CN105762210B - 一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法 - Google Patents

一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法 Download PDF

Info

Publication number
CN105762210B
CN105762210B CN201610270035.6A CN201610270035A CN105762210B CN 105762210 B CN105762210 B CN 105762210B CN 201610270035 A CN201610270035 A CN 201610270035A CN 105762210 B CN105762210 B CN 105762210B
Authority
CN
China
Prior art keywords
layer
film
copper
indium gallium
cigs thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610270035.6A
Other languages
English (en)
Other versions
CN105762210A (zh
Inventor
杜祖亮
程轲
韩凯凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201610270035.6A priority Critical patent/CN105762210B/zh
Publication of CN105762210A publication Critical patent/CN105762210A/zh
Application granted granted Critical
Publication of CN105762210B publication Critical patent/CN105762210B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明属于一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法,包括以下步骤:①在镀钼的钠钙玻璃基底上制备铜铟镓预置层;②将铜铟镓预置层放入快速退火炉中,25‑30s内升温至280~285℃,保温20‑30min,然后采用固态硒源在560‑565℃下硒化20~30 min,自然冷却至室温,即可得到铜铟镓硒薄膜。本发明利用直流磁控共溅射技术在溅射有钼的玻璃基底上溅射特定比例的CuIn和CuGa合金靶,得到Cu‑In‑Ga的混合金属预制层,通过后期特定工艺条件下的高温快速硒化处理,成功制备了高质量的CIGS吸收层材料;利用该CIGS吸收层材料组配的CIGS薄膜光伏器件,转换效率在11%以上。

Description

一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法
技术领域
本发明属于光伏与薄膜太阳能电池领域,具体涉及一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法。
背景技术
随着经济社会的发展,人们对能源的需求也与日俱增。由于常规矿物能源如煤炭、石油和天然气储量有限,且在使用过程中会产生大量的CO2等温室气体和大量粉尘,对人类赖以生存的自然环境造成严重破坏。由于太阳能取之不尽、用之不竭、清洁无污染,是最理想、最可持续的可再生清洁能源。目前硅基太阳能电池已经商业化使用,但它存在发电成本较高的问题。目前光伏行业的发展趋势是大力发展薄膜太阳能电池,因为它具有节省材料、重量轻、柔性、运输成本低等优势。在诸多的薄膜光伏技术中,黄铜矿结构的薄膜太阳能电池(CIGS)是目前效率唯一可以和单晶硅太阳能电池相比的薄膜太阳能电池;另外其薄膜化的特点是单晶硅无法比拟的,具有广阔的应用前景。CIGS实验室效率目前可以达到21.7%,2011 年瑞士的材料实验所Empa在聚酰亚胺基底上制备CIGS 电池, 创造出18.7%的效率,预示着CIGS在柔性基底上的广阔的应用前景。CIGS 是太阳能电池材料体系中能够同时兼顾高效率和低成本的、最好的和最现实的体系。
CIGS光吸收层薄膜的主要制备方法是液相法、多源共蒸发法和磁控溅射法。用共蒸发法制备的CIGS器件的光电转换效率已经达到21.7%,是目前CIGS薄膜太阳能电池的最高转换效率。然而共蒸发法存在对工艺要求高、良品率低、原料利用率低的不利于工业化生产的缺点。相对而言,磁控溅射金属预制层后硒化的工艺路线可大面积制备CIGS薄膜,另外,溅射法制备的前驱体薄膜致密性高、组分均匀性好、元素的化学配比可调。通常该技术路径采用分步多次溅射的方法,首先溅射得到层状结构的Cu-In-Ga合金预制层,该技术路径存在由于In元素的团聚导致的预制层薄膜均匀性不足的问题,使得该技术路径所组配的电池器件效率较低。
发明内容
本发明的目的是提供一种简单、方便、可大规模工业化生产的用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法。
为实现上述目的,本发明采用的技术方案是,一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法,包括以下步骤:①在镀钼的钠钙玻璃基底上制备铜铟镓预置层;②将铜铟镓预置层放入快速退火炉中,25-30s内升温至280~285℃,保温20-30min,然后采用固态硒源在560-565℃下硒化20~30 min,自然冷却至室温,即可得到铜铟镓硒薄膜。
优选的,所述铜铟镓预置层采用直流磁控共溅射法制备,具体过程如下:将镀钼的钠钙玻璃放入磁控溅射腔室中,共溅射CuIn合金靶和CuGa合金靶制备铜铟镓预置层,本底真空为4~5×10-4Pa,氩气流量20~25 sccm,基底转速15~20 rpm,工作真空0.7~0.8 Pa,CuIn合金靶的溅射功率为90 W,CuGa合金靶的溅射功率为20 W,溅射时间60 min。
优选的,CuIn合金靶的原子数比为Cu:In=1:4,CuGa合金靶的原子数比例Cu:Ga=4:1。
本发明产生的有益效果是:与传统的分步溅射层状金属预制层不同,本发明利用直流磁控共溅射技术在溅射有钼(Mo)的玻璃基底上溅射特定比例的CuxIn1-x和CuxGa1-x合金靶,得到Cu-In-Ga的混合金属预制层,通过后期特定工艺条件下的高温快速硒化处理,成功制备了高质量的CIGS(铜铟镓硒)吸收层材料;利用该CIGS吸收层材料组配的CIGS薄膜光伏器件,转换效率在11%以上。
附图说明
图1为实施例1制备得到的铜铟镓预置层的表面形貌图,表面致密;
图2为实施例1制备得到的铜铟镓预置层的截面结构图,厚度均一;
图3为实施例1制备得到的铜铟镓硒薄膜的表面形貌图,表面致密平整;
图4为实施例1制备得到的铜铟镓硒薄膜的截图结构图,结晶良好;
图5为采用实施例1制备的铜铟镓硒薄膜制成的铜铟镓硒太阳能薄膜电池器件的光电转换效率测试结果。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围不限于此。
实施例1
一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法,包括以下步骤:①在镀钼的钠钙玻璃基底上制备铜铟镓预置层;②将铜铟镓预置层放入快速退火炉中,30s内升温至280℃,保温20min,然后采用固态硒源(硒粉)在560℃下硒化30 min,自然冷却至室温,即可得到铜铟镓硒薄膜。
所述铜铟镓预置层采用直流磁控共溅射法制备,具体过程如下:将镀钼的钠钙玻璃基底放入磁控溅射腔室中,共溅射CuIn合金靶和CuGa合金靶制备铜铟镓预置层,本底真空为4×10-4Pa,氩气流量25 sccm( 标况毫升每分),基底转速20 rpm,工作真空0.8 Pa,CuIn合金靶的溅射功率为90 W,CuGa合金靶的溅射功率为20 W,溅射总时间60 min(每溅射20 min间隔10 min以避免靶材过热);CuIn合金靶的原子数比为Cu:In=1:4,CuGa合金靶的原子数比为Cu:Ga=4:1。
将实施例1制备得到的铜铟镓硒薄膜上用化学水浴法(CBD)生长一层50 nm厚度的CdS薄膜,然后磁控溅射法沉积ZnO和ITO薄膜,最后将样品放入掩模板中,采用真空蒸镀的方法蒸上一层Ag电极,得到完整的铜铟镓硒太阳能薄膜电池器件(这些方法都是现有技术,在此不再赘述)。
本实施例中制备得到的铜铟镓预置层的表面形貌图如图1所示,铜铟镓预置层的截面结构图如图2所示,由图1-2可以看出,制备的铜铟镓预置层表面均匀,有小鼓包,截面可见柱状结构;制备的铜铟镓硒薄膜的表面形貌图如图3所示,铜铟镓硒薄膜的截面结构图如图4所示,铜铟镓预置层硒化后得到铜铟镓硒薄膜表面平整,均匀性好,厚度约为1.5μm;制得的铜铟镓硒太阳能薄膜电池器件其J-V测试结果如图5所示,证实该发明构筑的CIGS(铜铟镓硒)薄膜光伏器件具有较高的光电转换效率(>11%)。
实施例2
一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法,包括以下步骤:①在镀钼的钠钙玻璃基底上制备铜铟镓预置层;②将铜铟镓预置层放入快速退火炉中,25s内升温至285℃,保温30min,然后采用固态硒源(硒粉)在565℃下硒化20 min,自然冷却至室温,即可得到铜铟镓硒薄膜。
所述铜铟镓预置层采用直流磁控共溅射法制备,具体过程如下:将镀钼的钠钙玻璃基底放入磁控溅射腔室中,共溅射CuIn合金靶和CuGa合金靶制备铜铟镓预置层,本底真空为5×10-4Pa,氩气流量20sccm,基底转速15 rpm,工作真空0.7 Pa,CuIn合金靶的溅射功率为90 W,CuGa合金靶的溅射功率为20 W,溅射总时间60 min(每溅射20 min间隔10 min以避免靶材过热)。
CuIn合金靶的原子数比为Cu:In=1:4,CuGa合金靶的原子数比例Cu:Ga=4:1。
实施例3
一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法,包括以下步骤:①在镀钼的钠钙玻璃基底上制备铜铟镓预置层;②将铜铟镓预置层放入快速退火炉中,25s内升温至285℃,保温25min,然后采用固态硒源(硒粉)在560℃下硒化25 min,自然冷却至室温,即可得到铜铟镓硒薄膜。
所述铜铟镓预置层采用直流磁控共溅射法制备,具体过程如下:将镀钼的钠钙玻璃基底放入磁控溅射腔室中,共溅射CuIn合金靶和CuGa合金靶制备铜铟镓预置层,本底真空为4×10-4Pa,氩气流量20 sccm,基底转速15 rpm,工作真空0.7 Pa,CuIn合金靶的溅射功率为90 W,CuGa合金靶的溅射功率为20 W,溅射总时间60 min(每溅射20 min间隔10 min以避免靶材过热)。
CuIn合金靶的原子数比为Cu:In=1:4,CuGa合金靶的原子数比例Cu:Ga=4:1。

Claims (2)

1. 一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法,其特征在于,包括以下步骤:①在镀钼的钠钙玻璃基底上制备铜铟镓预置层;所述铜铟镓预置层采用直流磁控共溅射法制备,具体过程如下:将镀钼的钠钙玻璃基底放入磁控溅射腔室中,共溅射CuIn合金靶和CuGa合金靶制备铜铟镓预置层,本底真空为4~5×10-4 Pa,工作压强0.7~0.8 Pa,CuIn合金靶的溅射功率为90 W,CuGa合金靶的溅射功率为20 W,溅射时间60 min;②将铜铟镓预置层放入快速退火炉中,25~30s内升温至280~285℃,保温20~30min,然后采用固态硒源在560~565℃下硒化20~30min,自然冷却至室温,即可得到铜铟镓硒薄膜。
2.如权利要求1所述铜铟镓硒薄膜的制备方法,其特征在于,CuIn合金靶的原子数比为Cu:In=1:4,CuGa合金靶的原子数比例Cu:Ga=4:1。
CN201610270035.6A 2016-04-26 2016-04-26 一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法 Expired - Fee Related CN105762210B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610270035.6A CN105762210B (zh) 2016-04-26 2016-04-26 一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610270035.6A CN105762210B (zh) 2016-04-26 2016-04-26 一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN105762210A CN105762210A (zh) 2016-07-13
CN105762210B true CN105762210B (zh) 2017-07-21

Family

ID=56326051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610270035.6A Expired - Fee Related CN105762210B (zh) 2016-04-26 2016-04-26 一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN105762210B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108796441B (zh) * 2018-06-06 2020-03-03 中国科学院宁波材料技术与工程研究所 一种光吸收镀膜、其制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719625A (zh) * 2005-06-03 2006-01-11 清华大学 铜铟镓硒或铜铟镓硫薄膜太阳能电池吸收层的制备方法
CN101752451A (zh) * 2008-11-28 2010-06-23 中国电子科技集团公司第十八研究所 一种薄膜太阳电池吸收层的制备方法
CN101908580A (zh) * 2010-06-25 2010-12-08 清华大学 一种连续制备铜铟镓硒硫太阳能电池吸收层的工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719625A (zh) * 2005-06-03 2006-01-11 清华大学 铜铟镓硒或铜铟镓硫薄膜太阳能电池吸收层的制备方法
CN101752451A (zh) * 2008-11-28 2010-06-23 中国电子科技集团公司第十八研究所 一种薄膜太阳电池吸收层的制备方法
CN101908580A (zh) * 2010-06-25 2010-12-08 清华大学 一种连续制备铜铟镓硒硫太阳能电池吸收层的工艺

Also Published As

Publication number Publication date
CN105762210A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
CN101728461B (zh) 一种制备薄膜太阳能电池吸收层的方法
CN101814553B (zh) 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层
CN101840942A (zh) 一种薄膜太阳电池及其制造方法
CN101789469B (zh) 铜铟镓硒硫薄膜太阳电池光吸收层的制备方法
CN102044577B (zh) 一种柔性薄膜太阳电池及其制造方法
CN102154622A (zh) 用作太阳能电池光吸收层的铜铟镓硒薄膜的制备方法
WO2013185506A1 (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
CN102437237A (zh) 黄铜矿型薄膜太阳能电池及其制造方法
CN105742402B (zh) 一种叠层太阳能电池的制备方法及其结构
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
CN105470113A (zh) 一种CZTSSe薄膜太阳电池吸收层的制备方法
CN102142484A (zh) 多晶硅/铜铟镓硒叠层电池工艺
CN105762210B (zh) 一种用于太阳能电池吸收层的铜铟镓硒薄膜的制备方法
CN102290339B (zh) 铜铟镓硒靶材连续溅射制备cigs太阳电池吸收层的新工艺
CN101882653B (zh) 基于纳米CdS薄膜的太阳能电池制备方法
CN103469170B (zh) 一种用于薄膜太阳能电池的溅射靶
CN102005487B (zh) 一种柔性薄膜太阳电池用光吸收层材料及其制备方法
CN103346213A (zh) 一种太阳能电池吸收层的制备方法
CN111029439B (zh) 一种无硒化制备铜铟镓硒薄膜太阳能电池的方法
CN105932093B (zh) 一种高质量cigs薄膜太阳能电池吸收层的制备方法
CN103474514B (zh) 铜铟镓硒太阳能电池的制备方法
CN102024858A (zh) 油墨、薄膜太阳能电池及其制造方法
CN106684210B (zh) 一种用于太阳电池的铜锌锡硫硒薄膜制备方法、该方法制备的薄膜及包含该薄膜的太阳电池
CN102157595A (zh) 硅薄膜/铜铟镓硒双结薄膜电池工艺
CN101967624A (zh) Cu2ZnSnS4光伏薄膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170721

Termination date: 20180426

CF01 Termination of patent right due to non-payment of annual fee