CN103531661B - 一种(220)取向的铜铟镓硒薄膜制备方法 - Google Patents

一种(220)取向的铜铟镓硒薄膜制备方法 Download PDF

Info

Publication number
CN103531661B
CN103531661B CN201310498733.8A CN201310498733A CN103531661B CN 103531661 B CN103531661 B CN 103531661B CN 201310498733 A CN201310498733 A CN 201310498733A CN 103531661 B CN103531661 B CN 103531661B
Authority
CN
China
Prior art keywords
sputtering
substrate
orientation
cigs thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310498733.8A
Other languages
English (en)
Other versions
CN103531661A (zh
Inventor
闫勇
余洲
张勇
晏传鹏
赵勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201310498733.8A priority Critical patent/CN103531661B/zh
Publication of CN103531661A publication Critical patent/CN103531661A/zh
Application granted granted Critical
Publication of CN103531661B publication Critical patent/CN103531661B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种具有(220)取向的铜铟镓硒薄膜制备方法,其技术方案主要是:A:清洗基片,B:预溅射;C:溅射沉积薄膜:保持溅射功率为5W/cm2,基片温度为320-380℃,并将氩气气压调节为1.0~4.0Pa进行10分钟的溅射;之后将氩气气压降低至0.5Pa,并在基片上施加20~30V的偏压,进行2小时的溅射,即得到具有(220)取向的铜铟镓硒薄膜。该方法用磁控溅射方法制备出的CIGS薄膜取向为(220),用作铜铟镓硒(CIGS)薄膜太阳能电池的吸收层,能有效降低晶界处的“电子-空穴”复合,提高电池转换效率。且其制备工艺简单、成本低,制备过程中无毒无污染,适合于工业化生产。

Description

一种(220)取向的铜铟镓硒薄膜制备方法
技术领域
本发明涉及一种用磁控溅射方法制备铜铟镓硒薄膜太阳能电池的吸收层薄膜的方法,即(220)取向的铜铟镓硒薄膜的制备方法。
背景技术
铜铟镓硒(CIGS)薄膜太阳能电池具有光电转化效率高、成本低、性能稳定等优点。其转化效率已达到20.3%,接近晶体硅电池。现有的铜铟镓硒薄膜层在“高温”基板上制备,其目的是为了增加铜铟镓硒晶粒的尺寸,达到0.5~1μm。这样可以降低“电子-空穴”对再次重组,发生在晶界处的复合,从而提高CIGS电池的转换效率。对于目前工业生产而言,低温(如磁控溅射)制备铜铟镓硒电池更符合能源节约型的发展方向,但是,低温下制备的铜铟镓硒电池吸收层中会存在很多的晶界,降低了电池的转换效率,限制了低温铜铟镓硒电池的应用。因此,如何在低温下制备高效率的铜铟镓硒薄膜成为了研发重点。研究发现(220)择优取向的CIGS可以有效地阻止晶界处的空穴电子复合。因此,制备(220)取向的CIGS吸收层可以有效地降低晶界处的“电子-空穴”复合,成为提高电池效率的一种有效的方法。但现有的磁控溅射制备出的CIGS薄膜均是(112)取向的薄膜。存在晶界多,电池转换效率低(8%左右)的问题。如何用磁控溅射方法制备出(220)取向的CIGS薄膜,是亟待解决的难题。
发明内容
本发明的目的在于提供一种(220)取向的铜铟镓硒薄膜制备方法,该方法用磁控溅射方法制备出(220)取向的CIGS薄膜,以其制备的电池转换效率高。且其制备工艺简单、成本低,制备过程中无毒无污染,适合于工业化生产。
本发明实现其目的所采用的技术方案是,一种(220)取向的铜铟镓硒薄膜制备方法,包括以下步骤:
A:清洗基片:将基片依次在丙酮、乙醇、去离子水中各经过10-20分钟的超声清洗,然后用热氮气干燥后放入磁控溅射设备的溅射室;
B:预溅射:在磁控溅射靶枪上安装纯度为99.99%的复合铜铟镓硒靶,复合铜铟镓硒靶中各元素的化学计量比为Cu:In:Ga:Se=1:0.7:0.3:2,调整溅射靶枪到基片的距离为4-8厘米,将溅射室抽真空至气压小于2×10-4Pa,再通入纯度为99.995%的氩气;调节溅射功率为4-6W/cm2,基片温度为320-380℃,待辉光稳定后,对复合铜铟镓硒靶预溅射8-15分钟,以除去其表面污染物;
C:溅射沉积薄膜:保持溅射功率为4-8W/cm2,基片温度为320-380℃,并将氩气气压调节为1.0~4.0Pa进行10-15分钟的溅射;之后将氩气气压降低至0.5Pa,并在基片上施加20~30V的偏压,进行2-2.5小时的溅射,即得到具有(220)取向的铜铟镓硒薄膜。
与现有的技术相比,本发明的有益结果是:
一、本发明创造性的采用初期10分钟的1.0~4.0Pa氩气气压的高工作气压环境的溅射,形成富铜的初期沉积层;之后进行0.5Pa氩气气压的低工作气压,并在基片上施加20~30V的偏压,制备出富铟的中后期沉积层。通过薄的富铜沉积层与厚的富铟层的组合,成功的制备出具有(220)取向的铜铟镓硒薄膜。该种(220)取向的铜铟镓硒薄膜,可以有效地阻止晶界处的空穴电子复合。以其作为吸收层制备的铜铟镓硒太阳能电池的光电转换效率高。
二、较之三步共蒸发法用四种不同的靶材分别高温蒸发出CIGS四种元素,沉积CIGS薄膜;本发明用磁控溅射方法在磁控溅射室采用一个靶材同时沉积CIGS四种元素,沉积CIGS薄膜,其工艺简单、在低温条件下进行,成本更低。同时,磁控溅射时包括硒元素在内的四种元素均按化学计量比配料及沉积,硒元素无需过量,没有未沉积的硒元素将排放入大气,制备过程中无毒无污染,适合于工业化生产。
上述的步骤A中所采用的基片为钠钙玻璃,钼涂层玻璃或者钼涂层聚酰亚胺树脂玻璃。这几种玻璃与(220)取向的CIGS薄膜结合好,薄膜不会脱落。
上述步骤B中对复合铜铟镓硒靶预溅射时,还在基片上施加40-60V的偏压,以同时除去基片的表面污染物。这样在清洗靶材的同时,也用高偏压对基片进行了清洗,能够提高基片与薄膜的结合力。
以下结合附图和具体实施方式对本发明做进一步的详细描述。
附图说明
图1是本发明实施例1制得的CIGS薄膜的X射线衍射(XRD)图谱。
图2是本发明实施例1制得的CIGS薄膜断面的30000倍扫描电镜图。
图3是本发明实施例2制得的CIGS薄膜的光吸收曲线,禁带宽度及电学性质参数。
图4是本发明实施例3制得的CIGS薄膜的X射线衍射(XRD)图谱。
具体实施方式
实施例1
一种(220)取向的铜铟镓硒薄膜制备方法,包括以下步骤:
A:清洗基片:将钼涂层玻璃作为基片,依次在丙酮、乙醇、去离子水中各经过10分钟的超声清洗(即在每种液体中超声清洗的时间均为10分钟),然后用热氮气干燥后放入磁控溅射设备的溅射室;
B:预溅射:在磁控溅射靶枪上安装纯度为99.99%的复合铜铟镓硒靶,复合铜铟镓硒靶中各元素的化学计量比为Cu:In:Ga:Se=1:0.7:0.3:2,调整溅射靶枪到基片的距离为6厘米,将溅射室抽真空至气压1.9×10-4Pa,再通入纯度为99.995%的氩气;调节溅射功率为5W/cm2,基片温度为380℃,待辉光稳定后,对复合铜铟镓硒靶预溅射10分钟,以除去其表面污染物;
C:溅射沉积薄膜:保持溅射功率为5W/cm2,基片温度为380℃,并将氩气气压调节为1.0Pa进行10分钟的溅射;之后将氩气气压降低至0.5Pa,并在基片上施加20V的偏压,进行2小时的溅射,即得到具有(220)取向的铜铟镓硒薄膜。
图1是本例制得的CIGS薄膜的X射线衍射(XRD)图谱。从图1可见,其XRD与CIGS标准谱比配很好,(220)峰的取向明显,并且结晶峰的半高宽很小,晶粒较大。
图2是本例制得的CIGS薄膜断面的30000倍扫描电镜图。从图2可见,其CIGS薄膜断面的柱状晶明显,薄膜表面平整,内部无空隙。
实施例2
一种(220)取向的铜铟镓硒薄膜制备方法,包括以下步骤:
A:清洗基片:将钠钙玻璃作为基片,依次在丙酮、乙醇、去离子水中各经过15分钟的超声清洗(即在每种液体中超声清洗的时间均为15分钟),然后用热氮气干燥后放入磁控溅射设备的溅射室;
B:预溅射:在磁控溅射靶枪上安装纯度为99.99%的复合铜铟镓硒靶,复合铜铟镓硒靶中各元素的化学计量比为Cu:In:Ga:Se=1:0.7:0.3:2,调整溅射靶枪到基片的距离为4厘米,将溅射室抽真空至气压1.0×10-4Pa,再通入纯度为99.995%的氩气;调节溅射功率为4W/cm2,基片温度为360℃,基片上施加的偏压为40V,以除去基片的表面污染物;待辉光稳定后,对复合铜铟镓硒靶预溅射8分钟,以同时除去其表面污染物;
C:溅射沉积薄膜:保持溅射功率为4W/cm2,基片温度为360℃,并将氩气气压调节为2.0Pa进行12分钟的溅射;之后将氩气气压降低至0.5Pa,并在基片上施加30V的偏压,进行2.5小时的溅射,即得到具有(220)取向的铜铟镓硒薄膜。
图3是本例制得的CIGS薄膜的光吸收曲线,禁带宽度及电学性质参数。从图3可见,CIGS薄膜禁带宽度为1.12eV,P型半导体,载流子浓度为8.97×1016cm-3,载流子迁移率为8.45cm2/Vs,非常适合用于薄膜太阳能电池吸收层。用该薄膜制备的电池效率高达15.2%。
实施例3
一种(220)取向的铜铟镓硒薄膜制备方法,包括以下步骤:
A:清洗基片:将钼涂层聚酰亚胺树脂玻璃作为基片,依次在丙酮、乙醇、去离子水中各经过20分钟的超声清洗(即在每种液体中超声清洗的时间均为20分钟),然后用热氮气干燥后放入磁控溅射设备的溅射室;
B:预溅射:在磁控溅射靶枪上安装纯度为99.99%的复合铜铟镓硒靶,复合铜铟镓硒靶中各元素的化学计量比为Cu:In:Ga:Se=1:0.7:0.3:2,调整溅射靶枪到基片的距离为8厘米,将溅射室抽真空至气压0.5×10-4Pa,再通入纯度为99.995%的氩气;脉冲溅射功率为6W/cm2,衬底温度为320℃,占空比为75%,基片上施加的偏压为60V,以除去基片的表面污染物;待辉光稳定后,对复合铜铟镓硒靶预溅射15分钟,以同时除去其表面污染物;
C:溅射沉积薄膜:保持溅射功率为8W/cm2,基片温度为320℃,并将氩气气压调节为4.0Pa进行15分钟的溅射;之后将氩气气压降低至0.5Pa,并在基片上施加25V的偏压,进行2.2小时的溅射,即得到具有(220)取向的铜铟镓硒薄膜。
图4是本例制得的CIGS薄膜的X射线衍射(XRD)图谱。从图4可见,其XRD与CIGS标准谱比配很好,(220)峰的取向明显,并且结晶峰的半高宽很小,晶粒较大。
实施例4
一种(220)取向的铜铟镓硒薄膜制备方法,包括以下步骤:
A:清洗基片:将钼涂层玻璃作为基片,依次在丙酮、乙醇、去离子水中各经过10分钟的超声清洗(即在每种液体中超声清洗的时间均为10分钟),然后用热氮气干燥后放入磁控溅射设备的溅射室;
B:预溅射:在磁控溅射靶枪上安装纯度为99.99%的复合铜铟镓硒靶,复合铜铟镓硒靶中各元素的化学计量比为Cu:In:Ga:Se=1:0.7:0.3:2,调整溅射靶枪到基片的距离为6厘米,将溅射室抽真空至气压1.9×10-4Pa,再通入纯度为99.995%的氩气;调节溅射功率为5W/cm2,基片温度为380℃,基片上施加的偏压为60V,以除去基片的表面污染物;待辉光稳定后,对复合铜铟镓硒靶预溅射10分钟,以同时除去其表面污染物;
C:溅射沉积薄膜:保持溅射功率为5W/cm2,基片温度为380℃,并将氩气气压调节为1.0Pa进行10分钟的溅射;之后将氩气气压降低至0.5Pa,并在基片上施加20V的偏压,进行2小时的溅射,即得到具有(220)取向的铜铟镓硒薄膜。

Claims (3)

1.一种(220)取向的铜铟镓硒薄膜制备方法,包括以下步骤:
A:清洗基片:将基片依次在丙酮、乙醇、去离子水中各经过10-20分钟的超声清洗,然后用热氮气干燥后放入磁控溅射设备的溅射室;
B:预溅射:在磁控溅射靶枪上安装纯度为99.99%的复合铜铟镓硒靶,复合铜铟镓硒靶中各元素的化学计量比为Cu:In:Ga:Se=1:0.7:0.3:2,调整溅射靶枪到基片的距离为4-8厘米,将溅射室抽真空至气压小于2×10-4Pa,再通入纯度为99.995%的氩气;调节溅射功率为4-6W/cm2,基片温度为320-380℃,待辉光稳定后,对复合铜铟镓硒靶预溅射8-15分钟,以除去其表面污染物;
C:溅射沉积薄膜:保持溅射功率为4-8W/cm2,基片温度为320-380℃,并将氩气气压调节为1.0~4.0Pa进行10-15分钟的溅射;之后将氩气气压降低至0.5Pa,并在基片上施加20~30V的偏压,进行2-2.5小时的溅射,即得到具有(220)取向的铜铟镓硒薄膜。
2.根据权利要求1中所述的一种(220)取向的铜铟镓硒薄膜制备方法,其特征在于:所述的步骤A中所采用的基片为钠钙玻璃,钼涂层玻璃或者钼涂层聚酰亚胺树脂玻璃。
3.根据权利要求1中所述的(220)取向的铜铟镓硒薄膜制备方法,其特征在于,所述步骤B中对复合铜铟镓硒靶预溅射时,还在基片上施加40-60V的偏压,以同时除去基片的表面污染物。
CN201310498733.8A 2013-10-22 2013-10-22 一种(220)取向的铜铟镓硒薄膜制备方法 Expired - Fee Related CN103531661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310498733.8A CN103531661B (zh) 2013-10-22 2013-10-22 一种(220)取向的铜铟镓硒薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310498733.8A CN103531661B (zh) 2013-10-22 2013-10-22 一种(220)取向的铜铟镓硒薄膜制备方法

Publications (2)

Publication Number Publication Date
CN103531661A CN103531661A (zh) 2014-01-22
CN103531661B true CN103531661B (zh) 2016-02-03

Family

ID=49933514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310498733.8A Expired - Fee Related CN103531661B (zh) 2013-10-22 2013-10-22 一种(220)取向的铜铟镓硒薄膜制备方法

Country Status (1)

Country Link
CN (1) CN103531661B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273544A (zh) * 2018-10-18 2019-01-25 华夏易能(南京)新能源有限公司 铜铟镓硒薄膜及其制备方法、装置、太阳能电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509737A (zh) * 2011-11-02 2012-06-20 南开大学 一种柔性不锈钢衬底铜铟镓硒薄膜电池及制备方法
CN103132034A (zh) * 2011-11-30 2013-06-05 电子科技大学 铜铟镓硒光吸收层薄膜的四元单靶射频磁控溅射制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509737A (zh) * 2011-11-02 2012-06-20 南开大学 一种柔性不锈钢衬底铜铟镓硒薄膜电池及制备方法
CN103132034A (zh) * 2011-11-30 2013-06-05 电子科技大学 铜铟镓硒光吸收层薄膜的四元单靶射频磁控溅射制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
工作气压对室温磁控溅射CIGS膜的影响;闫勇;《真空科学与技术学报》;20130630;全文 *

Also Published As

Publication number Publication date
CN103531661A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
CN103074583B (zh) 一种cigs薄膜电池的激光沉积制备工艺
CN102652368B (zh) 太阳能电池中使用的Cu-In-Zn-Sn-(Se,S)基薄膜及其制造方法
CN103560169B (zh) 一种大型太阳能薄膜电池片组件生产工艺及设备
CN103296139B (zh) 一种铜铟镓硒薄膜太阳能电池吸收层的制备方法
CN103572234A (zh) 一种(006)择优取向γ-In2Se3薄膜的制备方法
WO2013185506A1 (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
KR101441942B1 (ko) 플렉시블 박막형 태양전지 및 그 제조방법
CN102751387B (zh) 一种薄膜太阳能电池吸收层Cu(In,Ga)Se2薄膜的制备方法
CN103531661B (zh) 一种(220)取向的铜铟镓硒薄膜制备方法
CN102142484A (zh) 多晶硅/铜铟镓硒叠层电池工艺
CN103066134B (zh) 一种薄膜太阳能电池背反电极及其制备方法
CN105132875B (zh) 一种扩散法制备高浓度梯度azo单晶导电薄膜的方法
CN102005487B (zh) 一种柔性薄膜太阳电池用光吸收层材料及其制备方法
CN104051577A (zh) 提高太阳电池吸收层铜锌锡硫薄膜结晶性能的制备方法
CN104716229A (zh) 铜锌锡硒薄膜太阳电池的制备方法
CN102492927B (zh) 一种禁带宽度可调的碲锌镉薄膜材料的制备方法
KR101388458B1 (ko) 급속 열처리 공정을 사용한 cigs 박막의 제조방법
CN105932093B (zh) 一种高质量cigs薄膜太阳能电池吸收层的制备方法
KR20210097854A (ko) 고주파 마그네트론 스퍼터링법을 이용한 코벨라이트 박막의 제조 방법 및 이에 의해 제조된 코벨라이트 박막을 이용한 박막태양전지
CN104157734B (zh) 一种铜锌锗硫/铜锌锗硒薄膜太阳能电池吸收层的制备方法
CN105762210B (zh) 一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法
CN104278238A (zh) 一种高质量铜锌锡硫半导体薄膜的制备方法
CN103361600B (zh) 太阳能电池光吸收层制备方法
CN101740665A (zh) 一种制备用于太阳能电池窗口层的CdS薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160203

Termination date: 20181022