CN113644149B - 提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法 - Google Patents

提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法 Download PDF

Info

Publication number
CN113644149B
CN113644149B CN202110852294.0A CN202110852294A CN113644149B CN 113644149 B CN113644149 B CN 113644149B CN 202110852294 A CN202110852294 A CN 202110852294A CN 113644149 B CN113644149 B CN 113644149B
Authority
CN
China
Prior art keywords
cdznte
epitaxial film
gaas
annealing
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110852294.0A
Other languages
English (en)
Other versions
CN113644149A (zh
Inventor
万鑫
查钢强
李阳
曹昆
刘雅洁
魏鹤鸣
李颖锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Research Institute Of Northwest Polytechnic University
Northwestern Polytechnical University
Original Assignee
Qingdao Research Institute Of Northwest Polytechnic University
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Research Institute Of Northwest Polytechnic University, Northwestern Polytechnical University filed Critical Qingdao Research Institute Of Northwest Polytechnic University
Priority to CN202110852294.0A priority Critical patent/CN113644149B/zh
Publication of CN113644149A publication Critical patent/CN113644149A/zh
Application granted granted Critical
Publication of CN113644149B publication Critical patent/CN113644149B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明涉及一种提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法,基于P型GaAs衬底上生长CdZnTe厚膜并在Te2气氛中进行等温退火。将其制备成Au/CdZnTe/p‑GaAs/Au探测器,与退火之前相比,CdZnTe外延膜的电阻率明显提高,探测器对241Am@5.49MeVα粒子响应更加灵敏,能量分辨率提高,并且在退火之后出现了对241Am@59.5KeVγ射线的响应。本发明提供的改性方法包括衬底的预处理、CdZnTe外延膜的生长过程、CdZnTe外延膜的退火过程及辐射探测器的制备。

Description

提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法
技术领域
本发明属于CdZnTe探测器技术领域,涉及一种提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法,特别涉及碲锌镉半导体外延薄膜材料探测性能的提高方法。
背景技术
Cd1-xZnxTe(简称为CdZnTe或CZT)是一种具有优异光电性能的II-VI族化合物半导体,其具有较高的原子序数,较大的禁带宽度,较高的本征μτ值,较低的电子-空穴电离能等优点,被认为是理想的室温X射线和γ射线探测器材料。目前,用CZT单晶体材料制作的室温辐射探测器已经被广泛应用于核医学、工业无损检测、航空航天及天体物理等领域。
传统熔体法生长会存在的效率低、晶锭利用率低及废料不能回收利用等问题,而近空间升华法很好地解决了这一点。CSS法生长薄膜提高了生长效率,但由于外延异质结中薄膜与衬底之间存在失配,外延膜中不可避免地存在着大量的结构缺陷和电杂质,在能带中引入陷阱能级。这些能级对载流子产生复合、俘获和散射等作用过程,从而影响载流子寿命、迁移率等运输特性,最终影响CZT探测器的能量分辨率、电荷收集率等探测性能。对于室温核辐射探测器,其高性能的关键在于高质量的CZT薄膜,要求具有较高的电阻(>1010Ω·cm)、较大的载流子迁移率寿命积。要获得高质量的CZT薄膜,一方面可以探索合适的生长工艺,控制在生长过程中便可获得缺陷较少的外延膜;另一方面可以对外延膜进行退火改性处理,进一步降低缺陷。
CSS法生长的CZT薄膜的主要缺陷是位错与点缺陷,位错包括界面位错与穿透位错,其破坏了晶格完整性,降低了探测器的能量分辨率和电阻率;而点缺陷的存在也会对探测器的电阻率产生很大影响,本发明将基于CSS法生长CZT薄膜,对其进行Te2气氛退火改性,调整薄膜中的位错密度和本征点缺陷浓度,以达到改善薄膜光电性能的目的。
CSS法生长的CdZnTe外延膜由于晶格失配不可避免地存在着点缺陷和位错,其破坏了晶格完整性并降低了探测器的能量分辨率和电阻率。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法,通过首先在GaAs衬底上生长CdZnTe外延膜,然后在Te2气氛中等温退火,调控外延膜中的缺陷,最终制备成Au/CdZnTe/p-GaAs/Au探测器并达到提高探测器探测性能的目的。
技术方案
一种提高CdZnTe探测器性能的CdZnTe/GaAs外延膜,其特征在于:在GaAs衬底上生长CdZnTe外延膜,然后在Te2气氛中等温退火,得到CdZnTe/GaAs外延膜。
一种制备所述CdZnTe/GaAs外延膜的方法,其特征在于步骤如下:
步骤1、衬底的预处理:将GaAs衬底在室温下,分别在丙酮、无水乙醇和去离子水中超声清洗以去除表面的杂质及有机物;清洗完成后,将衬底在H2SO4:H2O2:H2O=4:1:1溶液中刻蚀20s,刻蚀完成后用去离子水冲洗,最后用氮气吹干放入近空间升华炉的上加热台;
步骤2、CdZnTe多晶源的预处理:将多晶源用砂纸打磨源表面的氧化层,之后在室温下分别在丙酮、无水乙醇和去离子水中超声清洗以去除表面的杂质及有机物;最后用氮气吹干放入近空间升华炉的下加热台;
步骤3、生长程序的设置:近空间升华炉的上下加热台分别控制衬底和多晶源的温度,外延膜的生长采用两步法,即上加热台的温度首先升温至833K下保温0.5h,再降到730K保温3.5h,下加热台的温度始终保持在983K,生长时间为4h;
步骤4、CdZnTe外延膜的生长:打开近空间升华炉,将经过预处理的多晶源和衬底放入升华炉,开启机械泵和通气阀,待腔体真空度低于5Pa时分子泵自动接入,将腔内真空度抽至0.05Pa,运行步骤3的生长程序并打开水冷,待程序运行完成且炉内冷却至室温,依次关闭通气阀、分子泵及水冷,取出CdZnTe/GaAs外延膜;
步骤5、CdZnTe外延膜的退火:打开近空间升华炉,将退火源和CdZnTe/GaAs外延膜放入升华炉,开启机械泵和通气阀,待腔体真空度低于10Pa时运行退火程序;退火为恒温退火,退火源为粉状Te单质;上下加热台分别控制CdZnTe/GaAs外延膜与退火源的温度;打开水冷并关闭通气阀和机械泵,待程序运行完成且炉内冷却至室温,关闭水冷,制备完成CdZnTe/GaAs外延膜。
所述超声清洗为20~25分钟
所述GaAs衬底的面积小于多晶源的面积。
所述粉状Te单质纯度为7N。
一种采用所述CdZnTe/GaAs外延膜的CdZnTe探测器,其特征在于:在CdZnTe/GaAs的外延膜和衬底表面上,结合不超过100nm的金电极层,形成Au/CdZnTe/p-GaAs/Au探测器。
一种采用所述CdZnTe/GaAs外延膜的CdZnTe探测器,其特征在于:采用真空蒸镀法,将CdZnTe/GaAs外延膜放入蒸镀机,将真空度抽至0.005Pa,分别在外延膜和衬底表面蒸镀80nm的金电极层,形成Au/CdZnTe/p-GaAs/Au探测器。
一种所述CdZnTe探测器的应用方法,其特征在于:所述Au/CdZnTe/p-GaAs/Au探测器用于对241Am@59.5KeVγ射线的响应。
有益效果
本发明提出的一种提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法,基于P型GaAs衬底上生长CdZnTe厚膜并在Te2气氛中进行等温退火。将其制备成Au/CdZnTe/p-GaAs/Au探测器,与退火之前相比,CdZnTe外延膜的电阻率明显提高,探测器对241Am@5.49MeVα粒子响应更加灵敏,能量分辨率提高,并且在退火之后出现了对241Am@59.5KeVγ射线的响应。本发明提供的改性方法包括衬底的预处理、CdZnTe外延膜的生长过程、CdZnTe外延膜的退火过程及辐射探测器的制备。
本明将退火后的CdZnTe外延膜制备成Au/CdZnTe/p-GaAs/Au探测器,与退火之前相比,CdZnTe外延膜的电阻率明显提高,探测器对241Am@5.49MeVα粒子响应更加灵敏,能量分辨率提高,并且在退火之后出现了对241Am@59.5KeVγ射线的响应。
附图说明
图1为本发明实施例一CdZnTe外延膜退火后和对比例生长态CdZnTe外延膜的EPD扫描图。
图2为本发明实施例一CdZnTe外延膜退火后制成Au/CdZnTe/p-GaAs/Au探测器和对比例生长态CdZnTe外延膜制成Au/CdZnTe/p-GaAs/Au探测器的I-V曲线图。
图3为本发明实施例一CdZnTe外延膜退火后制成Au/CdZnTe/p-GaAs/Au探测器和生长态CdZnTe外延膜制成Au/CdZnTe/p-GaAs/Au探测器在241Am@5.49MeVα粒子作用下通过Hecht方程拟合的电子迁移率寿命积。
图4为本发明实施例一CdZnTe外延膜退火后制成Au/CdZnTe/p-GaAs/Au探测器测得241Am@59.5KeVγ射线的全能峰。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例一
在本实施例中,一种提高CdZnTe外延膜探测器性能方法,其特征在于:首先在GaAs衬底上生长CdZnTe外延膜,然后在Te2气氛中等温退火,最终制备成Au/CdZnTe/p-GaAs/Au探测器。CdZnTe外延膜的厚度为280um,GaAs衬底的厚度为550um。
在本实施中,本实施例具有Au/CdZnTe/p-GaAs/Au探测器的制备方法,其步骤如下:
衬底的预处理:将厚度为550um的GaAs衬底切割成12×12mm2大小的方块,室温下分别在丙酮、无水乙醇和去离子水中超声清洗20到25分钟以去除表面的杂质及有机物;清洗完成后,将衬底在H2SO4:H2O2:H2O=4:1:1溶液中刻蚀20s,刻蚀完成后用去离子水冲洗,最后用氮气吹干放入近空间升华炉备用。
CdZnTe多晶源的预处理:将厚度为2mm的多晶源切割成15×15mm2大小的方块,用1000目的砂纸打磨源表面的氧化层,之后在室温下分别在丙酮、无水乙醇和去离子水中超声清洗20到25分钟以去除表面的杂质及有机物;最后用氮气吹干放入近空间升华炉备用。
生长程序的设置:近空间升华炉的上下加热台分别控制衬底和多晶源的温度,外延膜的生长采用两步法,即上加热台的温度首先升温至833K下保温0.5h,再降到730K保温3.5h,下加热台的温度始终保持在983K,生长时间为4h。
CdZnTe外延膜的生长过程:打开近空间升华炉,将经过预处理的多晶源和衬底放入升华炉,开启机械泵和通气阀,待腔体真空度低于5Pa时分子泵自动接入,将腔内真空度抽至0.05Pa,运行生长程序并打开水冷,待程序运行完成且炉内冷却至室温,依次关闭通气阀、分子泵及水冷,取出CdZnTe/GaAs外延膜,CdZnTe外延膜的厚度为280um。
CdZnTe外延膜的退火过程:打开近空间升华炉,将退火源和外延膜放入升华炉,开启机械泵和通气阀,待腔体真空度低于10Pa时运行退火程序,退火为恒温退火,退火源为粉状Te单质,纯度为7N;上下加热台分别控制外延膜与退火源的温度,上下加热台的温度都加热至623K并保温10h。打开水冷并关闭通气阀和机械泵,待程序运行完成且炉内冷却至室温,关闭水冷,取出CdZnTe/GaAs外延膜。
一种辐射探测器,在CdZnTe/GaAs的外延膜和衬底表面上,结合不超过100nm的金电极层,形成Au/CdZnTe/p-GaAs/Au探测器。
一种辐射探测器的制备方法,制备步骤如下:采用真空蒸镀法,将CdZnTe/GaAs外延膜放入蒸镀机,将真空度抽至0.005Pa,分别在外延膜和衬底表面蒸镀80nm的金电极层,形成Au/CdZnTe/p-GaAs/Au探测器。
一种辐射探测器的应用,将Au/CdZnTe/p-GaAs/Au探测器能对241Am@59.5KeVγ射线的响应。
本发明与现有技术相比较,具有如下显而易见的实质性特点和优点:
本明将退火后的CdZnTe外延膜制备成Au/CdZnTe/p-GaAs/Au探测器,与退火之前相比,CdZnTe外延膜的电阻率明显提高,探测器对241Am@5.49MeVα粒子响应更加灵敏,能量分辨率提高,并且在退火之后出现了对241Am@59.5KeVγ射线的响应。
对比例:
在本对比中,一种Au/CdZnTe/p-GaAs/Au探测器,首先在GaAs衬底上生长CdZnTe外延膜,然后再外延膜和衬底表面蒸镀不超过100nm的金电极层,最终制备成Au/CdZnTe/p-GaAs/Au探测器。CdZnTe外延膜的厚度为270um,GaAs衬底的厚度为550um。
结合实施例和对比例,有关本实施例通过在Te2气氛下退火处理的CdZnTe外延膜制备成Au/CdZnTe/p-GaAs/Au探测器和对比例直接用生长态的CdZnTe外延膜制备成的Au/CdZnTe/p-GaAs/Au探测器,采用实验仪器测试所得附图的解释说明如下:
图1的(a)和(b)分别本发明实施例一CdZnTe外延膜退火后和对比例生长态CdZnTe外延膜的EPD扫描图,退火后外延膜和生长态外延膜的位错腐蚀坑密度分别为2.29×105和1.56×105cm-2,位错密度明显下降。
图2为本发明实施例一CdZnTe外延膜退火后制成Au/CdZnTe/p-GaAs/Au探测器和对比例生长态CdZnTe外延膜制成Au/CdZnTe/p-GaAs/Au探测器的I-V曲线图。退火后和生长态外延膜制成的探测器的电阻率分别为4.38×109Ω·cm和5.47×108Ω·cm,退火处理可以明显提高探测器的电阻率。
图3为本发明实施例一CdZnTe外延膜退火后制成Au/CdZnTe/p-GaAs/Au探测器和生长态CdZnTe外延膜制成Au/CdZnTe/p-GaAs/Au探测器在241Am@5.49MeVα粒子作用下通过Hecht方程拟合的电子迁移率寿命积。退火后和生长态外延膜制成的探测器的电子迁移率寿命积分别为9.30×10-4cm2·V-1和5.27×10-4cm2·V-1,退火处理可以明显提高探测器的电子迁移率寿命积。
图4为本发明实施例一CdZnTe外延膜退火后制成Au/CdZnTe/p-GaAs/Au探测器测得241Am@59.5KeVγ射线的全能峰,而生长态外延膜制成的Au/CdZnTe/p-GaAs/Au探测器无法对241Am@59.5KeVγ射线产生响应。
本实施例可以使CdZnTe外延膜制成的探测器电阻率明显提高,对241Am@5.49MeVα粒子响应更加灵敏,能量分辨率提高,并且在对241Am@59.5KeVγ射线产生响应。
实施例二
本实施例与实施例一基本相同,特别之处在于:
在本实施例中,对于CdZnTe外延膜的退火过程,其退火过程如下:
退火过程:打开近空间升华炉,将退火源和外延膜放入升华炉,开启机械泵和通气阀,待腔体真空度低于10Pa时运行退火程序,退火为恒温退火,退火源为粉状Te单质,纯度为7N;上下加热台分别控制外延膜与退火源的温度,上下加热台的温度都加热至623K并保温5h。打开水冷并关闭通气阀和机械泵,待程序运行完成且炉内冷却至室温,关闭水冷,取出CdZnTe/GaAs外延膜。
本实施例可使CdZnTe外延膜制成的探测器电阻率稍有提高,对241Am@5.49MeVα粒子响应变灵敏,能量分辨率稍有提高,但未对241Am@59.5KeVγ射线产生响应。
实施例三
本实施例与实施例一基本相同,特别之处在于:
在本实施例中,对于CdZnTe外延膜的退火过程,其退火过程如下:
退火过程:打开近空间升华炉,将退火源和外延膜放入升华炉,开启机械泵和通气阀,待腔体真空度低于10Pa时运行退火程序,退火为恒温退火,退火源为粉状Te单质,纯度为7N;上下加热台分别控制外延膜与退火源的温度,上下加热台的温度都加热至673K并保温10h。打开水冷并关闭通气阀和机械泵,待程序运行完成且炉内冷却至室温,关闭水冷,取出CdZnTe/GaAs外延膜。
本实施例可使CdZnTe外延膜制成的探测器电阻率稍有提高,对241Am@5.49MeVα粒子响应变灵敏,能量分辨率稍有提高,但未对241Am@59.5KeVγ射线产生响应。
综上所述,本发明上述实施例提供了一种提高CdZnTe探测器外延膜性能的方法,包括在GaAs衬底上生长CdZnTe外延膜,然后在Te2气氛中不同条件下等温退火,最终制备成Au/CdZnTe/p-GaAs/Au探测器3个步骤。本发明上述实施例可以使CdZnTe外延膜制成的探测器电阻率明显提高,对241Am@5.49MeVα粒子响应更加灵敏,能量分辨率提高,并且在对241Am@59.5KeVγ射线产生响应。
上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代或简化,均应为等效的置换方式,只要符合本发明的发明目的,不背离本发明具有对CdZnTe探测器外延膜在Te2下退火的技术原理,都属于本发明的保护范围。

Claims (8)

1.一种提高CdZnTe探测器性能的CdZnTe/GaAs外延膜,其特征在于:在GaAs衬底上生长CdZnTe外延膜,然后在Te2气氛中等温退火,得到CdZnTe/GaAs外延膜;
所述提高CdZnTe探测器性能的CdZnTe/GaAs外延膜是按照以下步骤制得:
步骤1、衬底的预处理:将GaAs衬底在室温下,分别在丙酮、无水乙醇和去离子水中超声清洗以去除表面的杂质及有机物;清洗完成后,将衬底在H2SO4:H2O2:H2O=4:1:1溶液中刻蚀20s,刻蚀完成后用去离子水冲洗,最后用氮气吹干放入近空间升华炉的上加热台;
步骤2、CdZnTe多晶源的预处理:将多晶源用砂纸打磨源表面的氧化层,之后在室温下分别在丙酮、无水乙醇和去离子水中超声清洗以去除表面的杂质及有机物;最后用氮气吹干放入近空间升华炉的下加热台;
步骤3、生长程序的设置:近空间升华炉的上下加热台分别控制衬底和多晶源的温度,外延膜的生长采用两步法,即上加热台的温度首先升温至833K下保温0.5h,再降到730K保温3.5h,下加热台的温度始终保持在983K,生长时间为4h;
步骤4、CdZnTe外延膜的生长:打开近空间升华炉,将经过预处理的多晶源和衬底放入升华炉,开启机械泵和通气阀,待腔体真空度低于5Pa时分子泵自动接入,将腔内真空度抽至0.05Pa,运行步骤3的生长程序并打开水冷,待程序运行完成且炉内冷却至室温,依次关闭通气阀、分子泵及水冷,取出CdZnTe/GaAs外延膜;
步骤5、CdZnTe外延膜的退火:打开近空间升华炉,将退火源和CdZnTe/GaAs外延膜放入升华炉,开启机械泵和通气阀,待腔体真空度低于10Pa时运行退火程序;退火为恒温退火,退火源为粉状Te单质;上下加热台分别控制CdZnTe/GaAs外延膜与退火源的温度;打开水冷并关闭通气阀和机械泵,待程序运行完成且炉内冷却至室温,关闭水冷,制备完成CdZnTe/GaAs外延膜。
2.一种制备权利要求1所述CdZnTe/GaAs外延膜的方法,其特征在于步骤如下:
步骤1、衬底的预处理:将GaAs衬底在室温下,分别在丙酮、无水乙醇和去离子水中超声清洗以去除表面的杂质及有机物;清洗完成后,将衬底在H2SO4:H2O2:H2O=4:1:1溶液中刻蚀20s,刻蚀完成后用去离子水冲洗,最后用氮气吹干放入近空间升华炉的上加热台;
步骤2、CdZnTe多晶源的预处理:将多晶源用砂纸打磨源表面的氧化层,之后在室温下分别在丙酮、无水乙醇和去离子水中超声清洗以去除表面的杂质及有机物;最后用氮气吹干放入近空间升华炉的下加热台;
步骤3、生长程序的设置:近空间升华炉的上下加热台分别控制衬底和多晶源的温度,外延膜的生长采用两步法,即上加热台的温度首先升温至833K下保温0.5h,再降到730K保温3.5h,下加热台的温度始终保持在983K,生长时间为4h;
步骤4、CdZnTe外延膜的生长:打开近空间升华炉,将经过预处理的多晶源和衬底放入升华炉,开启机械泵和通气阀,待腔体真空度低于5Pa时分子泵自动接入,将腔内真空度抽至0.05Pa,运行步骤3的生长程序并打开水冷,待程序运行完成且炉内冷却至室温,依次关闭通气阀、分子泵及水冷,取出CdZnTe/GaAs外延膜;
步骤5、CdZnTe外延膜的退火:打开近空间升华炉,将退火源和CdZnTe/GaAs外延膜放入升华炉,开启机械泵和通气阀,待腔体真空度低于10Pa时运行退火程序;退火为恒温退火,退火源为粉状Te单质;上下加热台分别控制CdZnTe/GaAs外延膜与退火源的温度;打开水冷并关闭通气阀和机械泵,待程序运行完成且炉内冷却至室温,关闭水冷,制备完成CdZnTe/GaAs外延膜。
3.根据权利要求2所述的方法,其特征在于:所述超声清洗为20~25分钟。
4.根据权利要求2所述的方法,其特征在于:所述GaAs衬底的面积小于多晶源的面积。
5.根据权利要求2所述的方法,其特征在于:所述粉状Te单质纯度为7N。
6.一种采用权利要求1所述CdZnTe/GaAs外延膜的CdZnTe探测器,其特征在于:在CdZnTe/GaAs的外延膜和衬底表面上,结合不超过100nm的金电极层,形成Au/CdZnTe/p-GaAs/Au探测器。
7.一种采用权利要求1所述CdZnTe/GaAs外延膜的CdZnTe探测器,其特征在于:采用真空蒸镀法,将CdZnTe/GaAs外延膜放入蒸镀机,将真空度抽至0.005Pa,分别在外延膜和衬底表面蒸镀80nm的金电极层,形成Au/CdZnTe/p-GaAs/Au探测器。
8.一种权利要求6或7所述CdZnTe探测器的应用方法,其特征在于:所述Au/CdZnTe/p-GaAs/Au探测器用于对241Am@59.5KeVγ射线的响应。
CN202110852294.0A 2021-07-27 2021-07-27 提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法 Active CN113644149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110852294.0A CN113644149B (zh) 2021-07-27 2021-07-27 提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110852294.0A CN113644149B (zh) 2021-07-27 2021-07-27 提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法

Publications (2)

Publication Number Publication Date
CN113644149A CN113644149A (zh) 2021-11-12
CN113644149B true CN113644149B (zh) 2023-10-27

Family

ID=78418524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110852294.0A Active CN113644149B (zh) 2021-07-27 2021-07-27 提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法

Country Status (1)

Country Link
CN (1) CN113644149B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139124A (ja) * 2006-11-30 2008-06-19 Shimadzu Corp 放射線二次元検出器
CN102867859A (zh) * 2012-09-06 2013-01-09 中国电子科技集团公司第十一研究所 双色红外探测材料的制备方法及系统
CN104153001A (zh) * 2014-08-12 2014-11-19 西北工业大学 在GaAs单晶衬底上制备CdZnTe外延膜的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541256B2 (en) * 2011-04-17 2013-09-24 Chang-Feng Wan Method of cadmium molecular beam based anneals for manufacture of HgCdTe photodiode arrays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139124A (ja) * 2006-11-30 2008-06-19 Shimadzu Corp 放射線二次元検出器
CN102867859A (zh) * 2012-09-06 2013-01-09 中国电子科技集团公司第十一研究所 双色红外探测材料的制备方法及系统
CN104153001A (zh) * 2014-08-12 2014-11-19 西北工业大学 在GaAs单晶衬底上制备CdZnTe外延膜的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Detector performance and defect densities in CdZnTe after two-step annealing";Eunhye Kim;《Nuclear Inst. and Methods in Physics Research, A》;51-54页 *
"Improvement of crystalline quality of CdZnTe epilayers on GaAs(001) substrates with a two-step growth by Close Spaced Sublimation";Kun Cao;《Vacuum》;319-324页 *
"Preparation of Cd0.8Zn0.2Te/Cd0.5Zn0.5Te/n -GaAs thick film radiation detectors by close spaced sublimation ";Kun Cao;《Vacuum》;1-8页 *

Also Published As

Publication number Publication date
CN113644149A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
US11955373B2 (en) Gallium oxide semiconductor structure and preparation method therefor
US6896731B1 (en) P-type single crystal zinc-oxide having low resistivity and method for preparation thereof
Tyan Topics on thin film CdS/CdTe solar cells
CN112126897B (zh) 一种alpha相氧化镓薄膜的制备方法
CN113707760A (zh) 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法
CN103904160A (zh) 一种基于CdZnTe薄膜的X射线探测器的制备方法
CN109037386A (zh) 基于氧化镁衬底的氧化镓薄膜光电探测器及其制造方法
CN113644149B (zh) 提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法
Tomlinson et al. The growth and doping of single crystals of CuInTe2
CN107230735B (zh) 具有缓冲层的CdZnTe薄膜光电探测器的制备方法
CN103474333A (zh) p型碲化锌单晶薄膜材料的掺杂方法
CN109166935B (zh) 一种Al组分过渡型日盲紫外探测器及其制备方法
Isomura et al. Preparation and some semiconducting properties of CuInSe2 thin films
CN114899258B (zh) 非极性AlGaN基深紫外光电探测器外延结构及其制备方法
CN115295677A (zh) 高响应度β-Ga2O3基异质结自供能紫外探测器及其制备方法和应用
Kim et al. Measurement and control of ion‐doping‐induced defects in cadmium telluride films
US10304989B2 (en) Fabrication and use of large-grain templates for epitaxial deposition of semiconductor materials
CN112993085A (zh) 一种氧化镓x射线探测器及其制备方法
CN116487484A (zh) 新型结构的CdZnTe探测器的制备方法
CN113471303A (zh) 高探测效率自支撑CdZnTe厚膜结构、探测器件及其制备方法和应用
CN114883175B (zh) 碳化硅外延层的缺陷阻障结构及方法
CN110473771B (zh) 直接转换x射线探测材料的制备方法
CN114121572B (zh) 一种新型光电发射材料及其制备方法
Fenske et al. ZnO/c-Si heterojunction interface tuning by interlayers
Mullan et al. Studies of the effects of ion-implantation and electron beam irradiation on CuInSe 2 single crystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant