CN112852079B - 一种超疏水自清洁辐射自降温材料及其制备方法 - Google Patents

一种超疏水自清洁辐射自降温材料及其制备方法 Download PDF

Info

Publication number
CN112852079B
CN112852079B CN202110062875.4A CN202110062875A CN112852079B CN 112852079 B CN112852079 B CN 112852079B CN 202110062875 A CN202110062875 A CN 202110062875A CN 112852079 B CN112852079 B CN 112852079B
Authority
CN
China
Prior art keywords
self
vdf
hfp
sio
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110062875.4A
Other languages
English (en)
Other versions
CN112852079A (zh
Inventor
薛朝华
韦任轩
贾顺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202110062875.4A priority Critical patent/CN112852079B/zh
Publication of CN112852079A publication Critical patent/CN112852079A/zh
Application granted granted Critical
Publication of CN112852079B publication Critical patent/CN112852079B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/042Nanopores, i.e. the average diameter being smaller than 0,1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种超疏水自清洁辐射自降温材料及其制备方法,其特征是首先把聚偏氟乙烯共六氟丙烯(P(VDF‑HFP))和疏水二氧化硅(SiO2)共混于混合溶剂中得到P(VDF‑HFP)/SiO2复合悬浮液;向溶液中逐滴加入非溶剂使P(VDF‑HFP)/SiO2发生相分离形成半透明的溶胶;然后浇铸于培养皿中室温干燥,获得具有微纳双阶多孔结构的复合材料。本发明制备工艺简便,方法简单,原料易得,易大面积生产。

Description

一种超疏水自清洁辐射自降温材料及其制备方法
技术领域
本发明涉及一种多功能降温材料的制备方法,特别涉及一种超疏水自清洁辐射自降温材料的制备方法。
背景技术
随着全球温度的逐年升高,较高的环境温度为人类的生活、生产带来了诸多严苛的问题,为应对较高温度,创造舒适的生活条件,降温成为一项重要研究课题。目前,能达到一定降温效果的传统降温方式(如空调,电扇)不仅存在应用场所固定、不利携带等问题,而且带来能耗增加和加速全球变暖等问题。因此,采用一种可持续发展的高效制冷方式用于解决因降温而引起的能耗问题具有重要意义。
辐射自降温因具有对太阳光波段(0.3-2.5μm)高反射率和大气透明窗口(0.3-2.5μm)具有高的发射率的特性,从而使其在阻止太阳光能量的同时并将过多的热量通过热辐射的形式传递到寒冷的外太空当中实现物体的降温。因其具有无污染,无能耗并可持续降温的制冷的特性而成为近年来功能材料领域研究的热点。
辐射降温材料的持续降温需要保持高的光学性能,但辐射自降温材料不可避免的被外界灰尘污染或雨水浸渍而影响其对太阳光反射率及红外发射率,进一步影响材料的辐射自降温效果。受荷叶出淤泥而不染淤的启发,超疏水表面是指水滴接触角(CA)大于150°且滑动角(SA)小于10°的表面。因水滴很容易从表面滚落并带走灰尘而使超疏水材料具有自清洁性。基于此,若辐射自降温材料具有超疏水特性,即超疏水辐射自降温材料,可以在防止灰尘污染、雨水浸渍的同时并保持辐射自降温材料的光学稳定性,提升辐射自降温材料在现实应用中的使用寿命。
发明内容
本发明通过非溶剂诱导相分离法制备P(VDF-HFP)/SiO2微纳双阶多孔材料,通过调控表面形貌及内部结构从而实现超疏水自清洁辐射自降温材料的制备。该方法制备工艺简单,所制备的超疏水自清洁辐射自降温材料稳定性好,可大面积生产。
本发明采用以下技术方案:
超疏水自清洁辐射自降温材料及制备方法,包括以下步骤:
S1、把聚偏氟乙烯共六氟丙烯(P(VDF-HFP))和疏水二氧化硅(SiO2)共混于混合溶剂中得到P(VDF-HFP)/SiO2复合悬浮液;
S2、向溶液中逐滴加入非溶剂使P(VDF-HFP)/SiO2发生相分离形成半透明的溶胶;
S3、将溶胶浇铸于培养皿中室温干燥,获得具有微纳双阶多孔结构的复合材料。
具体的,步骤S1具体为:称取一定质量分数的P(VDF-HFP)溶解于丙酮和乙醇混合溶剂中40℃下搅拌1-1.5h使其完全溶解;再往其中加入一定质量分数的SiO2并搅拌均匀。
进一步的,在步骤S1中P(VDF-HFP)占丙酮的质量分数为7-11%;乙醇占丙酮的质量分数为1-6%;二氧化硅占丙酮的质量分数为0.2-1%。
具体的,步骤S2中,非溶剂为水,加入方式为控制滴加速度为每5s逐滴加入0.06g水,形成溶胶,其中非溶剂水占丙酮的质量分数为8-13%。
具体的,步骤S3中,将此溶胶在室温下干燥4-6h。
本发明所用的原料和试剂均市售可得。
与现有技术相比,本发明的积极进步效果在于:本发明中采用水为非溶剂诱导相分离,与传统中使用的非溶剂相比具有绿色环保、低廉易得的特点。本发明在常温条件下干燥即可获得超疏水自清洁多孔辐射自降温材料,制备的超疏水薄膜与水滴的静态接触角大于150°,且制备得到的材料具有较高的反射率和发射率,且制备过程不需要复杂的设备,可实现工业化大面积生产并适用于建筑,电子设备,交通工具等多种需要降温的领域。
附图说明
图1为本发明实施实例3所制备的超疏水自清洁辐射自降温材料表面的SEM图和接触角图
图2为本发明实施实例3所制备的超疏水辐射自降温材料的光学波段的反射率及发射率图;
图3为本发明实施实例3所制备的超疏水辐射自降温材料的自清洁效果图;
图4为本发明实施实例3所制备的超疏水辐射自降温材料放置在户外自行车上实物图及红外图。
具体实施方式
本发明将P(VDF-HFP)溶解于溶剂并和SiO2得到P(VDF-HFP)/SiO2聚合物复合半透明悬浮溶液,然后向溶液中缓慢逐滴滴加非溶剂水形成P(VDF-HFP)/SiO2溶胶;最后将其浇铸在容器中,干燥后即可获得具有微纳粗糙双阶多孔结构的薄膜材料。
本发明的技术方案为:
S1:P(VDF-HFP)/SiO2悬浮液的制备:把7%~11%的P(VDF-HFP)溶解于丙酮和1%~6%的乙醇中,待其充分溶解后加入0.2%~1%的疏水二氧化硅,充分搅拌均匀,备用。
S2:P(VDF-HFP)/SiO2溶胶的制备:将8%~13%的非溶剂水,以每5s每滴的速度加入到步骤一中所制备的悬浮液并同时搅拌形成溶胶。
S3:P(VDF-HFP)/SiO2薄膜的制备:将步骤二中制备的溶胶浇铸在9cm的培养皿中,后置于空气中干燥4~6h,得到超疏水自清洁辐射自降温薄膜。
下面结合实施例对本发明的技术方案做进一步说明,但本发明并不受其限制。
实施例1
S1:首先称取3g的P(VDF-HFP)溶解在40g的丙酮和1g的乙醇中,40℃下搅拌1h至完全溶解,然后加入0.1g的疏水二氧化硅,充分搅拌均匀以获得半透明溶液。
S2:将4g非溶剂水以每隔5s滴加0.06ml的速度在搅拌下逐渐滴加至步骤一中获得的半透明溶液中,形成溶胶。
S3:将步骤二中溶胶倾倒于90mm规格的培养皿中,在室温条件下干燥5h,直至溶剂与非溶剂完全挥发,即可得到微观多孔超疏水自清洁薄膜。得到的薄膜的接触角为157°,对太阳光的反射率为90%,在中红外处的发射率为93%。
实施例2
S1:首先称取3.5g的P(VDF-HFP)溶解在40g的丙酮和1g的乙醇中,40℃下搅拌1h至完全溶解,然后加入0.2g的疏水二氧化硅,充分搅拌均匀以获得半透明溶液。
S2:将4g非溶剂水以每隔5s滴加0.06ml的速度在搅拌下逐渐滴加至步骤一中获得的半透明溶液中,形成溶胶。
S3:将步骤二中溶胶倾倒于90mm规格的培养皿中,在室温条件下干燥5h,直至溶剂与非溶剂完全挥发,即可得到微观多孔超疏水自清洁薄膜。得到的薄膜的接触角为160°,对太阳光的反射率为92.8%,在中红外处的发射率为95%。
实施例3
S1:首先称取4g的P(VDF-HFP)溶解在40g的丙酮和2.5g的乙醇中,40℃下搅拌1h至完全溶解,然后加入0.1g的疏水二氧化硅,充分搅拌均匀以获得半透明溶液。
S2:将5g非溶剂水以每隔5s滴加0.06ml的速度在搅拌下逐渐滴加至步骤一中获得的半透明溶液中,形成溶胶。
S3:将步骤二中溶胶倾倒于90mm规格的培养皿中,在室温条件下干燥5h,直至溶剂与非溶剂完全挥发,即可得到微观多孔超疏水自清洁薄膜。得到的薄膜的接触角为160°,对太阳光的反射率为92%,在中红外处的发射率为94%。
实施例4
S1:首先称取3.5g的P(VDF-HFP)溶解在40g的丙酮和1g的乙醇中,40℃下搅拌1h至完全溶解,然后加入0.1g的疏水二氧化硅,充分搅拌均匀以获得半透明溶液。
S2:将4.5g非溶剂水以每隔5s滴加0.06ml的速度在搅拌下逐渐滴加至步骤一中获得的半透明溶液中,形成溶胶。
S3:将步骤二中溶胶倾倒于90mm规格的培养皿中,在室温条件下干燥5h,直至溶剂与非溶剂完全挥发,即可得到微观多孔超疏水自清洁薄膜。得到的薄膜的接触角为163°,对太阳光的反射率为93%,在中红外处的发射率为96%。
实施例5
S1:首先称取4g的P(VDF-HFP)溶解在45g的丙酮和2g的乙醇中,40℃下搅拌1h至完全溶解,然后加入0.2g的疏水二氧化硅,充分搅拌均匀以获得半透明溶液。
S2:将5g非溶剂水以每隔5s滴加0.06ml的速度在搅拌下逐渐滴加至步骤一中获得的半透明溶液中,形成溶胶。
S3:将步骤二中溶胶倾倒于90mm规格的培养皿中,在室温条件下干燥5h,直至溶剂与非溶剂完全挥发,即可得到微观多孔超疏水自清洁薄膜。得到的薄膜的接触角为161°,对太阳光的反射率为92%,在中红外处的发射率为95%。
请参阅图1,本发明实施例3获得的超疏水自清洁材料的表面具有微纳双阶多孔结构,水滴的接触角高达163±2°;如此优异的超疏水性使得薄膜具有优异的自清洁性如图2所示;图3为本发明实施例3获得的超疏水自清洁材料在太阳光波段(0.25-2.5μm)和红外波段的反射率和发射率(2.5-25μm),其中薄膜对太阳光的反射率为92%,在中红外处的发射率为94%。图4为本发明实例4所获得的超疏水自清洁薄膜放置在户外单车坐垫上的实际照片和图4右上角的热红外照片。从红外照片可以看出日间自行车坐垫温度可以达到45℃以上,覆盖薄膜后的自行车垫的温度可以达到40℃以下,证明本发明所制备的材料具有良好的辐射自降温效果。
以上所述仅为本发明的一种实施方案,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (3)

1.一种超疏水自清洁辐射自降温材料的制备方法,其特征在于:
S1、把聚偏氟乙烯共六氟丙烯和疏水二氧化硅共混于混合溶剂中得到P(VDF-HFP)/SiO2复合悬浮液;
S2、向S1得到的复合悬浮液中逐滴加入非溶剂使P(VDF-HFP)/SiO2发生相分离形成半透明的溶胶;
S3、将S2得到的溶胶浇铸于培养皿中室温干燥,获得具有微纳双阶多孔结构的复合材料;
所述S1中,制备的P(VDF-HFP)/SiO2悬浮液步骤为:称取一定质量的P(VDF-HFP)溶解于混合溶剂中,待P(VDF-HFP)完全溶解后,再往其中加入一定质量分数的SiO2并搅拌均匀;混合溶剂为丙酮和乙醇,且所述P(VDF-HFP)/SiO2制备中,P(VDF-HFP)占丙酮的质量分数为7%~11%,乙醇占丙酮的质量分数为1%~6%,SiO2占丙酮的质量分数为0.2%~1%;
步骤S2中,非溶剂为水,加入方式为控制滴加速度为每5s逐滴加入0.06 g水,形成溶胶;所述水占丙酮的质量分数为8%~13%。
2.根据权利要求1所述一种超疏水自清洁辐射自降温材料的制备方法,其特征在于,在S3中,将溶胶倾倒于培养皿后,在室温下干燥4-6 h。
3.根据权利要求1所述一种超疏水自清洁辐射自降温材料的制备方法,其特征在于,所述混合溶剂、非溶剂挥发过程中产生的微纳双阶多孔结构对太阳光的平均反射率大于90%,在大气透明窗口的平均发射率大于90%,其表面与水滴接触角大于150°。
CN202110062875.4A 2021-01-18 2021-01-18 一种超疏水自清洁辐射自降温材料及其制备方法 Active CN112852079B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110062875.4A CN112852079B (zh) 2021-01-18 2021-01-18 一种超疏水自清洁辐射自降温材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110062875.4A CN112852079B (zh) 2021-01-18 2021-01-18 一种超疏水自清洁辐射自降温材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112852079A CN112852079A (zh) 2021-05-28
CN112852079B true CN112852079B (zh) 2022-09-06

Family

ID=76006452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110062875.4A Active CN112852079B (zh) 2021-01-18 2021-01-18 一种超疏水自清洁辐射自降温材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112852079B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113914136B (zh) * 2021-09-20 2022-10-25 河南中烟工业有限责任公司 一种具有烟草本香的保润型卷烟内衬纸及其制备方法
CN114736566B (zh) * 2022-04-07 2023-03-31 陕西科技大学 超疏水自清洁温度自适应型辐射降温涂层及涂层制备方法
CN114702712A (zh) * 2022-04-24 2022-07-05 中国科学院苏州纳米技术与纳米仿生研究所 超疏水pvdf-hfp/氧化硅气凝胶复合膜及其制备方法与应用
CN115220134B (zh) * 2022-06-13 2023-06-09 电子科技大学 一种疏水红外低发射镜面低反射材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190839A (zh) * 2010-03-05 2011-09-21 深圳市比克电池有限公司 凝胶聚合物锂离子电池、多孔复合极片及多孔膜组合物
CN103840112A (zh) * 2012-11-19 2014-06-04 东莞市长安东阳光铝业研发有限公司 一种pvdf-hfp基复合多孔聚合物隔膜及其制备方法
CN105251370A (zh) * 2015-11-24 2016-01-20 江润生 一种超疏水空气过滤膜及其制备方法和用途
CN105295265A (zh) * 2015-12-07 2016-02-03 郑州轻工业学院 一种改性聚偏氟乙烯超疏水材料及其制备方法
CN107626211A (zh) * 2017-09-29 2018-01-26 华南理工大学 一种具备自清洁性能的薄膜及其制备方法
CN109320882A (zh) * 2018-11-05 2019-02-12 天津摩根坤德高新科技发展有限公司 二氧化硅改性pvdf气凝胶、制备方法以及包括其的气凝胶制品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60221780T2 (de) * 2001-12-11 2008-06-05 Asahi Glass Co., Ltd. Wärmestrahlen blockierender Fluorharzfilm
CN108114610A (zh) * 2017-12-26 2018-06-05 天津工业大学 一种具有微纳双微观结构的超疏水pvdf膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190839A (zh) * 2010-03-05 2011-09-21 深圳市比克电池有限公司 凝胶聚合物锂离子电池、多孔复合极片及多孔膜组合物
CN103840112A (zh) * 2012-11-19 2014-06-04 东莞市长安东阳光铝业研发有限公司 一种pvdf-hfp基复合多孔聚合物隔膜及其制备方法
CN105251370A (zh) * 2015-11-24 2016-01-20 江润生 一种超疏水空气过滤膜及其制备方法和用途
CN105295265A (zh) * 2015-12-07 2016-02-03 郑州轻工业学院 一种改性聚偏氟乙烯超疏水材料及其制备方法
CN107626211A (zh) * 2017-09-29 2018-01-26 华南理工大学 一种具备自清洁性能的薄膜及其制备方法
CN109320882A (zh) * 2018-11-05 2019-02-12 天津摩根坤德高新科技发展有限公司 二氧化硅改性pvdf气凝胶、制备方法以及包括其的气凝胶制品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"纳米二氧化硅改性聚偏氟乙烯膜的研究进展";赵小云等;《水处理技术》;20190531;第45卷(第5期);第11-14页 *

Also Published As

Publication number Publication date
CN112852079A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN112852079B (zh) 一种超疏水自清洁辐射自降温材料及其制备方法
CN110483924B (zh) 一种超疏水自清洁辐射降温薄膜及其制备方法
CN113025133B (zh) 一种超疏水日间被动辐射制冷多孔膜及制备方法
CN111607983B (zh) 一种超疏水日间被动辐射制冷织物及其制备方法
CN103450531B (zh) 一种相变控温防晒薄膜及其制备方法
CN101649147B (zh) 一种水性透明隔热涂料及其制备方法
CN103881484A (zh) 一种外墙建筑高红外线反射隔热涂料及其制备方法
CN113419580B (zh) 基于被动辐射冷却和太阳加热的智能控温器件及制备方法
CN113292874A (zh) 一种被动辐射制冷涂料及其制备方法、涂层结构
CN112724437A (zh) 一种超疏水辐射降温薄膜及其制备方法
CN103525320A (zh) 热致变色pvb中间膜及其制备方法
CN102766366A (zh) 反射隔热涂料
CN204826233U (zh) 一种具有室内温度调节功能的被动式阳光房系统
CN108129144B (zh) 一种低吸收/发射比自适应控温材料及其制备方法
CN105171908A (zh) 一种蒸养方法及装置
CN102956734A (zh) 一种可调透光率的多晶硅电池组件
WO2021087128A1 (en) Systems and methods for spectrally selective thermal radiators with partial exposures to both the sky and the terrestrial environment
CN102102458A (zh) 一种多孔集热墙式太阳房
CN112724436A (zh) 一种超疏水辐射自降温材料及其制备方法
CN201715640U (zh) 一种温度调节装置
CN205185034U (zh) 一种蒸养装置
CN203415243U (zh) 用于光热型总辐射表的强制通风罩
CN203608892U (zh) 降低日晒温度的防热安全帽
Xia et al. Water-based kaolin/polyacrylate cooling paint for exterior walls
CN111471359A (zh) 一种广谱高发射颗粒材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant