CN107230735B - 具有缓冲层的CdZnTe薄膜光电探测器的制备方法 - Google Patents

具有缓冲层的CdZnTe薄膜光电探测器的制备方法 Download PDF

Info

Publication number
CN107230735B
CN107230735B CN201610175610.4A CN201610175610A CN107230735B CN 107230735 B CN107230735 B CN 107230735B CN 201610175610 A CN201610175610 A CN 201610175610A CN 107230735 B CN107230735 B CN 107230735B
Authority
CN
China
Prior art keywords
film
cdznte
substrate
buffer layer
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610175610.4A
Other languages
English (en)
Other versions
CN107230735A (zh
Inventor
王林军
季欢欢
杨瑾
黄健
吴杨琳
周家伟
沈意斌
张继军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610175610.4A priority Critical patent/CN107230735B/zh
Publication of CN107230735A publication Critical patent/CN107230735A/zh
Application granted granted Critical
Publication of CN107230735B publication Critical patent/CN107230735B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Light Receiving Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明涉及一种具有缓冲层的CdZnTe薄膜光电探测器的制备方法,属于薄膜光电探测器部件制造工艺技术领域。本发明的目的是通过在采用近空间升华法制备CdZnTe薄膜之前先引入缓冲层(ZnTe/CdTe),从而达到提高CdZnTe薄膜质量的目的,给CdZnTe薄膜在光电探测器设备中的实际应用提供了新的方案。本发明是一种具有缓冲层的CdZnTe薄膜光电探测器的制备方法,其特点在于基于高真空近空间升华与磁控溅射镀膜一体化工艺设备,以预处理过的单晶Si为衬底,先溅射ZnTe/CdTe作为缓冲层,再传输到升华腔内用CdZnTe单晶的粉末源沉积一层CdZnTe薄膜,之后对CdZnTe薄膜进行退火及腐蚀等后处理,并通过电子束沉积叉指型的金电极获得理想欧姆接触,最终制得薄膜光电探测器部件。

Description

具有缓冲层的CdZnTe薄膜光电探测器的制备方法
技术领域
本发明涉及具有缓冲层的CdZnTe薄膜光电探测器的制备方法,属于属于光电探测器器件制造工艺技术领域。
背景技术
CdZnTe晶体是直接带隙的II-VI族化合物半导体,可以看作是由CdTe和ZnTe的固溶成。
CdZnTe禁带宽度可随着Zn含量的不同而从1.45eV到2.2eV变化,在室温下使用可以省去昂贵、复杂的冷却系统,可以降低整个系统的成本。CdZnTe的电阻率高因此在高温下也能有较小的漏电流,并且CdZnTe的极化效应比CdTe晶体要低很多,辐射探测衰减现象比CdTe弱,有利于探测。此外CdZnTe光灵敏度高,平均原子序数高,可以有较高的探测效率。
CdZnTe单晶在室温高能射线探测器中被认为最有潜力的的材料,具有较好的探测效率和能量分辨率。但是随着大面积探测器的不断发展,对CdZnTe单晶质量和尺寸的要求不断提高,使得晶体生长带来很大困难。对于大尺寸CdZnTe探测器的应用,CdZnTe薄膜相对于晶体具有优势。CdZnTe薄膜的制备技术简单,成本更低,最重要的是容易得到大面的CdZnTe薄膜。获得CdZnTe薄膜的方法有很多,如:热蒸发,磁控溅射,化学气相沉积,近空间升华法等。其中近空间升华法制备CdZnTe薄膜成本低、质量高、速度快,适用于大面积沉积薄膜是目前最有前途的方法,可以获得高质量、高电阻率的CdZnTe薄膜。
目前,近空间升华法制备的CdZnTe薄膜主要沉积在单晶硅、普通玻璃、FTO或者ITO涂层的玻璃上,这些衬底和CdZnTe薄膜之间存在较大的晶格失配,这样一定程度上限制了CdZnTe薄膜的质量提高和实际的器件应用。缓冲层是一种被用来减小薄膜与衬底减晶格失配的常用方法,但是在高质量CdZnTe薄膜的制备过程中,采用缓冲层的方法还非常少见。ZnTe和CdTe的晶格常数分别为6.11和6.48,非常接近于CdZnTe薄膜的晶格常数(接近于6.44)。因此我们通过引入ZnTe/CdTe作为缓冲层来减小CdZnTe薄膜与衬底之间的晶格失配,制备高质量探测器用CdZnTe薄膜。
发明内容
本发明的目的是通过在采用近空间升华法制备CdZnTe薄膜之前先引入缓冲层(ZnTe/CdTe),从而达到提高CdZnTe薄膜质量的目的,给CdZnTe薄膜在光电探测器设备中的实际应用提供了新的方案。
本发明采用如下技术方案。
本发明是一种具有缓冲层的CdZnTe薄膜光电探测器的制备方法,其特征在于该方法包括如下过程和步骤:
a. 衬底Si片的预处理:采用本征单晶Si片做为衬底,将衬底先用曲拉通去除表面的油污,再用去离子水、丙酮和乙醇分别超声清洗5~20分钟,去除衬底表面的有机物与杂质,最后将衬底放在在氢氟酸的稀释浓液中浸泡10~15分钟去除表面的SiO2,烘干后放入高真空近空间升华与磁控溅射镀膜设备的磁控溅射腔内;
b. 磁控溅射缓冲层:以Si为衬底采用磁控溅射法依次溅射ZnTe和CdTe薄膜作为CdZnTe薄膜生长的缓冲层;靶材分别为纯度为99.99%的ZnTe和CdTe;ZnTe和CdTe的溅射条件相同即溅射气氛为氩气,溅射气压为1~6 mTorr,溅射功率50~200 W,溅射时间20~100min;ZnTe和CdTe的膜厚分别在0.05~1 mm。缓冲层制备好以后,通过设备自带的机械手将衬底传输到近空间升华腔内;
c. 真空沉积CdZnTe薄膜:首先是CdZnTe单晶粉末升华源的准备,即采用移动加热法生长出质量好、成分均匀且Zn含量为2~20%的CdZnTe单晶;生长好的单晶被切片然后研磨成粉末做为升华源;然后是薄膜的生长:开机械泵抽真空保持升华腔内的气压在2Pa以下;加热升华源和衬底的温度分别为650 ℃和400 ℃;生长3 h后,关闭升华源和衬底的加热;冷却样品至室温;关机械泵,取出样品;薄膜的厚度在300 mm左右;
d. CdZnTe薄膜的退火及腐蚀:样品在氮气保护下慢速退火30~90 min,退火温度为300~450 ℃。将退火样品放在0.1~0.2%的溴甲醇浓液中腐蚀5~40 S,然后将样品依次放入无水甲醇和去离子水中清洗吹干;
e. 叉指电极的制备:通过光刻工艺等制作叉指电极掩膜板,利用掩膜板在样品的表面采用电子束蒸发法在样品的表面沉积金电极;然后在真空中退火15~45 min,退火温度为100~450 ℃,使得薄膜和电极之间形成良好的欧姆接触;最终制得薄膜光电探测器部件。
同现有的技术相比,本发明具有如下显著优点:
(1)采用高真空近空间升华与磁控溅射镀膜一体化工艺设备,通过机械手将样品从磁控溅射腔传到升华腔,避免在CdZnTe薄膜沉积前,缓冲层被污染,从而影响薄膜质量。
(2)在Si衬底和CdZnTe薄膜之间引入ZnTe/CdTe缓冲层,有效地减小了Si衬底和CdZnTe薄膜之间的晶格失配,提高了CdZnTe薄膜的质量,有有利于制备高性能的光电探测器件。
附图说明
图1为本发明具有缓冲层的CdZnTe薄膜光电探测器和一般CdZnTe薄膜光电探测器的结构示意图。
图2为本发明具有缓冲层的CdZnTe薄膜光电探测器和一般CdZnTe薄膜制备的光电探测器对X射线的IV响应图谱。
具体实施方式,现将本发明的具体实施例叙述于后。
实施例1
本实施例的制备过程和步骤如下:
a. 衬底Si片的预处理:采用本征单晶Si片做为衬底,将衬底先用曲拉通去除表面的油污,再用去离子水、丙酮和乙醇分别超声清洗10 min,去除衬底表面的有机物与杂质,最后在氢氟酸的稀释浓液中浸泡10 min去除表面的SiO2,烘干后放入高真空近空间升华与磁控溅射镀膜设备的磁控溅射腔内。
b. 磁控溅射缓冲层:以Si为衬底采用磁控溅射法依次溅射ZnTe和CdTe薄膜作为CdZnTe薄膜生长的缓冲层。靶材分别为纯度为99.99%的ZnTe和CdTe。ZnTe和CdTe的溅射条件相同即溅射气氛为氮气,溅射气压为6 mTorr,溅射功率150 W,溅射时间20 min。ZnTe和CdTe的膜厚分别在0.1 mm。缓冲层制备好以后,通过设备自带的机械手将衬底传输到升华腔内。
c. 真空沉积CdZnTe薄膜:首先是CdZnTe单晶粉末升华源的准备即采用移动加热法生长出质量好、成分均匀且Zn含量为10%的CdZnTe单晶。生长好的单晶被切片然后研磨成粉末做为升华源。然后是薄膜的生长,开机械泵抽真空保持升华腔内的气压在2Pa以下;加热升华源和衬底的温度分别为650 ℃和400 ℃;生长3 h后,关闭升华源和衬底的加热,冷却样品至室温,关机械泵,取出样品,薄膜的厚度在300 mm。
d. CdZnTe薄膜的退火及腐蚀:样品在氮气保护下慢速退火40 min,退火温度为350 ℃。将退火样品放在0.1%的溴甲醇浓液中腐蚀20 S,然后将样品依次放入无水甲醇和去离子水中清洗吹干。
e. 叉指电极的制备:通过光刻工艺等制作叉指电极掩膜板,利用掩膜板在样品的表面采用电子束蒸发法在样品的表面沉积金电极,然后在真空中退火30 min,退火温度为300 ℃,使得薄膜和电极之间形成良好的欧姆接触。最终制备薄膜光电探测器部件。
实施例2:
本实施例的制备过程和步骤如下:
a. 衬底Si片的预处理:采用本征单晶Si片做为衬底,将衬底先用曲拉通表面的油污,再用去离子水、丙酮和乙醇分别超声清洗10 min,去除衬底表面的有机物与杂质,最后在氢氟酸的稀释浓液中浸泡10 min去除表面的SiO2,烘干后放入高真空近空间升华与磁控溅射镀膜设备的磁控溅射腔内。
b. 磁控溅射缓冲层:以Si为衬底采用磁控溅射法依次溅射ZnTe和CdTe薄膜作为CdZnTe薄膜生长的缓冲层。靶材分别为纯度为99.99%的ZnTe和CdTe。ZnTe和CdTe的溅射条件相同即溅射气氛为氮气,溅射气压为6 mTorr,溅射功率150 W,溅射时间40 min。ZnTe和CdTe的膜厚分别在0.25 mm。缓冲层制备好以后,通过设备自带的机械手将衬底传输到升华腔内。
c. 真空沉积CdZnTe薄膜:首先是CdZnTe单晶粉末升华源的准备即采用移动加热法生长出质量好、成分均匀且Zn含量为10%的CdZnTe单晶。生长好的单晶被切片然后研磨成粉末做为升华源。然后是薄膜的生长,开机械泵抽真空保持升华腔内的气压在2Pa以下;加热升华源和衬底的温度分别为650 ℃和400 ℃;生长3 h后,关闭升华源和衬底的加热,冷却样品至室温,关机械泵,取出样品,薄膜的厚度在300 mm。
d. CdZnTe薄膜的退火及腐蚀:样品在氮气保护下慢速退火40 min,退火温度为350 ℃。将退火样品放在0.1%的溴甲醇浓液中腐蚀20 S,然后将样品依次放入无水甲醇和去离子水中清洗吹干。
e. 叉指电极的制备:通过光刻工艺等制作叉指电极掩膜板,利用掩膜板在样品的表面采用电子束蒸发法在样品的表面沉积金电极,然后在真空中退火30 min,退火温度为300 ℃,使得薄膜和电极之间形成良好的欧姆接触。最终制备薄膜光电探测器部件。

Claims (1)

1.一种具有缓冲层的CdZnTe薄膜光电探测器的制备方法,其特征具有以下的过程和步骤:
a.衬底Si片的预处理:采用本征单晶Si片做为衬底,将衬底先用曲拉通去除表面的油污,再用去离子水、丙酮和乙醇分别超声清洗5~20分钟,去除衬底表面的有机物与杂质,最后将衬底放在氢氟酸的稀释溶液中浸泡10~15分钟去除表面的SiO2,烘干后放入高真空近空间升华与磁控溅射镀膜设备的磁控溅射腔内;
b.磁控溅射缓冲层:以Si为衬底采用磁控溅射法依次溅射ZnTe和CdTe薄膜作为CdZnTe薄膜生长的缓冲层;靶材分别为纯度为99.99%的ZnTe和CdTe;ZnTe和CdTe的溅射条件相同,即溅射气氛为氩气,溅射气压为1~6mTorr,溅射功率50~200W,溅射时间20~100min;ZnTe和CdTe的膜厚分别在0.05~1μm;缓冲层制备好以后,通过设备自带的机械手将衬底传输到近空间升华腔内;
c.真空沉积CdZnTe薄膜:首先是CdZnTe单晶粉末升华源的准备,即采用移动加热法生长出质量好、成分均匀且Zn含量为2~20%的CdZnTe单晶;生长好的单晶被切片然后研磨成粉末做为升华源;然后是薄膜的生长,开机械泵抽真空保持升华腔内的气压在2Pa以下;加热升华源和衬底的温度分别为650℃和400℃;生长3h后,关闭升华源和衬底的加热;冷却样品至室温;关机械泵,取出样品;薄膜的厚度在300μm左右;
d.CdZnTe薄膜的退火及腐蚀:样品在氮气保护下慢速退火30~90min,退火温度为300~450℃;将退火样品放在0.1~0.2%的溴甲醇浓液中腐蚀5~40S,然后将样品依次放入无水甲醇和去离子水中清洗吹干;
e.叉指电极的制备:通过光刻工艺制作叉指电极掩膜板,利用掩膜板在样品的表面采用电子束蒸发法在样品的表面沉积金电极;然后在真空中退火15~45min,退火温度为100~450℃,使得薄膜和电极之间形成良好的欧姆接触;最终制得薄膜光电探测器部件。
CN201610175610.4A 2016-03-26 2016-03-26 具有缓冲层的CdZnTe薄膜光电探测器的制备方法 Expired - Fee Related CN107230735B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610175610.4A CN107230735B (zh) 2016-03-26 2016-03-26 具有缓冲层的CdZnTe薄膜光电探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610175610.4A CN107230735B (zh) 2016-03-26 2016-03-26 具有缓冲层的CdZnTe薄膜光电探测器的制备方法

Publications (2)

Publication Number Publication Date
CN107230735A CN107230735A (zh) 2017-10-03
CN107230735B true CN107230735B (zh) 2019-03-29

Family

ID=59931943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610175610.4A Expired - Fee Related CN107230735B (zh) 2016-03-26 2016-03-26 具有缓冲层的CdZnTe薄膜光电探测器的制备方法

Country Status (1)

Country Link
CN (1) CN107230735B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148627B (zh) * 2019-04-28 2021-07-06 上海大学 具有金属缓冲层的czt薄膜复合材料及其制备方法
CN112103355A (zh) * 2020-08-31 2020-12-18 上海大学 CdZnTe/CdTe/AlN复合结构、日盲区紫外探测器件和其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709395B (zh) * 2012-06-12 2014-12-31 上海大学 一种CdZnTe薄膜紫外光探测器的制备方法
CN103500776A (zh) * 2013-09-26 2014-01-08 上海大学 一种硅基CdZnTe薄膜紫外光探测器的制备方法
CN104153001A (zh) * 2014-08-12 2014-11-19 西北工业大学 在GaAs单晶衬底上制备CdZnTe外延膜的方法

Also Published As

Publication number Publication date
CN107230735A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
CN110277468B (zh) 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法
CN112126897B (zh) 一种alpha相氧化镓薄膜的制备方法
CN102709395B (zh) 一种CdZnTe薄膜紫外光探测器的制备方法
CN106449894B (zh) 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法
CN104152856A (zh) 一种磁控溅射法制备Bi2Se3薄膜的方法
CN103904160A (zh) 一种基于CdZnTe薄膜的X射线探测器的制备方法
CN107230735B (zh) 具有缓冲层的CdZnTe薄膜光电探测器的制备方法
KR20120080045A (ko) 태양전지의 제조방법
CN103500776A (zh) 一种硅基CdZnTe薄膜紫外光探测器的制备方法
CN102373425B (zh) 一种Na掺杂p型ZnO薄膜的制备方法
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
CN104241439A (zh) 一种碲化镉薄膜太阳能电池的制备方法
Kuraseko et al. Inverted aluminum-induced layer exchange method for thin film polycrystalline silicon solar cells on insulating substrates
CN105679878A (zh) 一种共蒸发制备铜锌锡硫硒薄膜太阳电池吸收层的方法
CN108546995B (zh) 在石墨烯衬底上定向生长碲锌镉薄膜的制备方法
US10727366B2 (en) Solar cell comprising CIGS light absorbing layer and method for manufacturing same
CN105483617A (zh) 一种在非硅衬底上制备Mg2Si薄膜的方法
CN110643937A (zh) 掺铝AlN-CdZnTe复合结构组件及其制备方法
CN103531661B (zh) 一种(220)取向的铜铟镓硒薄膜制备方法
CN102839347A (zh) 一种金属铝诱导多晶碲锌镉薄膜的制备方法
Yu et al. Thin film transistors and metal–semiconductor–metal photodetectors based on GaN thin films grown by inductively coupled plasma metal-organic chemical vapor deposition
Chen et al. Room-temperature fabrication of highly transparent conductive aluminum-doped zinc oxide films
CN113644149B (zh) 提高CdZnTe探测器性能的CdZnTe/GaAs外延膜及制备方法
CN109585591B (zh) 非极性面型BeZnOS合金晶体基MSM紫外光探测器及制备方法
CN108183143A (zh) 用多靶射频磁控溅射法制备超薄CdTe太阳电池的技术

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190329

CF01 Termination of patent right due to non-payment of annual fee