CN110459603A - 倒角的替代栅极结构 - Google Patents

倒角的替代栅极结构 Download PDF

Info

Publication number
CN110459603A
CN110459603A CN201910274505.XA CN201910274505A CN110459603A CN 110459603 A CN110459603 A CN 110459603A CN 201910274505 A CN201910274505 A CN 201910274505A CN 110459603 A CN110459603 A CN 110459603A
Authority
CN
China
Prior art keywords
work function
recess
structure according
groove structure
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910274505.XA
Other languages
English (en)
Inventor
王海艇
路荣涛
张志强
许国伟
臧辉
S·贝瑟尔
谢瑞龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
Original Assignee
GlobalFoundries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalFoundries Inc filed Critical GlobalFoundries Inc
Publication of CN110459603A publication Critical patent/CN110459603A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

本公开涉及倒角的替代栅极结构。本公开涉及半导体结构,更具体地,涉及倒角的替换栅极结构和制造方法。该结构包括:位于沟槽结构中的凹陷的栅极电介质材料;位于凹陷的栅极电介质材料上位于沟槽结构内的多个凹陷的功函数材料;位于沟槽结构内并且位于凹陷的栅极电介质材料和多个凹陷的功函数材料上方的多个附加功函数材料;位于沟槽结构内并且位于多个附加功函数材料之上的栅极金属,栅极金属和多个附加功函数材料具有位于沟槽结构的顶表面下方的平坦表面;以及位于栅极金属和多个附加功函数材料之上的帽盖材料。

Description

倒角的替代栅极结构
技术领域
本公开涉及半导体结构,更具体地,涉及倒角的替换栅极结构和制造方法。
背景技术
集成电路(IC)芯片包括几个层级的堆叠或顺序形成的材料层,以限定有源器件(例如,FET)和无源器件(布线等)。例如,鳍片FET将包括形成在半导体材料上的栅极电介质材料和金属栅极材料。金属栅极材料将由帽盖材料保护,其中侧壁隔离物设置在栅极电介质材料和金属栅极材料的侧面上。源极和漏极区域形成在栅极材料侧面上在半导体材料之中或之上。
随着鳍片FET的尺寸继续缩小(例如,22nm及更大),功函数金属倒角(chamfering)工艺对于实现期望的阈值电压(Vth)是必要的。然而,标称栅极导体(PC)临界尺寸(CD)对于这些较小技术节点处的倒角工艺和随后的金属填充工艺是具有挑战性的。并且,随着栅极尺寸的缩小,栅极电阻增加,并且相对于诸如TiN的较高电阻功函数金属(WFM),需要更多的例如钨(W)的低电阻金属。此外,在这样的技术节点处,源极和栅极接触形成工艺可导致到栅极材料和/或栅极电介质材料的短路。
发明内容
在本公开的一方面,一种结构包括:位于沟槽结构中的凹陷的栅极电介质材料;位于凹陷的栅极电介质材料上位于沟槽结构内的多个凹陷的功函数材料;位于沟槽结构内并且位于凹陷的栅极电介质材料和多个凹陷的功函数材料上方的多个附加功函数材料;位于沟槽结构内并且位于多个附加功函数材料之上的栅极金属,栅极金属和多个附加功函数材料具有位于沟槽结构的顶表面下方的平坦表面;以及位于栅极金属和多个附加功函数材料之上的帽盖材料。
在本公开的一方面,一种结构包括:沟槽结构;加衬沟槽结构的侧壁的侧壁材料;位于侧壁材料表面上的电介质材料,电介质材料具有低于沟槽结构的顶表面的高度;多个凹陷的功函数栅极材料,其设置在电介质材料之上并且具有低于沟槽结构的顶表面的高度;位于多个凹陷的功函数栅极材料之上的功函数栅极材料,其中功函数栅极材料的底部接触电介质材料上方的侧壁材料;以及形成在沟槽结构的剩余部分内和功函数栅极材料的顶部上的栅极金属。
在本公开的一方面,一种方法包括:形成沟槽结构;形成加衬沟槽结构的侧壁的侧壁材料;在侧壁材料的表面上形成电介质材料;将电介质材料凹陷到沟槽结构的顶表面下方的高度;在电介质材料之上形成多个功函数栅极材料;将多个功函数栅极材料凹陷到沟槽结构的顶表面下方的高度;在多个凹陷的功函数栅极材料之上形成功函数栅极材料,其中功函数栅极材料的底部接触电介质材料上方的侧壁材料;以及在沟槽结构的剩余部分内和功函数栅极材料的顶部上形成栅极金属。
附图说明
通过本公开的示例性实施例的非限制性实例并参考所述多个附图,在以下详细描述中描述本公开。
图1示出了根据本公开的方面的除了其他特征之外的在电介质材料中形成的沟槽中的栅极电介质材料和功函数金属以及相应的制造工艺。
图2示出了根据本公开的方面的除了其他特征之外的倒角的(凹陷的)功函数金属以及相应的制造工艺。
图3示出了根据本公开的方面的除了其他特征之外的位于倒角的功函数金属之上的材料以及相应的制造工艺。
图4示出了根据本公开的方面的除了其他特征之外的倒角的(凹陷的)栅极电介质材料以及相应的制造工艺。
图5示出了根据本公开的方面的除了其他特征之外的位于凹陷的栅极电介质材料之上的栅极材料以及相应的制造工艺。
图6示出了根据本公开的方面的除了其他特征之外的凹陷的栅极材料以及相应的制造工艺。
图7示出了根据本公开的方面的除了其他特征之外的位于凹陷的栅极材料上的帽盖材料以及相应的制造工艺。
具体实施方式
本公开涉及半导体结构,更具体地,涉及倒角的栅极结构和制造方法。更具体地,本公开提供了用于替换金属栅极技术的隔离物倒角。有利地,本文描述的方法提供改进的装置和工艺控制。例如,本文描述的方法导致在自对准接触(SAC)栅极模块中具有改进的金属栅极填充负载控制的结构。此外,本文描述的方法显著减少或消除例如22nm及更大的较小技术节点中的栅极到源极/漏极接触短路。
在实施例中,栅极结构包括形成在衬底之上位于电介质层中的沟槽结构。凹陷的高K栅极电介质材料位于沟槽的底部。功函数金属位于高K栅极电介质材料之上。第一金属层(TiN)位于功函数金属之上,第二金属(W)位于TiN层之上。帽位于第二金属之上。高K栅极电介质的顶表面位于第二金属的底表面下方。
本公开的倒角的栅极结构可以使用多种不同的工具以多种方式来制造。一般而言,方法和工具被用于形成具有微米和纳米尺寸的结构。已从集成电路(IC)技术中采用了用于制造本公开的倒角的栅极结构的方法,即,技术。例如,该结构可以建立在晶片上,并且以通过光刻工艺被图案化的材料膜来实现。特别地,倒角的栅极结构的制造使用三个基本构建块:(i)将薄膜材料沉积在衬底上,(ii)通过光刻成像在膜的顶部施加图案化的掩模,以及(iii)选择性地将膜蚀刻到掩模。
图1示出了根据本公开的方面的除了其他特征之外的具有位于沟槽中的栅极电介质材料和功函数金属的起始结构以及相应的制造工艺。更具体地,结构10包括由半导体材料构成的鳍片结构12。在实施例中,半导体材料可以由任何合适的材料构成,包括但不限于Si、SiGe、SiGeC、SiC、GaAs、InAs、InP和其他III/V或II/VI化合物半导体。在另外的实施例中,鳍片结构12可以由绝缘体上硅(SOI)晶片构成。
在实施例中,可以使用常规的侧壁图像技术(SIT)来制造鳍片结构12。在SIT技术的示例中,使用常规化学气相沉积(CVD)工艺将例如SiO2的芯轴材料沉积在半导体材料上。将形成在芯轴材料上的抗蚀剂暴露于光以形成图案(开口)。通过开口执行反应离子蚀刻(RIE)以形成芯轴。隔离物形成在芯轴的侧壁上,该隔离物优选地是与芯轴不同的材料并且使用本领域技术人员已知的常规沉积工艺形成。例如,隔离物可以具有与鳍片结构12的尺寸匹配的宽度。使用对芯轴材料具有选择性的常规的蚀刻工艺去除或剥离芯轴。然后在隔离物的间隔内执行蚀刻以形成亚光刻特征。然后可以剥离侧壁隔离物。
仍然参考图1,在常规的伪栅极形成工艺之后,在鳍片结构12上沉积电介质材料14。电介质材料14可以是使用例如CVD的常规沉积方法沉积的然后进行例如化学机械抛光(CMP)的抛光工艺的任何层间电介质材料,例如氧化物。
更具体地,在实施例中,通过沉积多晶硅(poly)材料然后进行例如常规的CMOS光刻和蚀刻工艺的图案化工艺在鳍片结构12上形成伪栅极。然后在图案化的多晶硅材料的侧壁上沉积隔离物材料,然后可以进行常规的各向异性蚀刻工艺以去除衬底(例如鳍片结构12)上的隔离物材料。通过去除例如多晶硅材料的伪栅极材料在电介质材料14中形成沟槽16。在实施例中,沉积在图案化的多晶硅材料的侧壁上的侧壁隔离物18现在将是沟槽16的侧壁。在实施例中,侧壁隔离物18可以是通过例如CVD工艺的任何常规沉积工艺沉积的SiN材料,作为示例。
图1还示出了在沟槽16中、在侧壁隔离物18和电介质材料14的上表面之上沉积的栅极电介质材料20。在实施例中,栅极电介质材料20可以是高k电介质材料。例如,栅极电介质材料20可以是HfO2Al2O3、Ta2O3、TiO2、La2O3、SrTiO3、LaAlO3、ZrO2、Y2O3、Gd2O3以及包括其多层的组合。作为示例,栅极电介质材料20可以通过原子层沉积(ALD)工艺沉积至约1.5nm的厚度;尽管本文也考虑了其他尺寸。
依赖于期望的器件性能,例如功函数材料的多种材料22、24、26沉积在栅极电介质材料20上至不同的厚度。在实施例中,多种材料22、24、26可以是金属层,例如,TiN材料的底部簇(cluster)22、P型功函数金属24和TiN材料26;尽管本文考虑了其他金属或无定形材料(a-Si)。依赖于沟槽16的初始宽度,可以通过ALD毯式沉积工艺沉积不同的材料22、24、26到一定的厚度。例如,材料22、24和26的组合可以具有约10nm的厚度。
在图2中,使用不会攻击(attack)栅极电介质材料20的选择性蚀刻化学(chemistry)在沟槽16内使材料22、24、26凹陷。以此方式,仅材料22、24、26将凹陷,留下位于沟槽16的侧壁上的栅极电介质材料20.在实施例中,材料22、24、26可以凹陷到位于鳍片结构12的表面上方约10nm;尽管依赖于器件性能要求本文也考虑了其他尺寸。
如图3所示,在凹陷的材料22、24、26和栅极电介质材料20上沉积底部金属簇28。在凹陷的材料22、24、26上沉积底部金属簇28将导致单个阶梯配置(如标有“S”的圆圈所示)。在实施例中,金属28可以是例如TiN。金属28可以通过例如CVD的常规的毯式沉积工艺沉积。
在图4中,金属28和栅极电介质材料20从沟槽16的侧壁凹陷(倒角)。如所示出的,凹陷的金属28和栅极电介质材料20在凹陷的材料22、24、26上方处于相同高度。该凹陷将确保沟槽16中有足够的空间用于随后的例如功函数材料和钨金属的金属材料填充,以用于自对准接触替换栅极结构。在实施例中,可以使用常规的光刻和蚀刻工艺去除金属28和栅极电介质材料20。例如,沉积在结构之上的掩模/抗蚀剂将被图案化以暴露金属28和栅极电介质材料20,同时保护侧壁隔离物18和电介质材料14。然后使暴露的金属28和栅极电介质材料20经受具有选择性化学的蚀刻工艺,以将这些材料部分地去除到位于沟槽16内的预定深度。然后使用常规的剥离工艺去除掩模/抗蚀剂。
在图5中,在功函数金属28和侧壁隔离物18上沉积例如功函数金属的栅极材料30。此外,栅极材料30将覆盖栅极电介质材料20。以此方式,在随后处理步骤期间,栅极电介质材料20现在被完全覆盖,例如被保护。在实施例中,例如功函数金属的栅极材料30是例如TiAlC的N型功函数金属。
顶部金属材料簇32沉积在功函数金属30上,并且阻挡金属34沉积在顶部簇金属材料32上。在实施例中,作为示例,顶部金属材料簇32可以是一层或多层TiN。阻挡金属34也可以是例如TiN;尽管本文考虑了其他阻挡金属。材料32、34、26在凹陷的材料22、24、26、28上的沉积将导致双阶梯配置(如标有“2S”的圆圈所示)。
由于沟槽中材料的凹陷,可以留下足够的空间用于沉积栅极金属材料36。例如,沟槽16的剩余部分可以具有约4nm的宽度,填充有栅极金属材料36。以此方式,现在对于例如22nm以及更大的较小的技术节点,可以在自对准接触(SAC)栅极模块中具有改进的填充负载控制。在实施例中,栅极金属材料36是钨(W)。
参考图6,使用常规CMP工艺平坦化功函数金属30、顶部金属材料簇32、阻挡金属34和栅极金属材料36。在平坦化工艺之后,材料30、32、34和36凹陷,如附图标记38所示。以此方式,功函数金属30、顶部金属材料簇32、阻挡金属34和栅极金属材料36将形成凹陷的单个平坦表面。在实施例中,可以使用对材料30、32、34和36具有高选择性的蚀刻化学的无掩模工艺使材料30、32、34和36凹陷。以此方式,金属材料30、32、34和36被凹陷到侧壁隔离物18的表面下方(形成凹部38)。在实施例中,材料30、32、34和36可以被凹陷到约15nm至约25nm的深度。该凹陷工艺将降低金属材料30、32、34和36的高度,确保源/漏接触金属本身不会与栅极材料短路。
图7示出了沉积在凹部38内的帽盖材料40。在实施例中,帽盖材料40是使用常规CVD工艺沉积的SiN材料。可以通过CMP工艺平坦化SiN材料。在实施例中,帽盖材料40将在源极/漏极接触形成期间保护下方的材料30、32、34和36(其中30、32、34和36也保护栅极电介质材料20)。
在CMP工艺之后,在侧壁隔离物18的侧面上在电介质材料14中形成源极/漏极接触42。源极/漏极接触42可以通过常规的接触形成工艺形成,例如在通过蚀刻工艺形成的沟槽中的金属材料的光刻、蚀刻和沉积。有利地,例如金属材料和栅极电介质材料的凹陷的栅极材料在源极/漏极接触42的形成期间不会被暴露,从而消除源极/漏极接触42与栅极材料之间的任何短路,特别是形成到栅极电介质材料20(其现在被凹陷在电介质材料14的表面下方)的任何短路。
如上所述的方法用在集成电路芯片的制造中。所得到的集成电路芯片可以由制造商以作为裸芯片的原始晶片形式(即,作为具有多个未封装芯片的单个晶片)或者以封装形式分发。在后一种情况下,芯片被安装在单芯片封装(诸如塑料载体中,其引线固定到母板或其他更高级别的载体)或多芯片封装(诸如陶瓷载体中,其具有表面互连和/或掩埋互连中的一者或两者)中。在任何情况下,芯片然后与其他芯片、分立电路元件和/或其他信号处理设备集成,作为(a)中间产品(诸如母板)或者(b)最终产品的一部分。最终产品可以是包括集成电路芯片的任何产品,从玩具和其他低端应用,到具有显示器、键盘或其他输入设备以及中央处理器的高级计算机产品。
本公开的各种实施例的描述已为了示例的目的而给出,但并非旨在是穷举性的或限于所公开的实施例。在不脱离所描述的实施例的范围和精神的情况下,许多修改和变化对于本领域普通技术人员将是显而易见的。本文中所用术语的被选择以旨在最好地解释实施例的原理、实际应用或对市场中发现的技术的技术改进,或者使本技术领域的其他普通技术人员能理解本文公开的实施例。

Claims (20)

1.一种结构,包括:
位于沟槽结构中的凹陷的栅极电介质材料;
位于所述凹陷的栅极电介质材料上、位于所述沟槽结构内的多个凹陷的功函数材料;
位于所述沟槽结构内并且位于所述凹陷的栅极电介质材料和所述多个凹陷的功函数材料上方的多个附加功函数材料;
位于所述沟槽结构内并且位于所述多个附加功函数材料之上的栅极金属,所述栅极金属和所述多个附加功函数材料具有位于所述沟槽结构的顶表面下方的平坦表面;以及
位于所述栅极金属和所述多个附加功函数材料之上的帽盖材料。
2.根据权利要求1所述的结构,还包括位于所述多个附加功函数材料与所述多个凹陷的功函数材料之间的金属材料。
3.根据权利要求2所述的结构,其中所述多个附加功函数材料的顶层是TiN。
4.根据权利要求2所述的结构,其中所述金属材料和所述凹陷的栅极电介质材料沿着所述沟槽结构的侧壁具有相同的高度。
5.根据权利要求4所述的结构,其中所述金属材料包括在所述多个凹陷的功函数材料内过渡的阶梯特征。
6.根据权利要求5所述的结构,其中所述多个附加功函数材料包括双阶梯特征。
7.根据权利要求5所述的结构,其中所述多个附加功函数材料具有下层,所述下层与所述凹陷的栅极电介质材料和沿着所述沟槽结构的所述侧壁的侧壁材料直接接触。
8.根据权利要求7所述的结构,其中所述凹陷的栅极电介质材料在所述多个附加功函数材料下方直接接触所述侧壁材料。
9.根据权利要求7所述的结构,其中所述侧壁材料是SiN。
10.根据权利要求1所述的结构,其中所述多个附加功函数材料包括三层材料。
11.根据权利要求1所述的结构,其中所述栅极金属是钨。
12.一种结构,包括:
沟槽结构;
加衬所述沟槽结构的侧壁的侧壁材料;
位于所述侧壁材料表面上的电介质材料,所述电介质材料具有低于所述沟槽结构的顶表面的高度;
多个凹陷的功函数栅极材料,其设置在所述电介质材料之上并且具有低于所述沟槽结构的所述顶表面的高度;
位于所述多个凹陷的功函数栅极材料之上的功函数栅极材料,其中所述功函数栅极材料的底部接触所述电介质材料上方的所述侧壁材料;以及
形成在所述沟槽结构的剩余部分内和所述功函数栅极材料的顶部上的栅极金属。
13.根据权利要求12所述的结构,其中所述多个凹陷的功函数栅极金属具有低于所述电介质材料的高度。
14.根据权利要求12所述的结构,还包括位于所述多个凹陷的功函数栅极材料上的底部材料簇。
15.根据权利要求14所述的结构,其中所述底部材料簇接触所述电介质材料。
16.根据权利要求15所述的结构,其中所述底部材料簇的高度等于所述沟槽内的所述电介质材料的高度。
17.根据权利要求15所述的结构,其中所述底部材料簇包括TiN。
18.根据权利要求16所述的结构,其中形成的所述栅极金属和所述功函数栅极材料中的每个层被凹陷到所述沟槽结构的所述顶表面下方,并且在形成的所述栅极金属和所述功函数栅极材料中的每个层上设置帽盖层。
19.根据权利要求18所述的结构,其中所述栅极金属和所述功函数栅极材料中的每个层的表面形成单个平坦表面。
20.一种方法,包括:
形成沟槽结构;
形成加衬所述沟槽结构的侧壁的侧壁材料;
在所述侧壁材料的表面上形成电介质材料;
将所述电介质材料凹陷到所述沟槽结构的顶表面下方的高度;
在所述电介质材料之上形成多个功函数栅极材料;
将所述多个功函数栅极材料凹陷到所述沟槽结构的所述顶表面下方的高度;
在所述多个凹陷的功函数栅极材料之上形成功函数栅极材料,其中所述功函数栅极材料的底部接触所述电介质材料上方的所述侧壁材料;以及
在所述沟槽结构的剩余部分内和所述功函数栅极材料的顶部上形成栅极金属。
CN201910274505.XA 2018-05-08 2019-04-08 倒角的替代栅极结构 Pending CN110459603A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/974282 2018-05-08
US15/974,282 US10636890B2 (en) 2018-05-08 2018-05-08 Chamfered replacement gate structures

Publications (1)

Publication Number Publication Date
CN110459603A true CN110459603A (zh) 2019-11-15

Family

ID=68336999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910274505.XA Pending CN110459603A (zh) 2018-05-08 2019-04-08 倒角的替代栅极结构

Country Status (4)

Country Link
US (1) US10636890B2 (zh)
CN (1) CN110459603A (zh)
DE (1) DE102019204967A1 (zh)
TW (1) TWI772636B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158719B2 (en) * 2018-11-30 2021-10-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor devices and semiconductor devices
KR20210128104A (ko) 2020-04-16 2021-10-26 삼성전자주식회사 반도체 장치
US11728171B2 (en) * 2020-06-25 2023-08-15 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with metal gate fill structure
KR20220005746A (ko) 2020-07-07 2022-01-14 삼성전자주식회사 반도체 장치
US20230317815A1 (en) * 2022-03-30 2023-10-05 Globalfoundries U.S. Inc. Laterally diffused metal-oxide semiconductor with gate contact

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262451A1 (en) * 2006-05-09 2007-11-15 Willy Rachmady Recessed workfunction metal in CMOS transistor gates
CN102386217A (zh) * 2010-09-01 2012-03-21 中芯国际集成电路制造(上海)有限公司 栅极堆叠结构及其制作方法
US20150021694A1 (en) * 2013-07-17 2015-01-22 GlobalFoundries, Inc. Integrated circuits having replacement metal gates with improved threshold voltage performance and methods for fabricating the same
US20150041905A1 (en) * 2013-08-06 2015-02-12 International Business Machines Corporation Methods of forming replacement gate structures for transistors and the resulting devices
US20150108577A1 (en) * 2013-10-17 2015-04-23 Globalfoundries Inc. Selective growth of a work-function metal in a replacement metal gate of a semiconductor device
CN104637819A (zh) * 2013-11-13 2015-05-20 格罗方德半导体公司 形成FinFET装置上的替代栅极结构及鳍片的方法以及装置
US20150206963A1 (en) * 2014-01-17 2015-07-23 Taiwan Semiconductor Manufacturing Company Ltd. Metal gate structure and manufacturing method thereof
US20160284817A1 (en) * 2015-03-24 2016-09-29 International Business Machines Corporation Replacement metal gate structures
CN105990445A (zh) * 2015-03-23 2016-10-05 三星电子株式会社 半导体器件及其制造方法
TW201639040A (zh) * 2015-04-23 2016-11-01 聯華電子股份有限公司 具有金屬閘極之半導體元件及其製作方法
US9589960B1 (en) * 2015-12-23 2017-03-07 SK Hynix Inc. Semiconductor device having buried gate structure, method for manufacturing the same, memory cell having the same, and electronic device having the same
US20170154972A1 (en) * 2015-11-30 2017-06-01 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structure and method of fabricating the same
US20180108748A1 (en) * 2016-10-19 2018-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gate Structure and Method of Forming the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130187236A1 (en) * 2012-01-20 2013-07-25 Globalfoundries Inc. Methods of Forming Replacement Gate Structures for Semiconductor Devices
US9129986B2 (en) 2013-06-28 2015-09-08 Globalfoundries Inc. Spacer chamfering for a replacement metal gate device
US9455330B2 (en) * 2014-11-21 2016-09-27 International Business Machines Corporation Recessing RMG metal gate stack for forming self-aligned contact
US9443771B1 (en) 2015-11-09 2016-09-13 Globalfoundries Inc. Methods to thin down RMG sidewall layers for scalability of gate-last planar CMOS and FinFET technology

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262451A1 (en) * 2006-05-09 2007-11-15 Willy Rachmady Recessed workfunction metal in CMOS transistor gates
CN101438389A (zh) * 2006-05-09 2009-05-20 英特尔公司 Cmos晶体管栅极中的凹入功函数金属
CN102386217A (zh) * 2010-09-01 2012-03-21 中芯国际集成电路制造(上海)有限公司 栅极堆叠结构及其制作方法
US20150021694A1 (en) * 2013-07-17 2015-01-22 GlobalFoundries, Inc. Integrated circuits having replacement metal gates with improved threshold voltage performance and methods for fabricating the same
US20150041905A1 (en) * 2013-08-06 2015-02-12 International Business Machines Corporation Methods of forming replacement gate structures for transistors and the resulting devices
US20150108577A1 (en) * 2013-10-17 2015-04-23 Globalfoundries Inc. Selective growth of a work-function metal in a replacement metal gate of a semiconductor device
CN104637819A (zh) * 2013-11-13 2015-05-20 格罗方德半导体公司 形成FinFET装置上的替代栅极结构及鳍片的方法以及装置
US20150206963A1 (en) * 2014-01-17 2015-07-23 Taiwan Semiconductor Manufacturing Company Ltd. Metal gate structure and manufacturing method thereof
CN105990445A (zh) * 2015-03-23 2016-10-05 三星电子株式会社 半导体器件及其制造方法
US20160284817A1 (en) * 2015-03-24 2016-09-29 International Business Machines Corporation Replacement metal gate structures
TW201639040A (zh) * 2015-04-23 2016-11-01 聯華電子股份有限公司 具有金屬閘極之半導體元件及其製作方法
US20170154972A1 (en) * 2015-11-30 2017-06-01 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structure and method of fabricating the same
US9589960B1 (en) * 2015-12-23 2017-03-07 SK Hynix Inc. Semiconductor device having buried gate structure, method for manufacturing the same, memory cell having the same, and electronic device having the same
US20180108748A1 (en) * 2016-10-19 2018-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gate Structure and Method of Forming the Same

Also Published As

Publication number Publication date
TWI772636B (zh) 2022-08-01
US10636890B2 (en) 2020-04-28
DE102019204967A1 (de) 2019-11-14
TW201947704A (zh) 2019-12-16
US20190348517A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US10971601B2 (en) Replacement metal gate structures
CN110459603A (zh) 倒角的替代栅极结构
KR20180120068A (ko) 게이트 올 어라운드 반도체 장치 및 그 제조 방법
TWI699865B (zh) 中段製程結構
CN110176453A (zh) 中段制程结构
US10790376B2 (en) Contact structures
TWI729283B (zh) 接觸結構
CN110246804A (zh) 接触结构
TWI714176B (zh) 具降低短路與均勻倒角的置換金屬閘極及其製造方法
TWI708389B (zh) 帽蓋結構
US11171237B2 (en) Middle of line gate structures
CN108428633A (zh) 具有栅极高度缩放的半导体结构
US20180158821A1 (en) Gate structures with low resistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201204

Address after: California, USA

Applicant after: Lattice core USA Inc

Address before: Grand Cayman Islands

Applicant before: GF