CN110473771B - 直接转换x射线探测材料的制备方法 - Google Patents

直接转换x射线探测材料的制备方法 Download PDF

Info

Publication number
CN110473771B
CN110473771B CN201910696261.4A CN201910696261A CN110473771B CN 110473771 B CN110473771 B CN 110473771B CN 201910696261 A CN201910696261 A CN 201910696261A CN 110473771 B CN110473771 B CN 110473771B
Authority
CN
China
Prior art keywords
growth
starting
tft substrate
source
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910696261.4A
Other languages
English (en)
Other versions
CN110473771A (zh
Inventor
汪雅伟
查钢强
周策
曹昆
李阳
张文玉
李易伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Photon Nuclear Radiation Detection Technology Co.,Ltd.
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910696261.4A priority Critical patent/CN110473771B/zh
Publication of CN110473771A publication Critical patent/CN110473771A/zh
Application granted granted Critical
Publication of CN110473771B publication Critical patent/CN110473771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers

Abstract

本发明公开了一种直接转换X射线探测材料的制备方法,用于解决现有方法难以直接在TFT直接沉积CdZnTe多晶薄膜的技术问题。技术方案是采用布里奇曼法生长Cd1‑xZnxTe多晶锭切片作为生长源。将TFT衬底和生长源放入生长腔室,通过石英柱子调整好生长源与衬底之间的距离,关闭炉门,先开启机械泵抽真空,使腔室内真空度小于10pa,开启分子泵调节室内气压。开启水冷和温度控制系统,缓慢升温到设定温度,低温形核,采取重复生长方式,防止TFT衬底损坏,生长结束后,缓慢降温到一定温度然后自然冷却,由于采用了低温形核和重复生长方式,解决了背景技术方法难以直接在TFT衬底上真空沉积CdZnTe多晶薄膜问题。

Description

直接转换X射线探测材料的制备方法
技术领域
本发明涉及一种X射线探测材料的制备方法,特别涉及一种直接转换X射线探测材料的制备方法。
背景技术
随着数字化时代的发展,常规X射线成像技术也在向数字化发展。传统的胶片-扫描仪已经被数字化X摄影技术(Digital Radiography,简称DR)所取代。DR以其更快的成像速度、更便捷的操作、更高的成像分辨率等显著优点,成为数字X摄影技术的主导方向,DR的技术核心是平板探测器(Flat panel detector,简称FPD),按能量转换方式可以分为间接转换平板探测器和直接转换平板探测器。目前FPD材料主要有闪烁体和半导体非晶硒。以碘化铯、碘化钠闪烁体为代表的间接转换材料由于要经过X射线—可见光—电信号的转变,可见光的散射会造成空间分辨率的下降。直接接转换材料非晶硒具有很高的空间分辨率,但是其稳定性受温度波动影响大。FPD的发展急需要一种可以室温工作、高灵敏、高空间分辨的材料,长远来看,直接转换模式的高Z半导体材料是未来平板探测器的发展方向。
Cd1-xZnxTe(简称为CZT)是从碲化镉(CdTe)晶体发展而来的一种新型Ⅱ-Ⅵ固体化合物半导体。具有较大的禁带宽度(Eg随x在1.4~2.26可调)、较高的电阻率(室温下ρ>1010Ω·cm)、优异的载流子传输特性(电子迁移率μe>1000cm2/V·s,寿命τe>10-5s)、工作时漏电流小、噪声较低等优良特性,是制备室温X射线探测器的理想材料。但是由于CZT单晶成本昂贵,尺寸受限制,这影响了CZT在平板探测器上的发展。相比多晶薄膜,外延对工艺要求高,并且为了保证晶格匹配,必须选择价格昂贵的GaAs作为衬底材料,不符合CZT薄膜探测器工业化低成本的要求,采用近空间升华技术可以获取大面积的CdZnTe多晶薄膜,而均匀、致密的CdZnTe多晶薄膜可以替代非晶硒成为新的直接转换X射线探测材料。“Tokuda S,Kishihara H,AdachiS,et al.Preparation and characterization of polycrystallineCdZnTe films for large-area,high-sensitivity X-ray detectors.Journal ofMaterials Science:Materials in Electronics,2004,15(1):1-8.”日本岛津公司的Stoshi Tokuda等人用CSS法在氧化铝上沉积CdZnTe多晶薄膜,将CdZnTe多晶薄膜倒装在TFT上制成探测器,但此方法存在成本高,厚度不均匀,并且难以直接在TFT直接沉积CdZnTe多晶薄膜。
发明内容
为了克服现有方法难以直接在TFT直接沉积CdZnTe多晶薄膜的不足,本发明提供一种直接转换X射线探测材料的制备方法。该方法采用布里奇曼法生长出Cd1-xZnxTe多晶锭,将Cd1-xZnxTe多晶锭切成大小厚度一样的切片作为生长源。将TFT衬底和生长源放入生长腔室,通过石英柱子调整好生长源与衬底之间的距离,关闭炉门,先开启机械泵抽真空,使腔室内真空度小于10pa,开启分子泵调节室内气压。开启水冷和温度控制系统,缓慢升温到设定温度,低温形核,采取重复生长方式,防止TFT衬底损坏,生长结束后,缓慢降温到一定温度然后自然冷却,由于采用了低温形核和重复生长方式,解决了背景技术方法难以直接在TFT衬底上真空沉积CdZnTe多晶薄膜问题。
本发明解决其技术问题所采用的技术方案:一种直接转换X射线探测材料的制备方法,其特点是包括以下步骤:
步骤一、将TFT基板用丙酮、乙醇和去离子水各超声清洗10~20分钟,去除表面杂质和有机物,最后用氮气吹干放入真空箱中备用。
步骤二、将高纯的Cd、Zn、Te放入石英管中,采用布里奇曼法生长出Cd1-xZnxTe多晶锭切片,将生长好的Cd1-xZnxTe多晶体切片作为生长源,使用前进行砂纸磨抛处理,去除表面氧化物,最后用酒精、丙酮、蒸馏水各清洗10~20分钟,氮气吹干,放入干燥箱中备用。
步骤三、将生长源和TFT基板从干燥箱和真空箱取出,分别放到用石英柱子支撑的石墨圆盘上和AlN圆盘上,通过石英柱子调控源基距为5~10mm,先开机械泵抽真空,气压抽到5~10Pa,启动分子泵,生长过程通入氩气调节室内气压。然后开启水冷和启动温度系统,分别将生长源和TFT基板升温到200~300℃和50~100℃,预热30min,最后将生长源和TFT基板分别缓慢加热到600~720℃和200~300℃,升温速度10℃/min,生长时间1~2h,然后将生长源温度缓慢降温到200~300℃,保温30min,再缓慢加热到600~700℃,生长时间2h,生长结束后TFT基板以1~2℃/min的降温速率缓慢降到100℃,然后自然冷却到室温,得到X射线探测材料。
本发明的有益效果是:该方法采用布里奇曼法生长出Cd1-xZnxTe多晶锭,将Cd1- xZnxTe多晶锭切成大小厚度一样的切片作为生长源。将TFT衬底和生长源放入生长腔室,通过石英柱子调整好生长源与衬底之间的距离,关闭炉门,先开启机械泵抽真空,使腔室内真空度小于10pa,开启分子泵调节室内气压。开启水冷和温度控制系统,缓慢升温到设定温度,低温形核,采取重复生长方式,防止TFT衬底损坏,生长结束后,缓慢降温到一定温度然后自然冷却,由于采用了低温形核和重复生长方式,解决了背景技术方法难以直接在TFT衬底上真空沉积CdZnTe多晶薄膜问题。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本发明方法实施例1生长的CdZnTe多晶薄膜在不同剂量的X射线下的光电流台阶图。
图2是本发明方法实施例1生长的CdZnTe多晶薄膜的厚度分布图。
具体实施方式
以下实施例参照图1-2。
实施例1:
(1)将TFT基板用丙酮、乙醇、去离子水各超声清洗15分钟,去除表面杂质和有机物,最后用氮气吹干放入真空箱中备用。
(2)将高纯的Cd、Zn、Te放入石英管中,采用布里奇曼法生长出质量好、成分分布相对均匀、无大块Te夹杂的Cd1-xZnxTe多晶锭切片,其中Zn含量可调,将生长好的晶体切片作为生长源,使用前进行砂纸磨抛处理,去除表面氧化物,最后用酒精、丙酮、蒸馏水各清洗15分钟,氮气吹干,放入干燥箱中备用。
(3)将步骤(1)清洗的TFT和步骤(2)制备的原料,从干燥箱和真空箱取出,分别放到用石英柱子支撑的石墨圆盘上和AlN圆盘上,通过石英柱子调控源基距为5mm,先开机械泵抽真空,气压抽到8帕,启动分子泵,生长过程可通入氩气调节室内气压。然后开启水冷和启动温度系统,分别将生长源和衬底升温到250℃和70℃,预热30min,最后将生长源和衬底分别缓慢加热到650℃和200℃,升温速度5℃/min,生长时间2h,然后将源温缓慢降温到250℃,保温30min,缓慢加热到650℃,生长时间2h,生长结束后衬底以1℃/min的降温速率缓慢降到100°,然后自然冷却到室温,薄膜的平均厚度266um,符合用作平板探测器的厚度,生长源可重复性利用。
从图1中可以看出,在不同剂量下X射线具有良好的响应,光电流与X射线剂量成正比例关系增加且平台平稳,适用于平板探测器。
从图2中可以看出,本实施例生长的CdZnTe多晶薄膜厚度分布均匀,最高和最低相差25um。
实施例2:
(1)将TFT基板用丙酮、乙醇、去离子水各超声清洗20分钟,去除表面杂质和有机物,最后用氮气吹干放入真空箱中备用。
(2)将高纯的Cd、Zn、Te放入石英管中,采用布里奇曼法生长出质量好、成分分布相对均匀、无大块Te夹杂的Cd1-xZnxTe多晶锭切片,其中Zn含量可调,将生长好的晶体切片作为生长源,使用前进行砂纸磨抛处理,去除表面氧化物,最后用酒精、丙酮、蒸馏水各清洗20分钟,氮气吹干,放入干燥箱中备用。
(3)将步骤(1)清洗的TFT和步骤(2)制备的原料,从干燥箱和真空箱取出,分别放到用石英柱子支撑的石墨圆盘上和AlN圆盘上,通过石英柱子调控源基距为10mm,先开机械泵抽真空,气压抽到10帕,启动分子泵,生长过程可通入氩气调节室内气压。然后开启水冷和启动温度系统,分别将生长源和衬底升温到300℃和100℃,预热30min,最后将生长源和衬底分别缓慢加热到700℃和250℃,升温速度7℃/min,生长时间1h,然后将源温缓慢降温到300℃,保温30min,缓慢加热到700℃,生长时间2h,生长结束后衬底以1℃/min的降温速率缓慢降到100°,然后自然冷却到室温。
实施例3:
(1)将TFT基板用丙酮、乙醇、去离子水各超声清洗10分钟,去除表面杂质和有机物,最后用氮气吹干放入真空箱中备用。
(2)将高纯的Cd、Zn、Te放入石英管中,采用布里奇曼法生长出质量好、成分分布相对均匀、无大块Te夹杂的Cd1-xZnxTe多晶锭切片,其中Zn含量可调,将生长好的晶体切片作为生长源,使用前进行砂纸磨抛处理,去除表面氧化物,最后用酒精、丙酮、蒸馏水各清洗10分钟,氮气吹干,放入干燥箱中备用。
(3)将步骤(1)清洗的TFT和步骤(2)制备的原料,从干燥箱和真空箱取出,分别放到用石英柱子支撑的石墨圆盘上和AlN圆盘上,通过石英柱子调控源基距为8mm,先开机械泵抽真空,气压抽到5帕,启动分子泵,生长过程可通入氩气调节室内气压。然后开启水冷和启动温度系统,分别将生长源和衬底升温到200℃和50℃,预热30min,最后将生长源和衬底分别缓慢加热到600℃和300℃,升温速度10℃/min,生长时间1.5h,然后将源温缓慢降温到250℃,保温30min,缓慢加热到680℃,生长时间3h,然后将源温缓慢降温到200℃,保温30min,缓慢加热到600℃,生长时间2h,生长结束后衬底以1℃/min的降温速率缓慢降到100°,然后自然冷却到室温。

Claims (1)

1.一种直接转换X射线探测材料的制备方法,其特征在于包括以下步骤:
步骤一、将TFT基板用丙酮、乙醇和去离子水各超声清洗10~20分钟,去除表面杂质和有机物,最后用氮气吹干放入真空箱中备用;
步骤二、将高纯的Cd、Zn、Te放入石英管中,采用布里奇曼法生长出Cd1-xZnxTe多晶锭切片,将生长好的Cd1-xZnxTe多晶体切片作为生长源,使用前进行砂纸磨抛处理,去除表面氧化物,最后用酒精、丙酮、蒸馏水各清洗10~20分钟,氮气吹干,放入干燥箱中备用;
步骤三、将生长源和TFT基板从干燥箱和真空箱取出,分别放到用石英柱子支撑的石墨圆盘上和AlN圆盘上,通过石英柱子调控源基距为5~10mm,先开机械泵抽真空,气压抽到5~10Pa,启动分子泵,生长过程通入氩气调节室内气压;然后开启水冷和启动温度系统,分别将生长源和TFT基板升温到200~300℃和50~100℃,预热30min,最后将生长源和TFT基板分别缓慢加热到600~720℃和200~300℃,升温速度10℃/min,生长时间1~2h,然后将生长源温度缓慢降温到200~300℃,保温30min,再缓慢加热到600~700℃,生长时间2h,生长结束后TFT基板以1~2℃/min的降温速率缓慢降到100℃,然后自然冷却到室温,得到X射线探测材料。
CN201910696261.4A 2019-07-30 2019-07-30 直接转换x射线探测材料的制备方法 Active CN110473771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910696261.4A CN110473771B (zh) 2019-07-30 2019-07-30 直接转换x射线探测材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910696261.4A CN110473771B (zh) 2019-07-30 2019-07-30 直接转换x射线探测材料的制备方法

Publications (2)

Publication Number Publication Date
CN110473771A CN110473771A (zh) 2019-11-19
CN110473771B true CN110473771B (zh) 2021-04-20

Family

ID=68509112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910696261.4A Active CN110473771B (zh) 2019-07-30 2019-07-30 直接转换x射线探测材料的制备方法

Country Status (1)

Country Link
CN (1) CN110473771B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224244A (zh) * 1998-01-20 1999-07-28 夏普株式会社 二维图像检像器及其制造方法
US6242746B1 (en) * 1998-02-09 2001-06-05 Sharp Kabushiki Kaisha Two-dimensional image detecting device and manufacturing method thereof
US7291842B2 (en) * 2005-06-14 2007-11-06 Varian Medical Systems Technologies, Inc. Photoconductor imagers with sandwich structure
CN202305447U (zh) * 2011-09-27 2012-07-04 北京京东方光电科技有限公司 数字x射线影像检查装置
CN104153001A (zh) * 2014-08-12 2014-11-19 西北工业大学 在GaAs单晶衬底上制备CdZnTe外延膜的方法
CN109487339A (zh) * 2019-01-03 2019-03-19 西北工业大学 用于X射线成像的大面积CdZnTe单晶制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313384A (ja) * 2000-04-28 2001-11-09 Shimadzu Corp 放射線検出器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224244A (zh) * 1998-01-20 1999-07-28 夏普株式会社 二维图像检像器及其制造方法
US6262408B1 (en) * 1998-01-20 2001-07-17 Sharp Kabushiki Kaisha Two-dimensional image detector and process for manufacturing the same
EP0930657B1 (en) * 1998-01-20 2006-05-17 Sharp Kabushiki Kaisha Two-dimensional image detector and process for manufacturing the same
US6242746B1 (en) * 1998-02-09 2001-06-05 Sharp Kabushiki Kaisha Two-dimensional image detecting device and manufacturing method thereof
US7291842B2 (en) * 2005-06-14 2007-11-06 Varian Medical Systems Technologies, Inc. Photoconductor imagers with sandwich structure
CN202305447U (zh) * 2011-09-27 2012-07-04 北京京东方光电科技有限公司 数字x射线影像检查装置
CN104153001A (zh) * 2014-08-12 2014-11-19 西北工业大学 在GaAs单晶衬底上制备CdZnTe外延膜的方法
CN109487339A (zh) * 2019-01-03 2019-03-19 西北工业大学 用于X射线成像的大面积CdZnTe单晶制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Direct deposition of polycrystalline CdTe films on the Medipix readout chip and evaluation of layer quality and imaging results;Vogt, A.; Schutt, S.; Fischer, F.;《2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)》;20141231;全文 *
Grain Growth and Characteristics of Chlorine Doped Thick Polycrystalline CdZnTe Films;Yoshimatsu, Akina; Yoshimuta, Toshinori; Tokuda, Satoshi;《IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop》;20121103;全文 *
Reprint of:State of the art of the heavy metal iodides as photoconductors for digital imaging;Fornaro, L.;《JOURNAL OF CRYSTAL GROWTH》;20130915;第379卷;全文 *
The growth and the interfacial layer of CdZnTe nano-crystalline films by vacuum evaporation;Zha G, Zhou H, Gao J, et al.;《Vacuum》;20111008;第86卷(第3期);全文 *

Also Published As

Publication number Publication date
CN110473771A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
EP1969622B1 (en) Semiconductor device and method of manufacture thereof
JP6310794B2 (ja) 放射線検出素子、放射線検出器および放射線検出素子の製造方法
Roy et al. Growth and characterization of CdMnTe by the vertical Bridgman technique
Gokhale et al. Growth, fabrication, and testing of bismuth tri-iodide semiconductor radiation detectors
Hitomi et al. Thallium bromide optical and radiation detectors for X-and gamma-ray spectroscopy
US11967659B2 (en) Semiconductor wafer, radiation detection element, radiation detector, and production method for compound semiconductor monocrystalline substrate
Roy et al. Growth of spectroscopic grade Cd0. 9Zn0. 1Te: In by THM technique
CN104164649A (zh) 大面积碘化铅厚膜的制备方法及其实施设备
Oliveira et al. Influence of crystalline surface quality on TlBr radiation detector performance
CN103904160A (zh) 一种基于CdZnTe薄膜的X射线探测器的制备方法
JP7133476B2 (ja) テルル化亜鉛カドミウム単結晶基板およびその製造方法
Byun et al. Growth and characterization of detector-grade CdMnTeSe
CN110473771B (zh) 直接转换x射线探测材料的制备方法
CN103343389A (zh) 一种柱状结构CdZnTe薄膜的制备方法
JP2010532306A (ja) 半導体デバイス構造及びその製造方法
Li et al. Effects of annealing on the properties of CdZnTe epitaxial thick films deposited on p-GaAs using close-spaced sublimation
JP6713341B2 (ja) 化合物半導体基板およびその製造方法
CN102168313B (zh) 一种碲锌镉晶体的气相退火改性方法
JP7217715B2 (ja) 化合物半導体基板およびその製造方法
Shah et al. TlBr/sub x/I/sub 1-x/photodetectors for scintillation spectroscopy
Corregidor et al. Defects in CdTe polycrystalline films grown by physical vapour deposition
CN113644149B (zh) 提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法
Zaiour et al. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization
Fornaro et al. Polycrystalline lead iodide films: optical, electrical and X-ray counting characterization
CN113471303A (zh) 高探测效率自支撑CdZnTe厚膜结构、探测器件及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231127

Address after: Room 4503, Building B, 4th Floor, Innovation Building, Xi'an University of Technology, No. 127 Youyi West Road, Xi'an City, Shaanxi Province, 710072

Patentee after: Shaanxi Photon Nuclear Radiation Detection Technology Co.,Ltd.

Address before: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an

Patentee before: Northwestern Polytechnical University