀金属膜即可使材料获得较高的太阳光反射率和中红外辐射率。
进一步的,本发明中聚二甲基硅氧烷的加入改变了单独P(VDFx-Co-HFPy)室温浇注成膜时致密皮层的形成。在形成多孔结构的同时由于两种混合聚合物在溶剂中竞争的传质扩散过程,及双组份混合溶剂不同的挥发机制,从而形成了达到超疏水所需要的微观粗糙度。这种粗糙网络结构为发展健康环保的无颗粒散射介质提供希望。且P(VDFx-Co-HFPy)和PDMS本身具有低表面能性质,化学性质稳定,借助相分离所形成的微观结构拥有优异的超疏水性能,为被动式辐射降温薄膜的耐候性及使用寿命提供了保证。
进一步的,本发明中选取P(VDFx-Co-HFPy)与丙酮的质量比为1﹕(10~15),可以使聚合物充分溶解不至于太粘稠流动性不好,又减少了溶剂过量造成浪费。选取P(VDFx-Co-HFPy)与PDMS的质量比为(2.0~4.0):1.0,发现当两种聚合物配比不同时出现了不同的微观形貌,但都能达到超疏水自清洁辐射降温效果。选取P(VDFx-Co-HFPy)与四氢呋喃的质量比为(1~2):15,可以使PDMS很好的分散其中,又因其沸点介于丙酮与水之间,在溶剂蒸发使凝胶进一步转化为多孔结构过程中提供了一定的协同促进作用。
进一步的,本发明中以水为非溶剂诱导相分离,代替了常规操作中使用的致孔剂,绿色无毒环保。
进一步的,本发明中在常温下干燥即可获得具有超疏水自清洁的多孔辐射降温薄膜,不需要复杂的设备及多余的能耗,可实现工业化大面积生产。
本发明一种超疏水自清洁辐射降温薄膜,具有高日光反射率、高红外发射率和超疏水性能,因此该材料不仅具有很强的辐射降温作用,而且具有优异的防污自清洁作用。
综上所述,本发明制备工艺简单,方法易行,可实现大面积生产。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明实施例2获得的超疏水自清洁辐射降温薄膜的表面的形貌及水滴接触角图;
图2为本发明实施例2获得的超疏水自清洁辐射降温薄膜的实物图及彩色水滴在其表面的存在状态;
图3为本发明实施例2获得的超疏水自清洁辐射降温薄膜的自清洁效果图;
图4为本发明实施例6获得的超疏水自清洁辐射降温薄膜的在太阳照射环境中的热红外成像图。
具体实施方式
本发明提供了一种超疏水自清洁辐射降温薄膜及其制备方法,将聚(偏氟乙烯-共-六氟丙烯)P(VDFx-Co-HFPy)和聚二甲基硅氧烷(PDMS)溶解在复合极性溶剂中形成P(VDFx-Co-HFPy)/PDMS聚合物复合半透明溶液;然后,向溶液中逐滴加入非溶剂水P(VDFx-Co-HFPy)/PDMS发生相分离形成溶胶;最后,将溶胶进行浇铸,干燥,即可获得具有微纳双重多孔结构的薄膜。所制备的薄膜材料对太阳光反射率高达96.5%,且在中红外处的发射率达94.3%,将热量以红外辐射的方式通过“大气透明窗口”发射出,从而使薄膜下表面物体温度下降5~8℃,表现出良好的降温效果。该材料表面的水滴接触角高达162.3°,滚动角最低可达1.4°,具有良好的防污自清洁性能。
本发明一种超疏水自清洁辐射降温薄膜的制备方法,包括以下步骤:
S1、将P(VDFx-Co-HFPy)和PDMS溶解在复合极性溶剂中形成P(VDFx-Co-HFPy)/PDMS聚合物复合半透明溶液;
S101、称取一定量的P(VDFx-Co-HFPy)溶解在丙酮溶液中常温搅拌3~5h至完全溶解;
P(VDFx-Co-HFPy)与丙酮的质量比为1﹕(10~15)。
S102、加入PDMS预聚体A组分,随后加入四氢呋喃溶剂,搅拌均匀;
P(VDFx-Co-HFPy)与四氢呋喃的质量比为(1~2):15。
S103、加入PDMS固化剂B组分搅拌15~30min,至均匀半透明状态。
P(VDFx-Co-HFPy)与PDMS的质量比为(2.0~4.0):1.0。
S2、向溶液中逐滴加入非溶剂使P(VDFx-Co-HFPy)/PDMS发生相分离形成溶胶;
非溶剂为水,加入方式为控制滴加速度每隔10s逐滴加入0.05ml水,形成溶胶,P(VDFx-Co-HFPy)与非溶剂水的质量比为:7﹕(12~6)。
S3、将溶胶进行浇铸,干燥,即可获得具有微纳双重多孔结构的薄膜。
将得到的溶胶倒入一定的开放容器中或基材表面,在室温下干燥3~5h即可获得具有微纳双重多孔结构的薄膜。
本发明一种超疏水自清洁辐射降温薄膜,对太阳光反射率为90.1%~96.5%,并且在中红外处的发射率为90.3%~94.3%,其表面上的水滴接触角为151.4°~162.3°,滚动角为1.4°~8.2°。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中的描述和所示的本发明实施例的组件可以通过各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种超疏水自清洁辐射降温薄膜及其制备方法,包括以下步骤:
步骤1
首先称取3.5g的P(VDFx-Co-HFPy)溶解在49g丙酮溶液中,常温搅拌3h至完全溶解,然后依次加入PDMS预聚体A组分1g和30g四氢呋喃溶剂,搅拌均匀后,加入固化剂B组分0.1g,继续搅拌15min以获得半透明溶液;
步骤2
将3.0g非溶剂水以每隔10s滴加0.05ml的速度在搅拌情况下逐滴加至半透明溶液中,形成溶胶;
步骤3
将得到的溶胶倒入90mm规格的培养皿中,在室温下干燥3h,直至溶剂与水完全挥发后,即可得到微观多孔超疏水自清洁辐射降温薄膜。
该超疏水自清洁辐射降温薄膜对太阳光反射率为94.2%,并且在中红外处的发射率为93.5%,其表面水滴接触角为153.0±0.8°,滚动角为6.1±0.5°。
实施例2
一种超疏水自清洁辐射降温薄膜及其制备方法,包括以下步骤:
步骤1
首先称取3.5g的P(VDFx-Co-HFPy)溶解在42g丙酮溶液中,常温搅拌3.5h至完全溶解,然后依次加入PDMS预聚体A组分1g和30g四氢呋喃溶剂,搅拌均匀后,加入固化剂B组分0.1g,继续搅拌30min以获得半透明溶液;
步骤2
将5.0g非溶剂水以每隔10s滴加0.05ml的速度在搅拌情况下逐滴加至半透明溶液中,形成溶胶;
步骤3:将得到的溶胶倒入90mm规格的培养皿中,在室温下干燥4h,直至溶剂与水完全挥发后,即可得到微观多孔超疏水自清洁辐射降温薄膜。
该超疏水自清洁辐射降温薄膜对太阳光反射率为96.5%,并且在中红外处的发射率为94.3%,其表面水滴接触角为158.0±1.7°,滚动角为3.0±0.5°。
实施例3
一种超疏水自清洁辐射降温薄膜及其制备方法,包括以下步骤:
步骤1
首先称取3.0g的P(VDFx-Co-HFPy)溶解在36g丙酮溶液中,常温搅拌5h至完全溶解,然后依次加入PDMS预聚体A组分1g和30g四氢呋喃溶剂,搅拌均匀后,加入固化剂B组分0.1g,继续搅拌20min以获得半透明溶液;
步骤2
将3.4g非溶剂水以每隔10s滴加0.05ml的速度在搅拌情况下逐滴加至半透明溶液中,形成溶胶;
步骤3
将得到的溶胶倒入90mm规格的培养皿中室温下干燥5h,至溶剂与水完全挥发后,即可得到微观多孔超疏水自清洁辐射降温薄膜。
该超疏水自清洁辐射降温薄膜对太阳光反射率达95.7%,且在中红外处的发射率达93.4%,其表面接触角达156.0±1.3°,滚动角为5.3±0.8°。
实施例4
一种超疏水自清洁辐射降温薄膜及其制备方法,包括以下步骤:
步骤1
首先称取4.0g的P(VDFx-Co-HFPy)溶解在48g丙酮溶液中,常温搅拌3.5h至完全溶解,然后依次加入PDMS预聚体A组分1g和30g四氢呋喃溶剂,搅拌均匀后,加入固化剂B组分0.1g,继续搅拌25min以获得半透明溶液;
步骤2
将5.7g非溶剂水以每隔10s滴加0.05ml的速度在搅拌情况下逐滴加至半透明溶液中,形成溶胶;
步骤3
将得到的溶胶倒入90mm规格的培养皿中室温下干燥3h,至溶剂与水完全挥发后,即可得到微观多孔超疏水自清洁辐射降温薄膜。
该超疏水自清洁辐射降温薄膜对太阳光反射率达93.6%,且在中红外处的发射率达94.1%,其表面接触角达162.3±1.0°,滚动角为2.0±0.6°。
实施例5
一种超疏水自清洁辐射降温薄膜及其制备方法,包括以下步骤:
步骤1
首先称取3.5g的P(VDFx-Co-HFPy)溶解在42g丙酮溶液中,常温搅拌3h至完全溶解,然后依次加入PDMS预聚体A组分1g和30g四氢呋喃溶剂,搅拌均匀后,加入固化剂B组分0.1g,继续搅拌15min以获得半透明溶液;
步骤2
将4.0g非溶剂水以每隔10s滴加0.05ml的速度在搅拌情况下逐滴加至半透明溶液中,形成溶胶;
步骤3
将得到的溶胶倒入90mm规格的培养皿中室温下干燥4h,至溶剂与水完全挥发后,即可得到微观多孔超疏水自清洁辐射降温薄膜。
该超疏水自清洁辐射降温薄膜对太阳光反射率达95.6%,且在中红外处的发射率达93.8%,其表面接触角达157.3±0.6°,滚动角为4.9±0.3°。
实施例6
一种超疏水自清洁辐射降温薄膜及其制备方法,包括以下步骤:
步骤1
首先称取3.5g的P(VDFx-Co-HFPy)溶解在49g丙酮溶液中,常温搅拌3.5h至完全溶解,然后依次加入PDMS预聚体A组分1g和30g四氢呋喃溶剂,搅拌均匀后,加入固化剂B组分0.1g,继续搅拌30min以获得半透明溶液;
步骤2
将6.0g非溶剂水以每隔10s滴加0.05ml的速度在搅拌情况下逐滴加至半透明溶液中,形成溶胶;
步骤3
将得到的溶胶倒在铝片基板上室温下干燥3h,至溶剂与水完全挥发后,即可得到微观多孔超疏水自清洁辐射降温薄膜。
该超疏水自清洁辐射降温薄膜对太阳光反射率达95.2%,且在中红外处的发射率达93.6%,其表面接触角达156.2±0.6°,滚动角为4.2±0.5°。
实施例7
一种超疏水自清洁辐射降温薄膜及其制备方法,包括以下步骤:
步骤1
首先称取2.0g的P(VDFx-Co-HFPy)溶解在28g丙酮溶液中,常温搅拌3h至完全溶解,然后依次加入PDMS预聚体A组分1g和30g四氢呋喃溶剂,搅拌均匀后,加入固化剂B组分0.1g继续搅拌20min以获得半透明溶液;
步骤2
将2.9g非溶剂水以每隔10s滴加0.05ml的速度在搅拌情况下逐滴加至半透明溶液中,形成溶胶;
步骤3
将得到的溶胶倒入70mm规格的培养皿中室温下干燥4h,至溶剂与水完全挥发后,即可得到微观多孔超疏水自清洁辐射降温薄膜。
该超疏水自清洁辐射降温薄膜对太阳光反射率达90.1%,且在中红外处的发射率达93.2%,其表面接触角达151.4±0.5°,滚动角为8.2±0.7°。
对比例1
步骤1
首先称取3.5g的P(VDFx-Co-HFPy)溶解在42g丙酮溶液中,常温搅拌3h至完全溶解。
步骤2
将得到的溶液倒入90mm规格的培养皿中室温下干燥2h,至溶剂完全挥发后,即可得到光学透明的塑料薄膜。
该透明薄膜对太阳光反射率为8.3%,在中红外处的发射率为92.5%,其表面接触角为92.3±0.2°,滚动角为0°。
对比例2
步骤1
首先称取3.5g的P(VDFx-Co-HFPy)溶解在42g丙酮溶液中,常温搅拌3h至完全溶解。
步骤2
将4.0g非溶剂水以每隔10s滴加0.05ml的速度在搅拌情况下逐滴加至半透明溶液中,形成溶胶;
步骤3
将得到的溶液倒入90mm规格的培养皿中室温下干燥3h,至溶剂完全挥发后,即可得到多孔薄膜。
该多孔薄膜对太阳光反射率为87.9%,且在中红外处的发射率达92.9%,其表面接触角为118.2±0.4°,滚动角为0°。
本发明涉及的测试项目为:反射率R,红外辐射率E,接触角CA,滚动角SA。
测试结果总结如下表:
表1实施例及比较例的测试结果:
Figure BDA0002174637730000121
实施例采用P(VDFx-Co-HFPy)和PDMS溶解在复合极性溶剂丙酮和四氢呋喃中,利用非溶剂水使其相分离;对比例1采用单独P(VDFx-Co-HFPy)溶解在丙酮中,未加入非溶剂水;实施例制备的超疏水自清洁辐射降温材料太阳光反射率是对比例1的12倍左右,且相比对比例1具有优异的自清洁性能。对比例2采用单独P(VDFx-Co-HFPy)溶解在丙酮中,加入非溶剂水;实施例制备的超疏水自清洁辐射降温材料太阳光反射率明显高于对比例2,且将接触角提高到150°以上,滚动角接近于0°,而对比例2所形成的表面水滴足以滚动,不能将表面污物带走,
请参阅图1,本发明实施例2获得的超疏水自清洁辐射降温薄膜的表面具有微纳双重多孔结构,并且孔与孔之间形成了相应的微纳粗糙度,水滴接触角高达158°;
请参阅图2,本发明实施例2获得的超疏水自清洁辐射降温薄膜的实物图为白色亚光表面水滴在其表面呈球状站立;
请参阅图3,本发明实施例2获得的超疏水自清洁辐射降温薄膜的具有优异的自清洁效果,当水滴划过有污物的地方时可以将污物带走,达到自清洁效果。
请参阅图4,本发明实施例6获得的超疏水自清洁辐射降温薄膜放置在环境中(测试地为中国陕西,西安,陕西科技大学,2019年8月14,夏天,下午3:50室外温度为40℃左右)用红外相机观察到太阳几乎将地面上所有物体加热至50℃以上,而所制备的薄膜在没有隔绝热对流与热传导的情况下,却使其表面温度保持在40℃左右,证明本发明所制备的薄膜具有良好的辐射自降温效果。
由表1可见,本发明利用P(VDFx-Co-HFPy)和PDMS在复合溶剂和非溶剂水中相分离形成微纳双重多孔结构,并且使表面形成了微纳粗糙度。协同产生高的太阳光反射率与自清洁性能,操作工艺简单,适合大面积生产,适用于建筑物,交通工具,户外用品,低温存储设施等各种形状表面。具有非常广阔的应用前景,为节省电力资源,节省能耗减缓全球变暖趋势有重要意义。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (5)

1.一种超疏水自清洁辐射降温薄膜制备方法,其特征在于,包括以下步骤:
S1、将P(VDFx-Co-HFPy)和PDMS溶解在复合极性溶剂中形成P(VDFx-Co-HFPy)/PDMS聚合物复合半透明溶液,具体为:
S101、称取一定量的P(VDFx-Co-HFPy)溶解在丙酮溶液中常温搅拌3~5h至完全溶解,P(VDFx-Co-HFPy)与丙酮的质量比为1﹕(10~15);
S102、加入PDMS预聚体A组分和四氢呋喃溶剂并搅拌均匀,P(VDFx-Co-HFPy)与四氢呋喃的质量比为(1~2):15;
S103、加入PDMS固化剂B组分搅拌15~30min,至均匀半透明状态,P(VDFx-Co-HFPy)与PDMS的质量比为(2.0~4.0):1.0;
S2、向溶液中逐滴加入非溶剂使P(VDFx-Co-HFPy)/PDMS发生相分离形成溶胶;
S3、将溶胶进行浇铸,干燥,获得具有微纳双重多孔结构的薄膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤S2中,非溶剂为水,加入方式为控制滴加速度每隔10s逐滴加入0.05ml水,形成溶胶。
3.根据权利要求2所述的制备方法,其特征在于,P(VDFx-Co-HFPy)与非溶剂水的质量比为:7﹕(12~6)。
4.根据权利要求1所述的制备方法,其特征在于,步骤S3中,溶胶在室温下干燥3~5h。
5.根据权利要求1所述方法制备的超疏水自清洁辐射降温薄膜,其特征在于,具有微纳双重多孔结构的薄膜对太阳光反射率为90.1%~96.5%,在中红外处的发射率为90.3%~94.3%,其表面上的水滴接触角为151.4°~162.3°,滚动角为1.4°~8.2°。
CN201910774588.9A 2019-08-21 2019-08-21 一种超疏水自清洁辐射降温薄膜及其制备方法 Active CN110483924B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910774588.9A CN110483924B (zh) 2019-08-21 2019-08-21 一种超疏水自清洁辐射降温薄膜及其制备方法
US16/679,144 US10927244B1 (en) 2019-08-21 2019-11-08 Superhydrophobic and self-cleaning radiative cooling film and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910774588.9A CN110483924B (zh) 2019-08-21 2019-08-21 一种超疏水自清洁辐射降温薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN110483924A CN110483924A (zh) 2019-11-22
CN110483924B true CN110483924B (zh) 2021-06-15

Family

ID=68551631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910774588.9A Active CN110483924B (zh) 2019-08-21 2019-08-21 一种超疏水自清洁辐射降温薄膜及其制备方法

Country Status (2)

Country Link
US (1) US10927244B1 (zh)
CN (1) CN110483924B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111842072B (zh) * 2020-07-31 2023-01-06 中国人民解放军国防科技大学 疏水型隔热降温膜的应用
CN111910442B (zh) * 2020-07-31 2021-09-24 中国人民解放军国防科技大学 一种疏水型隔热降温膜及其制备方法
CN112250973A (zh) * 2020-09-25 2021-01-22 河北工业大学 一种多孔辐射制冷薄膜及其制备方法
CN112724436A (zh) * 2020-12-28 2021-04-30 陕西科技大学 一种超疏水辐射自降温材料及其制备方法
CN112724437A (zh) * 2020-12-29 2021-04-30 陕西科技大学 一种超疏水辐射降温薄膜及其制备方法
CN113025133B (zh) * 2021-02-07 2022-06-21 浙江理工大学 一种超疏水日间被动辐射制冷多孔膜及制备方法
CN115304953B (zh) * 2021-05-10 2023-10-20 上海交通大学 辐射热控光子材料及制备方法
CN113354911B (zh) * 2021-07-29 2022-07-22 东南大学 一种辐射制冷材料、制备方法及辐射制冷板材
CN114773921B (zh) * 2022-03-10 2023-03-10 中国科学院兰州化学物理研究所 一种在复杂造型基材上超快速制备稳定超疏水表面的方法
CN114437603B (zh) * 2022-03-10 2023-03-24 山东鑫纳超疏新材料有限公司 一种基于导电纳米粒子的耐久型超疏微液滴自清洁涂层的制备方法
CN114713476B (zh) * 2022-03-25 2022-12-09 湖北大学 一种用于高效环境水汽俘获的双面协同功能涂层的制备方法
CN114874592B (zh) * 2022-03-30 2023-11-03 中原工学院 一种柔性多孔超疏水薄膜及其制备方法
CN114736566B (zh) * 2022-04-07 2023-03-31 陕西科技大学 超疏水自清洁温度自适应型辐射降温涂层及涂层制备方法
CN114702712A (zh) * 2022-04-24 2022-07-05 中国科学院苏州纳米技术与纳米仿生研究所 超疏水pvdf-hfp/氧化硅气凝胶复合膜及其制备方法与应用
CN115926495B (zh) * 2022-11-07 2024-02-02 湖北大学 一种被动降温超疏水粉末、材料的制备方法
CN116515219A (zh) * 2023-06-06 2023-08-01 大连理工大学 一种多孔辐射制冷薄膜及其制备方法
CN117799273A (zh) * 2023-12-26 2024-04-02 中山大学 一种具有微纳泡孔结构的辐射降温膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214768A (zh) * 2011-12-13 2013-07-24 苏州宝时得电动工具有限公司 聚合物膜及其制备方法,具有聚合物膜的电解质以及电池
CN103464006A (zh) * 2013-09-06 2013-12-25 长春工业大学 Pdms/pvdf共混微孔膜的制备
CN103665678A (zh) * 2012-08-28 2014-03-26 苏州宝时得电动工具有限公司 聚合物膜及其制备方法,具有聚合物膜的电解质以及电池
CN104610565A (zh) * 2013-11-01 2015-05-13 天津工业大学 一种制备高分子多孔膜的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641155A (zh) 2018-04-27 2018-10-12 武汉理工大学 一种被动辐射降温薄膜及其制备方法
CN109852171A (zh) 2018-12-19 2019-06-07 宁波瑞凌新能源科技有限公司 一种辐射降温涂料
CN109942865B (zh) 2019-03-29 2021-11-19 杭州瑞酷新材料有限公司 一种辐射降温膜的制备方法
CN109968769A (zh) 2019-03-29 2019-07-05 中国科学院上海技术物理研究所 一种低成本大面积无能耗辐射制冷复合薄膜及制备方法
CN109988467B (zh) 2019-03-29 2021-10-29 杭州瑞酷新材料有限公司 一种辐射降温涂料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214768A (zh) * 2011-12-13 2013-07-24 苏州宝时得电动工具有限公司 聚合物膜及其制备方法,具有聚合物膜的电解质以及电池
CN103665678A (zh) * 2012-08-28 2014-03-26 苏州宝时得电动工具有限公司 聚合物膜及其制备方法,具有聚合物膜的电解质以及电池
CN103464006A (zh) * 2013-09-06 2013-12-25 长春工业大学 Pdms/pvdf共混微孔膜的制备
CN104610565A (zh) * 2013-11-01 2015-05-13 天津工业大学 一种制备高分子多孔膜的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Effect of the exposure time on the structure and performance of hydrophobic polydimethylsiloxane–poly(vinylidene fluoride) membranes via a non-solvent-induced phase separation process in a clean room;Heiyan Zhang等;《Journal of Applied Polymer》;20160524;第133卷(第34期);全文 *
乙醇诱导下基于PVDF的超疏水涂层及油水分离膜性能研究;缪伟振;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20190115;第45-46页第4.2.1节、第56-57页第4.4节 *

Also Published As

Publication number Publication date
CN110483924A (zh) 2019-11-22
US10927244B1 (en) 2021-02-23
US20210054185A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
CN110483924B (zh) 一种超疏水自清洁辐射降温薄膜及其制备方法
CN113025133B (zh) 一种超疏水日间被动辐射制冷多孔膜及制备方法
Liu et al. Micro‐nano porous structure for efficient daytime radiative sky cooling
CN107828289B (zh) 疏水自洁净表面温度昼夜低于气温的反思托克斯荧光及辐射制冷涂料及其制备方法
CN111690301B (zh) 具有梯度结构的辐射制冷涂层及其制备方法与应用
CN112852079B (zh) 一种超疏水自清洁辐射自降温材料及其制备方法
Du et al. Daytime radiative cooling coating based on the Y2O3/TiO2 microparticle-embedded PDMS polymer on energy-saving buildings
WO2023082911A1 (zh) 一种隔热涂料及其制备方法和应用方法
CN109119504A (zh) 光伏组件及在光伏组件背面制备多孔pvdf-hfp薄膜的方法
CN104030357A (zh) 一种有机溶胶凝胶制备二氧化钒薄膜的方法
CN112724437A (zh) 一种超疏水辐射降温薄膜及其制备方法
CN112646427A (zh) 一种双层结构淡橙色制冷涂料及其制备方法和应用
CN114736566B (zh) 超疏水自清洁温度自适应型辐射降温涂层及涂层制备方法
CN102766366A (zh) 反射隔热涂料
CN114957888A (zh) 一种ptfe三维多孔辐射薄膜及其制备方法
Xia et al. Water-based kaolin/polyacrylate cooling paint for exterior walls
CN117304769A (zh) 一种制冷涂层及其制备方法
CN102336528A (zh) 一种二氧化钒薄膜及其制备与应用
JP2004025586A (ja) 熱線遮断性フッ素樹脂複合シート及びそれを用いてなる屋根材
Shen et al. A smart material built upon the photo-thermochromic effect and its use for managing indoor temperature
CN114672205A (zh) 辐射冷却涂料和表面涂覆方法
CN109944468B (zh) 一种具有隔热节能功能的智能调温岗亭
CN103555014B (zh) 一种太阳能覆膜材料及其制作方法
CN116102928B (zh) 一种具有超疏水性能的辐射制冷涂层的制备方法
CN112724436A (zh) 一种超疏水辐射自降温材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant