CN110467731A - 一种稳定超薄介孔金属有机框架材料的制备方法 - Google Patents

一种稳定超薄介孔金属有机框架材料的制备方法 Download PDF

Info

Publication number
CN110467731A
CN110467731A CN201910678910.8A CN201910678910A CN110467731A CN 110467731 A CN110467731 A CN 110467731A CN 201910678910 A CN201910678910 A CN 201910678910A CN 110467731 A CN110467731 A CN 110467731A
Authority
CN
China
Prior art keywords
ultra
organic framework
framework materials
preparation
metal organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910678910.8A
Other languages
English (en)
Other versions
CN110467731B (zh
Inventor
贾希来
许婕
朱晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Zhongshi Hydrogen Production Equipment Manufacturing Co ltd
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201910678910.8A priority Critical patent/CN110467731B/zh
Publication of CN110467731A publication Critical patent/CN110467731A/zh
Application granted granted Critical
Publication of CN110467731B publication Critical patent/CN110467731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/56Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/57Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/64Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/66Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种稳定的介孔金属有机框架材料制备方法,采用两步法:先超声后水热或溶剂热处理方法。分别取N,N‑二甲基甲酰胺、乙醇、水置于反应釜内衬中,然后将对苯二甲酸超声分散在混合液中,加入不同组合的二价金属盐搅拌使之分散均匀,之后加入三乙胺作为酸结合剂。先进行一定时间的超声反应,然后将其转移至高压反应釜继续反应。冷却至室温后,离心洗涤干燥得到超薄金属有机框架材料。本发明制备的超薄金属有机框架材料具有连续的介孔结构,催化活性提高。

Description

一种稳定超薄介孔金属有机框架材料的制备方法
技术领域
本发明涉及一种稳定的超薄介孔金属有机框架材料的制备方法。用该方法得到的超薄金属有机框架纳米片存在连续的介孔结构,制备方法简单易行,主要用于催化材料、吸附材料和储能材料等。
背景技术
近年来,以石墨烯和过渡金属硫族化物为代表的二维材料受到了科学界和工业界的广泛关注。得益于它们的超薄厚度(通常几个原子层厚)和片状结构,这些纳米材料展现出很多独特性质,在能源和器件等领域具有巨大的应用前景。金属有机骨架化合物(MetalOrganic Frameworks,MOF)是一种利用金属离子/原子团簇与有机配体(以含羧基有机阴离子配体为主)之间通过配位作用自组装而形成的多孔周期性网状骨架材料,是一种近年来得到日益关注的新型多孔材料。由于其良好的结构特点,在气体存储与分离、催化、传感等领域得到广泛应用。
在此背景下,二维MOF成为一种有应用广泛的重要材料。然而,已经报道的MOF材料大多限于微孔结构,其小的孔径尺寸阻碍了传质运动,且阻止了较大客体分子与MOF内部活性位点的接触。因此,制备具有分层结构、更大连通孔隙的MOF材料十分必要。
为扩大孔径尺寸,已经报道了模板法制备MOF材料,在移去模板后可以得到有序/无序孔结构,这类方法优点是通过调整模板结构,可以实现对MOF孔的控制,但是,移除模板时MOF的孔结构可能会塌陷,且牺牲模板的控制过程较复杂,故急需一种无模板的制备方法避免上述问题。
发明内容
本发明的目的在于公开一种稳定的超薄介孔金属有机框架材料的合成方法,这是首次采用无模板法合成多级结构的多孔MOF的技术。
为了实现上述目标,该方法采用超声-水热或溶剂热两步法,超声后的二维MOF在水热或溶剂热过程中移除不稳定的MOF结构从而产生连续的介孔,并增强了MOF的活性位点,进而提高了其催化活性、吸附能力和储能能力。
具体工艺过程如下:
(1)将N,N-二甲基甲酰胺、乙醇、水按照一定的体积份数量取,置于反应釜内衬中,然后加入有机配体超声分散在混合液中;
(2)将二价金属盐加入步骤(1)得到的混合液,搅拌使之分散均匀;
(3)向步骤(2)得到的混合液中加入三乙胺作为酸结合剂,搅拌使之分散均匀,然后在超声环境下反应一定时间;
(4)将步骤(3)超声得到的产物转移至高压反应釜,进行水热或者溶剂热处理;
(5)将步骤(4)水热后所得产物冷却至室温,离心洗涤,干燥得到更加稳定的超薄金属有机框架材料。
进一步地,步骤(1)所述混合溶液中N,N-二甲基甲酰胺、乙醇、水的体积比为8:0~4:0~4。所述有机配体为对苯二甲酸;有机配体占混合溶液的摩尔体积比为0.01~0.04mmol/ml。
进一步地,步骤(2)所述二价金属盐包括铁、钴、镍、钼、钒、钨、铌的金属盐中的一种或者两种及其以上的金属盐。
进一步地,步骤(3)所述超声环境下反应时间为1-12小时,超声前在混合液中加入了0~5%的三乙胺作为酸结合剂。
进一步地,步骤(4)中所述水热或者溶剂热处理温度为100-260℃,时间为8-50小时。
进一步地,所述金属有机框架材料存在明显的2-10纳米的介孔结构。
本发明所述方法制备得到的稳定超薄介孔金属有机框架材料进行吸附性能测试、储能能力测试或者电化学性能测试。例如电化学性能测试步骤为:将所得到的MOF材料、乙醇、水、全氟磺酸-聚四氟乙烯共聚物(Nafion)混合后滴在玻碳电极上为工作电极,Ag/AgCl电极作为参比电极,石墨电极作为对电极,电解液为配制的标准的1mol/L的KOH溶液。测试时电压的扫描区间为0.0-0.8V,扫描速率为5mV/s,进行电解水析氧活性测试。
本发明的优点:
(1)本发明提供了一种更加稳定的超薄介孔金属有机框架材料的制备方法。本发明首次采用无模板的方法制备出分层多孔金属有机框架材料。与之前的模板法相比,该方法的控制过程简单易行,还可以避免移除模板时对MOF孔结构的破坏。
(2)目前合成的MOF材料基本只有微孔,而且厚度较大。与两者相比,本发明采用两步法制备的金属有机框架材料具有超薄的片状结构(单层片状厚度<2nm),同时,超薄的纳米片上还具有连续的介孔结构(平均孔径<10nm)。
(3)本发明制备的超薄介孔金属有机框架材料具有大量活性位点,有利于底物分子与活性位点的接触,进而可以提高MOF在催化、传感、储能、吸附等领域的性能。在氧析出反应的测试过程中,采用两步法制备的MOF纳米片电流密度10mA·cm-2时过电位仅为277mV,塔菲尔斜率为31mV·dec-1(仅采用超声法制备的材料过电位为300mV,塔菲尔斜率40mV·dec-1;仅采用水热法制备的材料过电位为310mV,塔菲尔斜率56mV·dec-1),证明了其结构优点。
附图说明
图1为本发明实例1得到的MOF的透射电镜图片。从本图可知制得的MOF材料为具有介孔的纳米片。
图2为本发明实例1得到的CoFe-MOF材料和商用RuO2析氧反应的线性扫描伏安法曲线对比图。从图2可知制得的CoFe-MOF材料具有更优的性能。
图3为本发明实例3得到的NiV-MOF材料的透射电镜图片。从图3可知制得的NiV-MOF材料为具有介孔的纳米片。
图4为本发明实例4得到的Ni-MOF材料的透射电镜图片。从图4可知制得的Ni-MOF材料为具有介孔的纳米片。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种超薄介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mLN,N-二甲基甲酰胺(DMF),2mL乙醇和2mL去离子水加入反应釜内衬中。将0.75mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向上述溶液中添加0.375mmol CoCl2.6H2O和0.375mmol FeCl2.4H2O,分散均匀后,快速加入0.8mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的胶体悬浮液,将其超声8h。
(3)将超声后得到的混合液转移至高压反应釜中,于140℃反应48h。
(4)将所得产物冷却至室温,离心洗涤,干燥得到超薄片层介孔CoFe-MOF材料。
电化学性能测试:将5mg CoFe-MOF、0.8mL水、0.2mL乙醇、50μL 5%的全氟磺酸-聚四氟乙烯共聚物(Nafion)超声30min,滴在玻碳电极上,干燥20min,作为工作电极;Ag/AgCl电极作为参比电极,石墨电极作为对电极,电解液为配制的标准的1mol/L的KOH溶液。测试时电压的扫描区间为0.0-0.8V,扫描速率为5mV/s,进行电解水析氧活性测试。
本实施例制备的CoFe-MOF材料透射电镜图片如图1所示,从图1可知,该材料为具有介孔的纳米片状结构。本实施例制备的CoFe-MOF材料析氧反应的线性扫描伏安法曲线对比如图2,表明该方法制备的超薄介孔CoFe-MOF材料催化活性得到了明显提高,能够比商用的RuO2催化活性更高。
实施例2:一种超薄介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF),0.5mL乙醇和0.5mL去离子水加入反应釜内衬中。将0.33mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向上述溶液中添加0.165mmol NiCl2.6H2O和0.165mmol FeSO4.7H2O,分散均匀后,快速加入0.35mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的胶体悬浮液,将其超声1h。
(3)将超声后得到的混合液转移至高压反应釜中,于260℃反应10h。
(4)将所得产物冷却至室温,离心洗涤,干燥得到超薄片层介孔NiFe-MOF材料。
实施例3:一种超薄介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF),2mL乙醇和2mL去离子水加入反应釜内衬中。将0.75mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向溶液中添加0.375mmol NiCl2.6H2O和0.375mmol VCl2,分散均匀后,快速加入0.8mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的胶体悬浮液,将其超声8h。
(3)将超声后得到的混合液转移至高压反应釜中,于140℃反应48h。
(4)将所得产物冷却至室温,离心洗涤,干燥得到超薄片层介孔NiV-MOF材料。
本实施例制备的NiV-MOF材料透射电镜图片如图3所示,从图3可知,该材料为具有介孔的纳米片状结构。
实施例4:一种超薄介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF),2mL乙醇和2mL去离子水加入反应釜内衬中。将0.75mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向溶液中添加0.75mmol NiCl2.6H2O,分散均匀后,快速加入0.8mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的胶体悬浮液,将其超声8h。
(3)将超声后得到的混合液转移至高压反应釜中,于140℃反应48h。
(4)将所得产物冷却至室温,离心洗涤,干燥得到超薄片层介孔Ni-MOF材料。
本实施例制备的Ni-MOF材料透射电镜图片如图4所示,从图4可知,该材料为具有介孔的纳米片状结构。
实施例5:一种超薄介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF),2mL乙醇和2mL去离子水加入反应釜内衬中。将0.75mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向溶液中添加0.25mmol NiCl2.6H2O,0.25mmol CoCl2.6H2O和0.25mmolFeCl2.4H2O,分散均匀后,快速加入0.8mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的胶体悬浮液,将其超声8h。
(3)将超声后得到的混合液转移至高压反应釜中,于140℃反应48h。
(4)将所得产物冷却至室温,离心洗涤,干燥得到超薄片层介孔NiCoFe-MOF材料。
实施例6:一种超薄介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF)和16mL乙醇加入反应釜内衬中。将1.92mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向溶液中添加0.64mmol NiCl2.6H2O,0.64mmol CoCl2.6H2O和0.64mmol WCl2,分散均匀后,将其超声5h。
(3)将超声后得到的混合液转移至高压反应釜中,于100℃反应50h。
(4)将所得产物冷却至室温,离心洗涤,干燥得到超薄片层介孔NiCoW-MOF材料。
实施例7:一种超薄介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF)和16mL去离子水加入反应釜内衬中。将1.92mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向溶液中添加0.64mmol NiCl2.6H2O,0.64mmol CoCl2.6H2O和0.64mmol WCl2,分散均匀后,快速加入2.4mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的胶体悬浮液,将其超声12h。
(3)将超声后得到的混合液转移至高压反应釜中,于130℃反应50h。
(4)将所得产物冷却至室温,离心洗涤,干燥得到超薄片层介孔NiCoW-MOF材料。
实施例8:一种超薄介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将32mL N,N-二甲基甲酰胺(DMF),4mL乙醇和4mL去离子水加入反应釜内衬中。将1.2mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向溶液中添加0.4mmol NiCl2.6H2O,0.4mmol CoCl2.6H2O,0.4mmol MoCl2,分散均匀后,快速加入01.28mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的胶体悬浮液,将其超声10h。
(3)将超声后得到的混合液转移至高压反应釜中,于150℃反应40h。
(4)将所得产物冷却至室温,离心洗涤,干燥得到超薄片层介孔NiCoMo-MOF材料。
实施例9:一种超薄介孔金属有机框架材料的制备方法,具体步骤如下:
(1)将36mL N,N-二甲基甲酰胺(DMF),1.8mL乙醇和1.8mL去离子水加入反应釜内衬中。将0.81mmol对苯二甲酸(BDC)加入上述混合溶液中,分散均匀。
(2)向溶液中添加0.27mmol NiCl2.6H2O,0.27mmol CoCl2.6H2O,0.27mmol NbCl2,分散均匀后,快速加入0.7mL的三乙胺(TEA)作为金属离子与有机配体的结合剂,搅拌待形成均匀的胶体悬浮液,将其超声7h。
(3)将超声后得到的混合液转移至高压反应釜中,于130℃反应45h。
(4)将所得产物冷却至室温,离心洗涤,干燥得到超薄片层介孔NiCoNb-MOF材料。

Claims (6)

1.一种稳定超薄介孔金属有机框架材料的制备方法,其特征在于步骤包括:
(1)将N,N-二甲基甲酰胺、乙醇、水按照一定的体积份数量取,置于反应釜内衬中,然后加入有机配体超声分散在混合液中;
(2)将二价金属盐加入步骤(1)得到的混合液,搅拌使之分散均匀;
(3)向步骤(2)得到的混合液中加入三乙胺作为酸结合剂,搅拌使之分散均匀,然后在超声环境下反应一定时间;
(4)将步骤(3)超声得到的产物转移至高压反应釜,进行水热或者溶剂热反应;
(5)将步骤(4)水热后所得产物冷却至室温,离心洗涤,干燥得到超薄片层金属有机框架材料。
2.根据权利要求1所述超薄介孔金属有机框架材料的制备方法,其特征在于:步骤(1)所述混合溶液中N,N-二甲基甲酰胺、乙醇、水的体积比为8:0~4:0~4;所述有机配体为对苯二甲酸;有机配体占混合溶液的摩尔体积比为0.01~0.04mmol/ml。
3.根据权利要求1所述超薄介孔金属有机框架材料的制备方法,其特征在于:步骤(2)中二价金属盐包括铁、钴、镍、钼、钒、钨、铌的金属盐中的一种或者两种及其以上的金属盐。
4.根据权利要求1所述超薄介孔金属有机框架材料的制备方法,其特征在于:步骤(3)中超声环境下反应1-12小时,超声前在混合液中加入了0~5%的三乙胺作为酸结合剂。
5.根据权利要求1所述超薄介孔金属有机框架材料的制备方法,其特征在于:步骤(4)中的处理方式为反应釜内水热或者溶剂热处理,温度为100-260℃,时间为8-50小时。
6.根据权利要求1所述超薄介孔金属有机框架材料的制备方法,其特征在于:金属有机框架材料存在明显的2-10纳米的介孔结构。
CN201910678910.8A 2019-07-25 2019-07-25 一种稳定超薄介孔金属有机框架材料的制备方法 Active CN110467731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910678910.8A CN110467731B (zh) 2019-07-25 2019-07-25 一种稳定超薄介孔金属有机框架材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910678910.8A CN110467731B (zh) 2019-07-25 2019-07-25 一种稳定超薄介孔金属有机框架材料的制备方法

Publications (2)

Publication Number Publication Date
CN110467731A true CN110467731A (zh) 2019-11-19
CN110467731B CN110467731B (zh) 2021-03-05

Family

ID=68509732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910678910.8A Active CN110467731B (zh) 2019-07-25 2019-07-25 一种稳定超薄介孔金属有机框架材料的制备方法

Country Status (1)

Country Link
CN (1) CN110467731B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393664A (zh) * 2020-04-14 2020-07-10 天津大学 双金属mof材料及其制备方法和在加氢反应中的应用
CN111715298A (zh) * 2020-07-23 2020-09-29 广西师范大学 一种类钻石状的双金属FeCo-MOF析氧电催化剂及其制备方法
CN111905818A (zh) * 2020-07-13 2020-11-10 苏州科技大学 一种mof基二维超薄电催化剂及其制备方法与应用
CN111921560A (zh) * 2020-08-18 2020-11-13 浙江大学 一种晶格畸变的超薄金属有机框架纳米片催化剂、其制备方法和应用
CN112391649A (zh) * 2020-11-23 2021-02-23 西北师范大学 一种NiFe-LDH复合材料的制备及应用
CN112481639A (zh) * 2020-12-01 2021-03-12 中国海洋大学 分等级多孔镍基金属有机骨架电催化材料的制备方法及应用
CN112851957A (zh) * 2020-12-29 2021-05-28 江苏集萃智能液晶科技有限公司 一种超薄金属有机框架纳米片的制备方法及应用其的调光器件
CN113484404A (zh) * 2021-07-02 2021-10-08 上海交通大学 一种金属有机框架材料的制备方法及其小分子检测应用
CN113644260A (zh) * 2021-08-25 2021-11-12 合肥工业大学 一种CuCo-BDC超薄纳米片及其制备方法和用途
CN114247307A (zh) * 2022-01-13 2022-03-29 南京工业大学 一种制备金属有机骨架薄膜及复合薄膜的方法
CN115010951A (zh) * 2022-07-22 2022-09-06 中南大学 一种钒元素利用率高的钒金属有机框架材料的制备方法
WO2023274367A1 (zh) * 2021-07-02 2023-01-05 上海交通大学 纳米增强芯片的制备及其在小分子代谢物激光解离质谱检测中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100172814A1 (en) * 2005-12-14 2010-07-08 Basf Catalysts Llc Zeolite Catalyst With Improved NOx Reduction in SCR
CN105732728A (zh) * 2016-01-26 2016-07-06 国家纳米科学中心 金属有机骨架配合物纳米片、制备方法及其用途
CN108114699A (zh) * 2017-12-22 2018-06-05 华东理工大学 一种孔径可调的多级孔金属有机骨架纳米材料的制备方法以及由此得到的纳米材料及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100172814A1 (en) * 2005-12-14 2010-07-08 Basf Catalysts Llc Zeolite Catalyst With Improved NOx Reduction in SCR
CN105732728A (zh) * 2016-01-26 2016-07-06 国家纳米科学中心 金属有机骨架配合物纳米片、制备方法及其用途
CN108114699A (zh) * 2017-12-22 2018-06-05 华东理工大学 一种孔径可调的多级孔金属有机骨架纳米材料的制备方法以及由此得到的纳米材料及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANGTONG HAI等: "High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets", 《NANO ENERGY》 *
YING CHEN等: "Enhanced photocatalytic degradation of RhB by two-dimensional composite photocatalyst", 《COLLOIDS AND SURFACES A》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393664B (zh) * 2020-04-14 2021-11-02 天津大学 双金属mof材料及其制备方法和在加氢反应中的应用
CN111393664A (zh) * 2020-04-14 2020-07-10 天津大学 双金属mof材料及其制备方法和在加氢反应中的应用
CN111905818A (zh) * 2020-07-13 2020-11-10 苏州科技大学 一种mof基二维超薄电催化剂及其制备方法与应用
CN111715298A (zh) * 2020-07-23 2020-09-29 广西师范大学 一种类钻石状的双金属FeCo-MOF析氧电催化剂及其制备方法
CN111715298B (zh) * 2020-07-23 2022-12-30 广西师范大学 一种类钻石状的双金属FeCo-MOF析氧电催化剂及其制备方法
CN111921560A (zh) * 2020-08-18 2020-11-13 浙江大学 一种晶格畸变的超薄金属有机框架纳米片催化剂、其制备方法和应用
CN112391649A (zh) * 2020-11-23 2021-02-23 西北师范大学 一种NiFe-LDH复合材料的制备及应用
CN112481639B (zh) * 2020-12-01 2022-02-11 中国海洋大学 分等级多孔镍基金属有机骨架电催化材料的制备方法及应用
CN112481639A (zh) * 2020-12-01 2021-03-12 中国海洋大学 分等级多孔镍基金属有机骨架电催化材料的制备方法及应用
CN112851957A (zh) * 2020-12-29 2021-05-28 江苏集萃智能液晶科技有限公司 一种超薄金属有机框架纳米片的制备方法及应用其的调光器件
CN113484404A (zh) * 2021-07-02 2021-10-08 上海交通大学 一种金属有机框架材料的制备方法及其小分子检测应用
WO2023274367A1 (zh) * 2021-07-02 2023-01-05 上海交通大学 纳米增强芯片的制备及其在小分子代谢物激光解离质谱检测中的应用
CN113644260A (zh) * 2021-08-25 2021-11-12 合肥工业大学 一种CuCo-BDC超薄纳米片及其制备方法和用途
CN114247307A (zh) * 2022-01-13 2022-03-29 南京工业大学 一种制备金属有机骨架薄膜及复合薄膜的方法
CN115010951A (zh) * 2022-07-22 2022-09-06 中南大学 一种钒元素利用率高的钒金属有机框架材料的制备方法
CN115010951B (zh) * 2022-07-22 2023-02-24 中南大学 一种钒元素利用率高的钒金属有机框架材料的制备方法

Also Published As

Publication number Publication date
CN110467731B (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
CN110467731A (zh) 一种稳定超薄介孔金属有机框架材料的制备方法
Zhou et al. Pd@ ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction
Zha et al. Hierarchical Co, Fe-MOF-74/Co/carbon cloth hybrid electrode: simple construction and enhanced catalytic performance in full water splitting
Wang et al. Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts
CN106430166B (zh) 一种MOFs-石墨烯复合材料的制备方法
Kumar et al. MNC-based single-atom catalysts for H2, O2 & CO2 electrocatalysis: activity descriptors, active sites identification, challenges and prospects
Ye et al. Sustained-release method for the directed synthesis of ZIF-derived ultrafine Co-NC ORR catalysts with embedded Co quantum dots
CN106694018A (zh) 一种具有梯度孔结构的钴、氮共掺杂炭氧气还原催化剂及其制备方法和应用
Qi et al. Hierarchical 2D yarn-ball like metal–organic framework NiFe (dobpdc) as bifunctional electrocatalyst for efficient overall electrocatalytic water splitting
CN110327979B (zh) 一种多孔亲水纳米花负载金属纳米催化剂的制备方法
Ciprian et al. 3D derived N-doped carbon matrix from 2D ZIF-L as an enhanced stable catalyst for chemical fixation
Chen et al. In situ construction of porous Ni/Co-MOF@ Carbon cloth electrode with honeycomb-like structure for high-performance energy storage
Huang et al. Copper isolated sites on N-doped carbon nanoframes for efficient oxygen reduction
Tong et al. Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction
CN110289425B (zh) 一种双壳型中空多孔富氮碳材料及其制备方法和用途
CN109529932A (zh) 花瓣状金属有机框架材料的制备方法及其应用
CN110182859A (zh) 以zif-8复合zif-67为模板的三元复合金属氧化物的制备及应用
Singu et al. Development of metal-organic framework-derived NiMo-MoO3− x porous nanorod for efficient electrocatalytic hydrogen evolution reactions
Zhou et al. Controlled synthesis of Fe3O4 nanospheres coated with nitrogen-doped carbon for high performance supercapacitors
Zou et al. Controllable self-catalytic fabrication of carbon nanomaterials mediated by a nickel metal organic framework
Omkaramurthy et al. Synthesis and characterization of mesoporous crystalline copper metal–organic frameworks for electrochemical energy storage application
Lionet et al. Bimetallic MOF-templated synthesis of alloy nanoparticle-embedded porous carbons for oxygen evolution and reduction reactions
Parkash Incorporation of Pt–Cr nanoparticles into highly porous MOF-5 as efficient oxygen reduction electrocatalysts
Sun et al. Nitrogen-doped carbon supported ZnO as highly stable heterogeneous catalysts for transesterification synthesis of ethyl methyl carbonate
Deng et al. Research advance of NiCoP-based materials for high-performance supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230427

Address after: No. 1-5, Tianji Road, Karamay District, Karamay City, Xinjiang Uygur Autonomous Region 834099

Patentee after: Xinjiang Zhongshi Hydrogen Production Equipment Manufacturing Co.,Ltd.

Address before: 100083 No. 30, Haidian District, Beijing, Xueyuan Road

Patentee before: University OF SCIENCE AND TECHNOLOGY BEIJING

TR01 Transfer of patent right